
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

137 | P a g e

www.ijacsa.thesai.org

Multi-Agent based Functional Testing in the

Distributed Environment

Muhammad Fraz Malik

Shaheed Zulfikar Ali Bhutto Institute of Science and

Technology, Islamabad, Pakistan

M. N. A. Khan

Shaheed Zulfikar Ali Bhutto Institute of Science and

Technology, Islamabad, Pakistan

Uzma Bibi

Shaheed Zulfikar Ali Bhutto Institute of Science and

Technology, Islamabad, Pakistan

Muhammad Ayaz Malik

Chalmers University of Technology,

Gothenburg, Sweden

Abstract—Verification and testing are two formal techniques

of defect reduction applied on designing and development phases

of SDLC to rationalize quality assurance activities. The process

of testing applications in the distributed environment becomes

too complex. This study discusses a distributed testing

framework that consists of many parallel tester components. The

idea is based on utilizing client server environment to conduct

software testing efficiently and in a short span of time. It is

pertinent to mention that this study is restricted to testing of

functional aspects of the software while testing of performance

and other quality-of-service aspects are outside the scope of the

study. An important factor influencing the use of agent

technology in software testing is the dynamic nature of events.

Since agents are characterized by intelligence and autonomy,

their ability to interact with the environment offers added

functionality to make decisions based on the needs of the

scenarios that are dynamic in nature. This study shows that the

use of agents to build a dynamic model for software testing in the

distributed environment results in a more robust and efficient

design. The proposed framework is based on distribution of test

cases among multiple agents deployed across a distributed system

which collaborate with each other to perform testing in an

efficient manner. The proposed framework also provides an in-

depth visibility into the software quality by providing the defect

statistics on-the-fly. The experiments have been conducted using

Selenium test automation tool. The test cases along with their test

scripts and the test run results are described herein.

Keywords—Software quality assurance; software testing;

distributed environment; input variation testing; test vectors; multi-

agents

I. INTRODUCTION

Software testing is a process which is used to ensure quality
of the product by assessing software behavior according to the
specifications. The abnormal software behavior is generally
termed as a bug or defect which could be a fault, error or
failure of software that causes it to produce unexpected results
or exhibit unwanted behavior. It is important to mention that
faults lead to errors and errors lead to failures. The term failure
is generally used from user's perspective which means that
certain functionality is either missing or is not producing the
desired results. The software quality is mostly viewed from
customers’ perspective mainly the customer satisfaction and is

generally termed as fitness for purpose. IEEE and ISO define
software quality as meeting the “user needs or expectations”
and ability to “satisfy specified or implied needs” respectively.

Testing is a critical phase in designing and development of
software and computer systems. In case of distributed software
applications, the testing process particularly becomes too
complex as the distributed applications inherently are
multifaceted and more convoluted than the applications
developed in collocated environment. Software testing of
distributed systems even becomes a daunting task if manual
testing is employed. This paper addresses the issue of
automated testing of distributed applications by looking into
the common challenges in the distributed systems testing
followed by proposing a framework that automates the testing
process.

Software testing is one of the most difficult tasks to assure
the quality of software and plays a vital role in the SDLC
process to ensure that it adheres to the client or customer needs.
When it comes to the distributed applications environment,
software testing is considered as backbone for applications.
Testing the distributed software application is much more
difficult as compared to testing standalone software
applications, because the distributed system behaviors are
dynamically changed with respect to time and platforms. There
are several key challenges linked to testing the distributed
applications; e.g., the same test run executed frequently on the
same scenario with same input, may generate different outputs.
This happens due to the non-linear behavior of the distributed
systems i.e., event timing can also affect the end results. The
functional and non-functional requirements play key role in
web applications testing.

Generally, the term Software under Test (SUT) refers to the
application that needs to be tested to determine correctness of
its operations/functionality. For this purpose, a correctness-
centered approach needs to be employed to ensure that
software meets the software quality assurance requisites. For
this purpose, the “design for testability” rules are applied on
the specifications to prepare a suitable test run. Test harness is
an umbrella term used to refer to collection of software and
input data variation datasets to be used for software testing.
Test harness is usually applicable at the level of unit testing

https://www.google.com.pk/search?es_sm=93&q=define+frequently&sa=X&ei=yzpWVaXEAsObsAHzioC4AQ&ved=0CB0Q_SowAA
https://www.google.com.pk/search?espv=2&biw=1366&bih=667&q=define+scenario&sa=X&ei=FztWVe-BGYePsgGMwoCQCw&ved=0CCsQ_SowAA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

138 | P a g e

www.ijacsa.thesai.org

and is based on the concept of executing software under
varying conditions of input followed by observing the
correctness of the produced output. Test harness consists of
two key components known as test script repository and test
execution engine. Multi-agent is a predestined technology
which synergizes the power of autonomous computational
components that have control over their behavior and mutually
work to achieve their specific individual objectives.

Within this context, multi-agent systems impart more
functionality and intelligence to computer systems as agents
operate in a flexible and rationale manner through interaction
with other agents or even humans. With agents having the
capacity to operate in parallel, multi-agent systems not only
speed up efficiency but also enhance reliability and robustness.
Also, since multi-agent systems follow a more modular
structure with each agent performing independently of the
other, it addresses the problem of scalability as programmers
can simply add new agents to enhance functionality of a
program.

Current research shows that multi-agent systems are less
costly than most of the centralized systems as they are
composed of subsystems of low unit cost. These agents can be
reused in different scenarios without the hassle of coding new
programs from the scratch for newly emerging scenarios.
Agents act autonomously in order to solve complex problems
in real time that are beyond the scope of human capability.
Multi-agent systems make use of the expertise of individual
agents coupled with their ability to collaborate, cooperate and
also interact with one another to formulate powerful systems
beyond the scope of individual agents alone. It is this very
feature of agent technology that forms the basis of multi-agent
systems [14]-[16].

II. RELATED WORK

A software agent is a computer code or program that
operates in the dynamic environment on behalf of an additional
entity either human or computational. Software agents are
designed to be autonomous, proactive, collaborative and
operate asynchronously as well as in parallel fashion. These
agents communicate through the message passing instead of
method invocation. Since agents run autonomously and
cooperatively among the other agents, so they may run
properly by themselves and may perform inaccurately while
working together. For the specific nature of the software
agents, it is tricky to apply the normal software testing and
debugging technique to software agents. Software agents
require special techniques dedicated for testing.

Collins et al. [1] combine the advantages of Distributed
Software Development and agile software development
methods and state that the old works did not cover the scenario
where the tasks related to testing in distributed environments
with individual work groups that are located on different
spatial locations. DiLucca et al. [2] performed analysis of
different testing method for web applications with respect to
functional and non-functional requirements. The research
highlights that functionality testing of a web application relies
on the following basic aspects: testing models, testing levels,
testing strategies, test cases and test processes.

Clune et al. [3] state that systematic testing is crucial for the
complex scientific software systems. The objective of this
study was to analyze testing techniques for scientific software
so that they can be maintained and evolve in a systematic way.
The complex scientific software evolves due to the growing
requirements and the developers introduce new line of codes in
the software to meet the additional changes. Every new line in
the system carries risk of introducing bugs and may result in
performance degradation. Identifying and fixing such bugs
require additional cost, time and effort. Early detection of bugs
could considerably reduce the efforts needed to implement a
correction. The authors suggest that scientific software should
be covered with systematic testing.

Chu et al. [4] state that it might become more informative
to perform the testing inside live situations. The vivo testing
focuses on easing the burden by simply sharing load across a
number of multiple instances of the software application. This
approach elevates the scope in vivo testing from a single
instance to a couple of instances. A central server coordinates
this effort by monitor the size of the community and collecting
the test results. This approach extends to presented in vivo
testing framework which is called Invite. Applying this
distributed method to in vivo testing technique help amortizing
the workload above many instances cause higher performance
impact lacking of sacrificing the quantity of tests being
conduct. In addition, in vivo testing supports testing as many
permutation of states as possible, in the hope that it would
encounter the ones that are not correctly handled by the code.
Testing software applications that use nontrivial databases are
increasingly being outsourced to test centers for reducing cost
and achieving higher quality [5]. However, for security reasons
the sensitive information is not shared with the test centers to
perform testing with the real data. The author introduced a
novel approach called PISTIS for minimizing database for
software testing tasks. PISTIS used on a weight-based
information clustering formula that divide the test data by
making using of pertinent information obtained by way of
program evaluation. This way a large database is reduced to a
few centric objects. This main benefits of this testing is that
tests are not dependent able the designer and the tester.

Agent oriented software engineering methodologies
provide us a platform to develop agents based systems. These
methodologies mainly focus on development rather than the
testing. It is not possible to map all agent properties e.g.
autonomy, reactivity etc. to object oriented constructs.
Therefore, a proper testing technique for agent-based software
solutions is needed. Sivakumar et al. [6] propose an effective
and specialized testing technique for agent-based systems. The
proposed technique focuses the main attribute of an agent
which is role. It follows a v-based model which starts from
requirements and ends at role-based acceptance testing. The
proposed approach provides better solution for industrial,
commercial, medical, networking and educational applications
related problems. The purpose of software product lines is to
create efficient products in a systematic manner, and
Uzuncaova et al. [7] build on one such systematic technique
referred to as “scope-bounded testing” in order to develop a
novel specification based methodology far efficiently creating
tests regarding products within a software product line.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

139 | P a g e

www.ijacsa.thesai.org

Lv et al. [8] propose hybrid approach that uses Adaptive
Testing and Random Partition Testing is an alternating manner.
The motivation for this approach is that both strategies are
employed such that the underlying computational complexity
of Adaptive Testing is reduced by introducing Random
Partition Testing into the testing process without affecting the
defect detection effectiveness. A case study with seven real-life
subject programs is presented in the study. The Adaptive
Random Testing is to enhance the failure-detection ability of
Random Testing. Chen et al. [9] consider and compare towards
the performance regarding adaptive randomly testing from
code coverage perspective.

Eassa et al. [10] introduce a dynamic testing tool that use a
temporal logic assertion language for detecting run time errors
in agents and agent-based systems. The proposed technique is
based on the syntax and semantic of the temporal logic
assertion language. A dynamic testing tool has been built and
tested for ascertaining its effectiveness against its use as a
dynamic testing tool.

Serrano et al. [11] propose a framework to record and order
interactions among agents in a MAS. To capture the
interactions in the distributed MAS, the proposed solution uses
a generic registration layer based on aspect oriented
programming. In MAS, the distributed events are ordered using
vector clocks which are combined with graph theory to
produce abstract graphs. The framework is based on debugging
errors in different testing environments and removes the
matching errors.

Hao et al. [12] introduce the technique of performance
assessment and offered a platform of agent-based functionality
testing about web based services. The study includes some
specific features Test Flow Generator, Scenario Creator, Test
Manager and Load Generator Agent. Communication and the
coordination between distributed testing components are more
complex features. The typical reactions of such systems are the
generation of errors such as time outs, locks, observability,
controllability and synchronization problem. Azzouzi et al.
[13] show how to cope with these problems by using a
distributed testing method including timing constraints.
Afterwards, a multi-agent architecture is proposed to describe
behavior of testing a distributed chat group application on high
level of abstraction. The study focuses on the temporal
properties that specify the time required for exchanging
messages between the various components of the distributed
test applications.

Based on the literature review, we observed that there is a
need for speedy execution of the testing activities to curtail the
testing costs and save time. In this regards, testing of
application using the distributed environment can be a viable
and speedy solution. Multi-agent based framework is proposed
to address the issue of performing software testing in a robust
manner. In view of this, a suitable proposition could be to
formulate a network of multi-agents that possess learning
capabilities and are intelligent as well as collaborative. The
cooperative nature of the multi-agents in this study is expected
to enhance the multi-agent based software testing frameworks.

III. FUNCTIONAL TESTING FRAMEWORK

In view of the problem statement mentioned in the last
paragraph of the previous section, we propose a multi-agent
based functional testing framework within the distributed
environment. The proposed framework only encompasses the
functional testing and does not cater for non-functional or
quality attribute testing. The functional testing is primarily
based on input-output relationship. While testing a software,
the obtained results are matched against the expected/desired
results and based on this comparison the decision whether the
test has passed or failed is taken. Our proposed framework is
shown in Fig. 1. The detail description of the various
components/artifacts that constitute our framework is described
below.

Fig. 1. Framework for multi-agent based functional testing in distributed

environment.

A. Centralized Client-Server Environment

Network server is a key component to support the
distributed environment (i.e. Client Server Environment) by
providing a centralized control. The purpose of a server is to
share data or hardware and software resources among the
clients. This architecture is called the client–server model. In
our framework, we imply that the client server environment is
already in place and we do not deal with any of its hardware
configuration or network protocol improvement. We are using
distributed environment as a test bed. Our proposed framework
supports parallel testing. It is used for speedily performing the
testing activities by different distributed bunches of test cases
across the multiple client machines. Parallel
testing means testing multiple applications or subcomponents
of an application concurrently to reduce the time required to
test the entire system. Parallel tests consist of two or more parts
(projects or project suites) that check different parts or
functional characteristics of an application.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

140 | P a g e

www.ijacsa.thesai.org

B. Test Suite Repository

Test Suite Repository maintains all the test cases
corresponding to different software functionalities. It is
assumed that test cases have already been prepared/generated
by the test engineers either automatically or manually from the
software specifications. In this study, we assume that the
necessary test cases to be run for an application have already
been made available in the test repository. And the dependency
among different test cases has already been resolved using
appropriate measures. The test plan used in this study merely
corresponds to the functional testing.

C. Test Oracle

In software testing paradigm, the Test Oracle that
determines whether a test has passed or failed based on certain
criteria bears three capabilities: a generator, a comparator and
an evaluator. The generator furnishes the expected resulted for
a test case which is examined by the comparator against the
obtained result. Finally, the evaluator then determines whether
the comparison was successful or not. The key limitation of the
oracles is that they can be applied only on a small subset of all
the possible inputs and outputs pairing. Thus, it makes them
suitable for small scale testing activities.

D. Test Script Generator

The task of test script generator in our framework is to
prepare an executable test scripts (e.g. in HTML Format) for
each and every test case. We can also assign/add priority with
the test cases in order to decide upon their order of execution.
A test script in software testing is a set of instructions that will
be performed on the system under test (SUT) to verify that the
system functions as expected. The test scripts can be either
generated automatically or prepared manually. There are
several testing tools such as Selenium and QTP (Quality
Testing Professional) that can generate test scripts.

E. Multi-Agents

Software agents are programs or code snippets that are
placed across the network and have their own control and
goals. There are several types of agents and among them
Interface agent, Information agents, Heterogeneous agent,
Mobile agent, Reactive agents, Collaborative agents are
commonly used. Agents are generally categorized based on
their properties. Agent should be message passing,
collaborative, proactive and autonomous. In this study, agents
are supposed to receive, execute and send results of the test
cases. Intelligent agents deployed on the client machines will
decide to load the relevant software component/artifact based
on the received test case and the procedure or plan to execute
them.

F. Test Controller

Test controller is an important module of our framework.
The main task of test controller is to extract the test cases from
the test suite repository and prepare the test scripts accordingly
followed by distributing test cases on different client machines.
Test controller continuously receives the status of test cases

from different client machines and updates their status
accordingly. Test controller is also connected with another
important artifact known as test analyzer. Test Controller has a
two way communication channel with the test analyzer and
client machines, which enables it to send and receive data
across both the modules. Therefore, we can safely assume that
Test Controller is the core module of our testing framework
which initiates, executes and monitors the whole testing
process.

G. Test Analyzer

After the Test Controller, Test Analyzer is the next
important part of our framework. It keeps record of the number
of test cases passed and failed. Such results are used to
determine the level and quality of a software product. It is
connected with test controller and different client machines. It
analyzes the output of client machines and accumulates results
and then it sends failed and deferred test cases back to the test
suite repository so that test controller can fetch them again and
try their re-run. It also helps test controller to update the test
cases in test suite repository so that the successfully executed
test cases should not be executed again. Test Analyzer also
maintains test case logs which are needed by the Test summary
module to generate different summary and analytic reports.

IV. IMPLEMENTATION AND EXPERIMENTATION

To validate our proposed framework, we prepared a test
bed consisted of one server machine and one another machine
which hosts multiple client machines in the form of virtual
machines. For this purpose, we created four virtual machines
on the computer using VMware Workstation 10.0. All these
virtual machine were connected to the server and we installed
soft bots (i.e., agents) on each of the client machine as well as
on the server side. These agents are in fact a piece of code to
communicate and coordinate with other agents deployed on
other client machine as well as server machine.

A. Case Study

As a case study to perform the testing activities, we used a
web-based application for “Employee Management”. This
web-based application was prepared for a company
“Cafedunord”. Employee management is a shift management
platform to prepare a shift roaster for different employees of an
organization. The manager can create different shifts and can
allocate them to different employees. Employees receive
emails about their whole weekly or monthly working schedule.
Manager can also generate shifts related work report for
employees. We prepared 50 functional test cases which
correspond to different functionalities provided by the software
such as login (authentication), adding employee, and assigning
tasks to the employee, preparing shift schedule, making duty
rostrum etc. Some of the selected test cases are appended as
Annex-1 to this report. The prepared test cases were then
converted into test scripts using the Selenium testing tool. The
test cases were run on the Selenium using the “record” option,
for which Selenium prepared the test scripts accordingly. We
saved these test scripts for future use. The test scripts, which
were in executable form, were then passed on to the test
controller for distribution to the client machines for their
execution.

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/System_under_test

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

141 | P a g e

www.ijacsa.thesai.org

TABLE I. DESCRIPTION OF TEST CASES BASED ON SYSTEM

FUNCTIONALITY

These sample test scripts generated by the Selenium are
also attached as Annexure-II to this report.

B. Test Case Execution

We selected a web-based application named “Cafedunord
employee management system” to test its functionalities for
validation of our framework. It is actually a shift management
application for the employees. We can create different shifts
e.g. day-shift or night-shift and then we can allocate them to
different employees. Employee receives their whole weekly or
monthly schedule by email. We have created 50 test cases in
the beginning from which we selected specific test cases to
perform testing which are described in Table 1. Our framework
is a distributing functional testing with multi-agent in which we
have a server and a small bunch of client machines. In our test
bed, the client machines are not physical machines but are
virtual machines created using VM-ware Workstation. For the
testing purpose, we use Selenium automation testing tool.
Selenium is a suite of tools to automate web browser across
many platforms. This testing tool is free and open source
software.

Running tests cases in parallel calls for two things: an
infrastructure to spread the tests and a framework which will
run these kinds of tests with parallel in the given infrastructure.
So, we can first make a distributed infrastructure and then
create several tests cases, which will be executed in this
distributed test environment. Selenium is powerful tool which
can work with distributing environment and we can also record
a test script for a particular test case. When we have to verify a
test case, we will run its correspondent test script. Selenium
automation testing tool and multi-agents are be deployed on
server and client machines. Software agent is in fact a piece of
code snippet that monitors and controls all the work related to
communication and collaboration among the network nodes.
To begin with the testing, all of our test cases are placed in the

Test Suite Repository. Test Controller fetches the test cases
from the repository. In Test Controller milieu, we use Selenium
to create test scripts for those cases and agents will distribute
those test scripts among the client machines depending upon
the load on each machine. Every client machine will verify the
test script using testing tool and will provide the result. Agents
can share those results with each other through message
passing which can create a speedy execution of test cases as
well as reliable and robust testing environment. Every test
result is sent to the Test Analyzer. Test Analyzer updates the
repository with the test case status whether the test has been
passed or failed. Test Controller can run the failed test cases
again at a later stage. The execution summary of passed and
failed test cases is provided in Table 2 whereas, statistics about
the percentage of passed and failed test cases in shown in
Table 3.

TABLE II. TEST CASES EXECUTION SUMMARY

Functionality
Test

cases

Pas

sed
Failed Remarks

Employee

Authentication
6 5 1

The logoff functionality was not

working properly.

Registering

New Employee
8 6 2

Change password option on the

first login attempt was not active.

Also employee's roles

modification was not being

carried out.

Shift

Management
13 13 0

All the test cases passed in this

module.

Scheduling 17 16 1

Erroneous behavior observed

while assigning off days. Same

off day could be assigned to all

the employees.

Generate

Reports
6 4 2

Two of the summary reports in

the menu list did not generate

anything.

TABLE III. PASSED AND FAILED TEST CASE EXECUTION SUMMARIES

(PERCENTAGE)

Test Cases Quantity Percentage

Passed 42 84 %

Failed 6 12 %

Deferred (Error in test script) 2 4 %

Total 50 100 %

Graphical representation of Table 3 is shown in Fig. 2.

Fig. 2. Test execution summary.

Sr

Functionality

Module/

Webpage

Test

cases

Description of the selected

test cases provided in

Annex-1

1
Employee

Authentication
Login.aspx 6

a. Check for valid

Username and

Password.

b. Test with invalid

Username and

Password.

2
Registering

New Employee

Add

Employee.a

spx

8

Valid user name and

particulars for New

employee.

3
Shift

Management

Shift

Template.a

spx

13
Different shifts allocated

different staffs members.

4 Scheduling

Employee

Scheduling.

aspx

17
Scheduling/rotation of

employees by admin

5
Generate

Reports

Reports.asp

x
6

Generate the reports when

required.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

142 | P a g e

www.ijacsa.thesai.org

A time based comparison of the test execution on
monolithic and multi-agent based system in the distributed
environment is shown in Table 4.

TABLE IV. EXECUTION TIME ANALYSIS USING MONOLITHIC AND MULTI-
AGENT SYSTEM

Functional

ity

(Module)

Inp

ut

field

s

Test

Cas

es

Test Run

(Execution)

Time on

Monolithic

Environment

(in seconds)

Time of Execution using

multi-agents (i.e., JADE

agents in Distributed

Environment) (in

seconds)

2

Client

machi

nes

3

Client

machi

nes

4

Client

machi

nes

Employee

Authenticat

ion

2 6 12.86 8.21 6.91 6.72

Registering

New

Employee

10 8 150.41 84.7 70.13 48.12

Shift

Manageme

nt

4 13 34.12 23.78 16.37 15.93

Scheduling 5 17 180.24
104.8

9
75.12 60.13

Generate

Reports
3 6 41.23 26.36 19.52 18.12

A graph showing the time of execution using multi-agents
on multiple machines and on a standalone system which had no
agents deployed on it is illustrated in Fig. 3.

Fig. 3. Execution Time Analysis using monolithic and multi-agent system.

V. DISCUSSION

The framework proposed in this study will facilitate the
regression testing of the applications which undergo several
releases/builds by automating the testing process. The core
reason for using collaborative multi-agent in this research was
to make the testing activities faster and economical. The multi-
agent approach has been widely used in the domain of
computational intelligence as it has been proved to be an

adequate approach where cooperative traits of specialized
agents (or bots) are required. Since multi-agent are themselves
distributed in natural and operate autonomously in different
environment therefore, they support better utilization of
computational resources.

In this study, we have employed a three-layered multi-agent
architecture. We used JADE (Java Agent Development
framework) to deploy multi-agents. A comparative analysis of
the similar studies shows that our framework supports
robustness and enhances test execution speed besides
supporting controllability. Further, our model is scalable as
well. Hence, our model supports the key performance measures
as reported by other researchers. The distinctive part of our
study is that it focuses on reducing Test execution time by
utilizing more and more resources. A comparative analysis of
our framework with other studies is provided in Table 5.

TABLE V. COMPARATIVE STATEMENT OF CONTEMPORARY STUDIES

Ref Purpose
Evaluation

Parameters
Benefits/Strengths

[6]

Agent oriented

software testing

approach is

presented to enhance

efficiency and

quality of software

products.

Efficiency

Agent based

approach helped

achieve better

management of the

software testing

process.

[11]

Different methods

for debugging the

multi-agent system

for software testing.

Debugging helps

enhance the

quality of

software.

This paper proposes

the methodology to

test a relational

database server as a

central storage

mechanism.

[12]

This approach

enhances

performance testing

on distributed agent

based web services.

Reliability,

Accuracy,

Dynamicity

It also combines the

features of

performance testing

as well as functional

testing and improves

the system with

respect to reliability

and accuracy.

[13]

The proposed

approach is used to

improve the

correctness of

testing in distributed

systems.

Coordination,

Communication,

Controllability,

Observablility

Several problems

influencing fault

detection during the

conformance testing

process arise. So this

approach reduces

the problems of

coordination and

improves the

controllability of

system and enhances

the fault detection.

[10]

Build a temporal

logic assertion

language to help

detect the identified

errors as well as

build a dynamic

analyzer based on

temporal assertion

language for testing

agents.

Reliability,

Communication,

Fault Detection

The main advantage

of using agent based

testing is that it can

generate test cases

automatically and it

can run

continuously. This

framework is more

scalable in dealing

with the distributed

environment.

Ours

Our approach use

collaborative multi-

agents the core

Controllability,

Efficiency

(Speed)

Our framework

supports robustness

and enhances test

0

20

40

60

80

100

120

140

160

180

200T

i

m

e

 (

i

n

S

e

c

o

n

d

s)

Functionality Modules

Ececution Time Analysis with and without Multi-agents

Monolithic

2 Clients

3 Clients

4 Clients

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

143 | P a g e

www.ijacsa.thesai.org

reason for using

collaborative multi-

agent in this

research was to

make the testing

activities faster and

economical. Our

study is focuses on

reducing Test

execution time by

utilizing more and

more resources.

Scalability,

Observability

execution speed

besides supporting

controllability.

Further, our model

is scalable as well.

Hence, our model

supports the key

performance

measures as reported

by other researchers.

VI. CONCLUSION

In this research we presented a multi-agent based
framework to perform the functional testing in the distributed
environment. The core reason for performing testing activities
in the distributed environment was to reduce the cost, time and
efforts ordinarily required to perform functional testing. We
choose to deploy multi-agents on the client machine and server
side to better coordinate the testing activities. To validate our
proposed framework, we created 50 test cases for a web
application called “Cafedunord”. All the test cases were
passed through Selenium automation testing tool to generate
their test scripts which were also run through Selenium testing
tool using the agents deployed on different client machines.
The experimental results show that time to execute test cases
was reduced by a proportional factor depending on the number
of client machines.

REFERENCES

[1] E. Collins, G. Macedo, N. Maia., and A. Dias-Neto, “A Industrial
Experience on the Application of Distributed Testing in an Agile
Software Development Environment”, In Global Software Engineering
(ICGSE) on IEEE Seventh International Conference, pp-190-194,2012.

[2] G.A. Di Lucca, and A, R Fasolino, “Testing Web-based applications:
The state of the art and future trends”onInformation and Software
Technology, vol 48, pp-1172-1186, 2006..

[3] T. Clune, M. Rilee, and D. Rouson, “Testing as an essential process for
developing and maintaining scientific software”.on In The 2nd

Workshop on Sustainable Software for Science: Practices and
Experiences, 2014.

[4] M. Chu, C. Murphy, and G. Kaiser, “Distributed in vivo testing of
software applications. In Software Testing Verification, and Validation”,
on 1st International Conference on, pp. 509-512, 2008

[5] B. Li, M. Grechanik, and D. Poshyvanyk, “Sanitizing and minimizing
databases for software application test outsourcing. In Software Testing,
Verification and Validation (ICST)” on IEEE Seventh International
Conference on, pp. 233-242,2014

[6] N. Sivakumar, and k. Vivekanandan, “Agent Oriented Software
Testing–Role Oriented approach” on International Journal of Advanced
Computer Science and Applications, vol 3, 2012

[7] E. Uzuncoava, S.khurshid,, and D. Batory, “Incremental test generation
for software product lines” on Software Engineering, IEEE
Transactions, vol 36, pp. 309-322,2010.

[8] J. Lv, H. Hu, K. Y. Cai, and T. Y Chen,” Adaptive and Random
Partition Software Testing”,2014.

[9] T. Chen, F., Kuo, H., Liu and E. Wong, “Code coverage of adaptive
random testing”, on IEEE Transactions on Reliability, vol 62, pp. 226-
237.2013.

[10] F.E, Eassa., L.J Osterweil, M. A, Fadel, S. Sandokji and A Ezz,”
DTTAS: A Dynamic Testing Tool for Agent-based Systems” on Pensee
Journal, vol 76. 2014.

[11] E. Serrano., A. Munoz. And J. Botia. “An approach to debug
interactions in multi-agent system software tests.” On Information
Sciences, vol 205, pp. 38-57,2012.

[12] D. Hao, Y., Chen., F. Tang, and F. Qi. “Distributed agent-based
performance testing framework on Web Services” In Software
Engineering and Service Sciences (ICSESS) on International
Conference on, pp. 90-94, 2010.

[13] S., Azzounzi., M., Benattou, and M.E.H Charaf, “A temporal agent
based approach for testing open distributed systems.” on Computer
Standards & Interfaces, vol 40, pp. 23-33.2015.

[14] G.,Weiss, “Multi-Agent Systems.” MITPress, Cambridge, MA.1999.

[15] M. F. Malik & M.N.A. Khan, “An Analysis of Performance Testing in
Distributed Software Applications.” International Journal of Modern
Education and Computer Science, 8(7), 53, 2016.

[16] M. Wooldridge, “An Introduction to Multi Agent Systems.” Wiley
Second Edition.ISBN 978-0-470-51946-2.2009.

