
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

238 | P a g e

www.ijacsa.thesai.org

Toward a New Massively Distributed Virtual

Machine based Cloud Micro-Services Team Model

for HPC: SPMD Applications

Fatéma Zahra Benchara

Department of Computer Science

Laboratory SSDIA, ENSET Mohammedia, Hassan II

University of Casablanca

Mohammedia, Morocco

Mohamed Youssfi

Department of Computer Science

Laboratory SSDIA, ENSET Mohammedia, Hassan II

University of Casablanca

Mohammedia, Morocco

Omar Bouattane

Department of Computer Science

Laboratory SSDIA, ENSET Mohammedia, Hassan II

University of Casablanca

Mohammedia, Morocco

Ouafae Serrar

Department of Computer Science

CRMEF MARRAKECH-SAFI,

MARRAKECH, Morocco

Hassan Ouajji

Laboratory SSDIA, ENSET Mohammedia, Hassan II

University of Casablanca

Mohammedia, Morocco

Abstract—This paper aims to propose a new massively

distributed virtual machine with scalable and efficient parallel

computing models for High Performance Computing (HPC). The

message passing paradigm of the Processing Units has a

significant impact on HPC with high communication cost that

penalizes the performance of these models. Accordingly, the

proposed micro-services model allows the HPC applications to

enhance the processing power with low communication cost.

Thus, the model based Micro-services Virtual Processing Units

(MsVPUs) cooperate using asynchronous communication

mechanism through the Advanced Message Queuing Protocol

(AMQP) protocol in order to maintain the scalability of the

Single Program Multiple Data (SPMD) applications.

Additionally, this mechanism enhances also the efficiency of the

model based load balancing service with time optimized load

balancing strategy. The proposed virtual machine is tested and

validated through an application of fine grained parallel

programs for big data classification. Experimental results

present reduced execution time compared to the virtual machine

based mobile agent’s model.

Keywords—Parallel and distributed computing; micro-services;

cloud computing; distributed virtual machine; high performance

computing

I. INTRODUCTION

Recently, computer science application converges to HPC
one. This is due to the new application expectations for Big
data analysis [1], and real time information accessibility on
multiple devices (Smartphones, Laptops, Tablets…). Thus, the
data to be processed and the related complex computations

oriented these applications to new HPC processing
environments (clusters, grids and clouds [2], [3]) which
provide the required processing power. The HPC systems
based cloud computing are constituted by a set of distributed
heterogeneous machines connected through an interconnection
network and collaborate by their own resources in order to
provide the processing power with an optimized computation
time; such as in Amazon Elastic Compute Cloud (EC2) [4] that
aims to enhance the execution of HPC applications in cloud.
The collaboration between the distributed processing units is
based on the HPC environment middleware which orchestrates
the computation and manages the distribution of data and tasks
between them. However, the performance of these
environments is related to the one of their based middleware
[5]. Normally, this middleware has to manage these two
following major HPC challenges: 1) Message passing
challenge the intensive communication between the computing
units, has a great impact on the global computation time and
the scalability of these applications, with the corresponding
high communication cost. 2) Heterogeneity of computing
nodes challenge the difference of nodes performance influence
also the global computation time with an unbalanced
computing environment caused by the overloaded workload of
the slowest node. Indeed, the middleware based massively
distributed computing environment has to deal with the above
challenges in order to provide a scalable and efficient
massively distributed computing environment. Thus, what are
the promising paradigms for managing these challenges? This
paper presents a new massively distributed virtual machine
model based on cloud micro-services which aims to implement

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

239 | P a g e

www.ijacsa.thesai.org

an asynchronous communication mechanism for computing
units message passing. The main contributions of this paper are
that 1) the proposed virtual machine considers providing the
processing power needed for HPC applications by its
integrated micro-services team model which is constituted by
virtual computing units, and 2) considers the communication
challenge using a lightweight communication mechanism, and
also 3) considers the heterogeneity challenge by implementing
a load balancing strategies. The paper is organized as follows:

 We present the virtual machine based cloud distributed
computing model and its innovative components
(Section 3) which are the micro-services.

 We demonstrate that the model based middleware is
promising (Section 4); and that by implementing some
SPMD applications (Section 5) we ensure a scalable
and efficient cooperative parallel and distributed
computing environment.

II. BACKGROUND

To highlight the aim of this paper, we present the parallel
and distributed computing [6] field and its key techniques for
performing intensive computation in a few time. For example,
in order to perform a password encryption program on 1000
passwords (Fig. 1) there are two main case study: 1) Sequential
case where the program is performed on a single machine with
an execution time TE per password, and the global
computation time TtSeq= ∑ . Despite, in 2) Parallel and
Distributed computing case, the program is encapsulated on 10
machines which cooperate and distribute the data between
them and work in parallel so that the global computation time
will be reduced significantly with Tt(p&d)<< TtSeq. The last
case will perform a high performance computing if the
computing model integrates some mechanisms for parallel and
distributed computing challenges; the communication and the
load balancing challenges. So, the scalable computing model
will be the one which can optimize significantly the global
computation time. This model is implemented on parallel and
distributed virtual machine that orchestrates and manages the
distribution of data and tasks between the nodes.

There are several inspiring proposed parallel and
distributed virtual machines [7]-[11] that used different
technologies such as the MCC(Mesh Connected Computer)
mesh and the FPGA (Field-Programmable Gate Array).
However, the scalability and efficiency of these virtual
machines depends on the ability of their corresponding
middleware to handle the HPC computing challenges. The
Middleware is the main components in the distributed systems
that can manage a set of heterogeneous nodes. The Multi Agent
System MAS is a promising technology for implementing such
middleware. However, the micro-services implements the
flexibility with the others technologies trends and the easy
integration in cloud to improve HPC.

Fig. 1. Parallel and distributed computing paradigm.

III. PROPOSED MASSIVELY DISTRIBUTED VIRTUAL

MACHINE

A. Massively Distributed Virtual Machine Architecture

The proposed massively distributed virtual machine is a
new parallel and distributed computing environment,
constituted over distributed heterogeneous nodes in distributed
system. This virtual machine based micro-services model
which is managed by cloud middleware, allows performing the
parallel and distributed programs as services by cooperative
micro-services team MsVPUs. For each deployed service, the
Scientifics and researchers can take benefits of the flexibility of
this virtual machine with the parallel computing models such
as: SPMD, MPMD, and topologies (2D Mesh, 3D Mesh,…).
Each MsVPU is an autonomous service that collaborates with
the computing team using well determined communication
mechanism for HPC. For example (Fig. 2), in order to perform
the big data classification the well-known classification
algorithms; c-means and Fuzzy c-means are implemented in
this virtual machine as distributed classification service
(Section 3) according to SPMD architecture. To do so, each
team worker MsVPU will receive the input data from its team
leader MsVPU, and perform the classification service and send
the results back to its team leader in order to accomplish the
execution of the application.

Fig. 2. SPMD distributed computing model based micro-services approach.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

240 | P a g e

www.ijacsa.thesai.org

B. Distributed Computing Model based Main Components

In order to perform a high performance parallel and
distributed computing, the proposed virtual machine model
collaborate specific types of micro-services according to their
tasks. When the parallel and distributed program is deployed
on this virtual machine the micro-services team is created. This
later is constituted by; Team leader (MsVPU) micro-service
and the team workers (MsVPUs) that are distributed on each
node to perform their corresponding services. Each team
worker (MsVPU) encapsulates the program as service and
collaborates with the other MsVPUs and provides the results to
their Team leader (MsVPU) micro-service which manages and
orchestrates the computing of its team while the execution of
the program. This virtual machine allows deploying more than
one parallel and distributed program by its integrated Proxy Ms
Provider micro-service which works with the Load Balancer
Ms micro-service in order to choose the appropriate team for
each application request. The main principal micro-services of
the model (Fig. 3) are presented as follows:

 Proxy Ms Provider. This micro-service is the
mediator between the micro-services MsVPUs and the
applications. The application requests are sent to this
micro-service which communicate with the Load
Balancer Ms in order to choose and send the request to
the appropriate micro-service MsVPU. Then, the Proxy
Ms Provider returns the results to the appropriate
application.

 Load Balancer Ms. This micro-service is the one
responsible of the management of the micro-services of
the virtual machine. Each micro-service publishes its
information (name, address, port, and number of CPUs)
in this micro-service. So, this helps the Load Balancer
Ms to get the node performance and ensure the load
balancing of micro-services according to well defined
load balancing strategies.

 Team leader MsVPU. This micro-service is the one
responsible of the execution of the application requests.
It cooperate with its team works (MsVPUs) in order to
execute the parallel and distributed programs as
services and sends the final results to the Proxy Ms
Provider. This micro-service can be deployed in many
distributed nodes.

 Team worker MsVPUs. This micro-service
corresponds to a CPU. Each MsVPU receives the data
from its team leader Ms and executes the service and
returns the results to this later in order to compute the
finale results.

 DF Ms. This micro-service centralizes the
configuration of micro-services of the model. Each
deployed micro-service will search for its configuration
on this micro-service. So, the Proxy Ms Provider will
easily follow the appropriate micro-services of the
application request.

Fig. 3. Architecture of the Main components of the massively distributed virtual machine.

The UML diagram of the virtual machine model is
illustrated in Fig. 4, which allows the MsVPUs micro-services
to collaborate in the grid computing in order to perform the
distributed services according to different programming
models and parallel topologies.

The communication between the computing model main
components is presented in the sequence diagram of Fig. 5. For
example, in order to perform the parallel and distributed

computing service, the application sends the request with the
input data to Ms Proxy Provider. This later sends this request
to the Ms Load Balancer which determines the Team leader Ms
that will perform this request, and sends its address to the Ms
Proxy Provider which sends the input data to the right Team
leader Ms in order to perform this request in collaboration with
its team of MsVPUs. At the end, the final result is send back to
the application by the Ms Proxy provider.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

241 | P a g e

www.ijacsa.thesai.org

Fig. 4. UML diagram of the proposed massively distributed virtual machine model.

C. Massively Distributed Computing Middleware

 The Massively Distributed computing Middleware (Fig. 6)
is a new paradigm based micro-services, which allows dividing
the complex tasks of the parallel programs to independent sub
tasks as distributed micro-services deployed on the computing
model of virtual machine. This computing model cooperates
the micro-service team leader MsVPU and its micro-services

team workers MsVPU in order to perform the parallel
programs on cloud computing platform. So, the scalability and
efficiency of this middleware are illustrated by its two main
modules; Communication Optimization Module for
implementing the asynchronous communication mechanism
and Load Balancing Module in order to manage the overloads
between the micro-services.

Fig. 5. Communication diagram of main components of the massively distributed virtual machine.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

242 | P a g e

www.ijacsa.thesai.org

Communication Optimization Module This module
ensures a lightweight communication mechanism between the
micro-services of the computing model. This is done, by the
implementation of the RabbitMQ messaging Framework in the
computing model. So that the micro-services will use
asynchronous communication by exchanging messages based
on AMQP (Advanced Message Queuring Protocol) protocol.
Furthermore, this module provides three types of message
queues (data_queue, tasks_queue, and results_queue) which
store and provide the exchanged messages between the micro-
services. For example (Fig. 7) in order to perform an SPMD
service, the Team leader Ms micro-service sends the
computing data to the data_queue, and then this data is sent to
the appropriate MsVPU micro-services. Each MsVPU will
execute the service and send the results to the results_queue in
order to be received by the Team leader Ms.

LoadBalancing Module This module provides a load
balancing mechanism for the micro-services of the computing
model by a specific micro-service the Load Balancer Ms. This
later collaborates with the micro-services TNPMs (Team Node
Performance Micro-service) which are deployed on each node
in order to define the performance index of all the nodes of the
distributed system, and their loads index. So, the Load
Balancer Ms will get the set of TNPMs micro-services from
the DF Ms micro-service, and execute the performance test in
collaboration with TNPMs micro-services in order to define
the required metadata for elaborating the load balancing
strategy (Fig. 8) according to these three global steps:

 Initial Performance Test of nodes The Ms Load
Balancer executes the performance test on the node N0,
and then it sends the data D0 to the TNPMs micro-
services at t0. Each TNPMs micro-service performs the
performance test on its data D0 and sends the result Ri
that is composed by (Computation Time Tpi, and the
number of CPUs NCi), to the Ms Load Balancer at t1(i).

These results will be used by the Ms Load Balancer in
order to get the metadata {Execution Time TE (TEi=(t1(i)-t0)),
and Communication Latency TL (TLi= TEi-Tpi} needed to
define the initial performance index and the loads index
respectively according to the following equations:

 =

(1)

 = round (

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(2)

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

∑

(3)

 Performance Index of the Nodes NPI The Load
Balancer Ms uses the metadata of the initial
performance test {TE, TL, C0} and the metadata of
MsVPUs {Ck the complexity of service, and Zk the
amount of data exchanged between the node N0 and Ni}
in order to define the performance index NPIi of each
node Ni by :

NPIi=

(4)

Also, the execution time, and the latency of
communication and the computational time can be
estimated respectively by :

Fig. 6. Parallel and distributed computing middleware based micro-services modules.

(5)

 =

(6)

 ⁄
 (7)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

243 | P a g e

www.ijacsa.thesai.org

 Load Index of the Node NLI: The Load Balancer Ms
computes the load index of each node Ni by (8) based
on the total number nbMs of micro-services needed for
performing the request, and the number n of nodes, and
the performance index NPI. This micro-service can get
the micro-services information (address of node, port
number) in order to choose the appropriate micro-
services on each node Ni for performing the application

request, by the way to maintain a balanced virtual
machine.

Fig. 7. Communication diagram of MsVPUs based asynchronous communication mechanism.

Fig. 8. Load balancing strategy based micro-services model.

NLIi= round (

 ̅̅ ̅̅ ̅̅ ̅
 (8)

where ̅̅ ̅̅ ̅̅ =
∑

(9)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

244 | P a g e

www.ijacsa.thesai.org

IV. APPLICATION & RESULTS

For testing the scalability and efficiency of the proposed
virtual machine model, the two well-known SPMD
classification algorithms; c-means [12] and Fuzzy c-means [13]
are implemented as distributed services using the Spring
Cloud Middleware.

A. Distributed Implementation

The classification algorithms are implemented on the
MsVPUs of the computing model according to the
communication diagram in Fig. 9. This diagram presents the
micro-services MsVPUs and their implemented services in
order to perform the classification of big image. For example,
in order to perform the classification of the image the c-means
algorithm is implemented according to distributed
implementation DSCM (Distributed Service C-means) as
follows:

 The Team leader MsVPU divides the input image on

NS=me ne elementary images.

 The Team leader MsVPU sends the elementary images
NS to the Team workers MsVPUs, one per team worker
MsVPU(s).

 Each Team worker MsVPU(s) gets its elementary
image EI, and performs its classification service.

 For each iteration t

{

1) The Team leader MsVPU sends the initial class centers

to all the Team workers MsVPU(s).

2) Each Team worker MsVPU(s) gets the class centers

values and performs the classification service

(doClassificationService). This service allows the Team

worker MsVPU(s) to perform the classification on its

elementary image and computes and elementary results :

ER2(s,k) the sum of colors of each class centers ck, which
is computed by:

ER2 (s,k)=∑
 (11)

ER3(s,k) the sum of the membership matrix of each class
centers ck, which is computed by:

ER3(s,k)=∑

 (12)

where pi is the number of pixels of the Team worker
MsVPU elementary image EI.

ER1(s) the sum of distances of each class centers ck, which
is computed by:

ER1 (s)= ∑
 (10)

At the end of the classification, each Team worker
MsVPU(s) sends its elementary results ER1(s), ER2(s, k),
ER3(s,k) to its Team leader MsVPU.

Fig. 9. Communication diagram of distributed big data classification model main components.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

245 | P a g e

www.ijacsa.thesai.org

3) The Team leader MsVPU gets the elementary results of

the Team workers MsVPUs and performs the global

classification service (doGlobalClassificationService) which is

based on performing the three following sub services :

Assembling the elementary results: When the Team leader
MsVPU receives the elementary results (ER1(s), ER2(s,k),
ER3(s,k)). This later computes the global results (GER1(k),
GER2(k), GER3(k)), respectively by (13),(14),(15).

GER1(k) the global value of ER1(s) of all the
Team workers MsVPUs.

GER1(k)=∑
 (13)

GER2(k) the global value of ER2(s) of all the
Team workers MsVPUs.

GER2(k)=∑
 (14)

GER3(k) the global value of ER3(s) of all the
Team workers MsVPUs.

GER3(k)= ∑

(15)

Calculate the new class centers: The Team leader MsVPU
computes the new value of class centers based on the value of
GER2(k) and GER3(k) by (16).

(16)

Computes the objective function Jt: The Team leader
MsVPU uses the computed value of GER1(k) to determine the
objective function by (17).

Jt =∑
 (17)

4) Test of convergence of the algorithm (|Jt-J(t-1)|<Eth). The

Team leader MsVPU compare the difference between the

obtained objective function Jt and the one obtained in the

previous iteration with the error (Eth), if |Jt-J(t-1)|<Eth (end),

else (repeat from step 1 with the new value of the class

centers).
}// End of iteration t

 The Team leader MsVPU requests the segmented
elementary output images from the Team worker
MsVPUs in order to assemble and provide the c outputs
images and the final results to the application by Proxy
provider Ms.

B. Results

The scalability and the performance of the proposed model
are illustrated through an SPMD application. This application
has to process a satellite image of size (row, column)=(7280,
7750) pixels on three output images C1, C2, C3 as shown in
Fig. 10. The two classification services; c-means and fuzzy c-
means using the same initial class centers (1.2, 2.5, 3.8) are
performed under this application. We conclude in Table 1 and
Table 2, that the two services; DSCM and DSFCM converge
dynamically to the same final class centers (4.866, 112.396,
163.370). Fig. 11 and 12 show the dynamic convergence and
the error of the objective function of both services.

Fig. 10. Output classification image results using the proposed virtual machine

based middleware.

TABLE I. DIFFERENT STATES OF THE DISTRIBUTED FUZZY C-MEANS

SERVICE (DSCM) STARTING FROM THE CLASS CENTERS (C1, C2, C3) =

(1.2,2.5,3.8).

For validating the performance of the proposed model, the
classification time is analyzed for both services according to
the involved number of MsVPUs in the classification in
Fig. 13. We conclude that for both services the classification
time achieves its minimum values of 26331 ms for DSCM and
of 153970 ms for DSFCM using 32 MsVPUs. This number of
MsVPUs is the required number for the classification of this
case of image.

To illustrate the performance of the communication
mechanism and the load balancing of this model, a compared
study of the proposed model is performed with the mobile
agent’s model. In this study the corresponding application has

to process 1000 elementary images of size (1024 786) pixels,
by the way that 1000 MsVPU micro-services will execute the
same service of complexity Ck(x)=O(x²) in parallel.

Iteration
Value of each class center

Absolute value

of threshold

C1 C2 C3 |Jt-Jt-1|

1

2

3

4

5

6

7

8

9

10

11

12

13

1,200

0,001

0,001

0,219

1,225

3,481

4,089

4,379

4,563

4,706

4,784

4,866

4,866

2,500

2,253

31,030

47,574

65,062

87,135

99,093

105,239

108,870

110,646

111,797

112,396

112,396

3,800

132,119

138,600

140,414

142,384

145,767

152,041

156,876

160,110

161,733

162,822

163,370

163,370

7,50E+00

1,27E+02

3,53E+01

1,86E+01

2,05E+01

2,77E+01

1,88E+01

1,13E+01

7,05E+00

3,54E+00

2,32E+00

1,23E+00

0,00E+00

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

246 | P a g e

www.ijacsa.thesai.org

TABLE II. DIFFERENT STATES OF THE DISTRIBUTED FUZZY C-MEANS

SERVICE (DSFCM) STARTING FROM THE CLASS CENTERS (C1, C2, C3) =

(1.2,2.5,3.8).

Iteration Value of each class center Absolute value

of the error

C1 C2 C3 |Jn-Jn-1|

 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1,200

56,561

18,376

6,348

4,745

4,344

4,216

4,180

4,172

4,170

4,170

4,170

4,170

4,170

4,170

4,170

4,170

4,170

4,170

4,170

4,170

4,170

4,170

4,170

4,170

2,500

123,684

128,181

122,692

116,811

114,478

113,824

113,666

113,633

113,630

113,632

113,634

113,636

113,637

113,637

113,638

113,638

113,638

113,638

113,638

113,639

113,639

113,639

113,639

113,639

3,800

128,646

142,342

153,589

160,697

163,436

164,239

164,460

164,523

164,543

164,551

164,555

164,557

164,558

164,559

164,559

164,559

164,560

164,560

164,560

164,560

164,560

164,560

164,560

164,560

1,95E+09

1,03E+09

2,30E+08

1,37E+08

2,41E+07

1,28E+06

1,14E+06

4,42E+05

1,14E+05

3,39E+04

1,21E+04

5,26E+03

2,68E+03

1,51E+03

8,95E+02

5,42E+02

3,31E+02

2,03E+02

1,25E+02

7,69E+01

4,75E+01

2,91E+01

1,78E+01

1,11E+01

6,76E+00

From Fig. 14 and Table 3, it can be seen that the AVPU
model achieves an acceptable load balancing with

 = 82,5517 s with the error

i(AVPU) [0.00014,0.03] and for the proposed model based

MsVPU

 = 71,5271 s with

i(MsVPU) [0.00014, 0.03] which means a gain of

performance of

= 1,15413

compared to the AVPUs based model. This is due, to the
lightweight communication mechanism of the micro-services
compared to the mobile agents. So, the both models integrate
the mechanism to ensure high performance computing.

From Table 4, it can be seen that the both models provide
autonomous virtual computing units which enhance the
processing power, and manage the computing challenges;
heterogeneity of computing nodes and the message passing
mechanism of computing units. So, the HPC applications can
take advantages of these two models.

(a)

 (b)

Fig. 11. Dynamic convergence of DSCM service with initial class centers (c1,

c2, c3) = (1.2, 2.5, 3.8); (a) Class centers, (b) Error of the objective function.

(a)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

247 | P a g e

www.ijacsa.thesai.org

(b)

Fig. 12. Dynamic convergence of DSFCM service with initial class centers

(c1, c2, c3) = (1.2, 2.5, 3.8); (a) Class centers, (b) Error of the objective

function.

Fig. 13. Classification Time depending on the number of MsVPUs for c-means

service DSCM and Fuzzy c-means service DSFCM.

Fig. 14. Execution time for each node Ni, for the both computing models;

Agent AVPU Model and Micro-service MsVPU Model.

TABLE III. COMPARISON OF EXECUTION TIME FOR EACH NODE NI FOR

THE BOTH COMPUTING MODELS; AGENT AVPU MODEL AND MICRO-
SERVICE MSVPU MODEL

Ni
AVPU Model MsVPU Model

 (ms) i

 (ms) i

0 2020513,677 0,007556677 1989694,791 0,007947277

1 2043923,005 0,019275406 2012147,181 0,01937828

2 1996003,738 0,004652171 1964820,136 0,004652169

3 2009285,591 0,001981942 1977301,264 0,001761339

4 1997420,298 0,003964798 1966256,613 0,003868472

5 1961371,238 0,021891009 1930789,454 0,021891011

6 2011818,492 0,003214181 1980248,984 0,003214181

7 2037281,587 0,015916015 2005008,187 0,015801354

8 1978621,624 0,013275925 1964954,997 0,004573581

9 2006293,217 0,000495296 1975019,785 0,000594413

TABLE IV. COMPARISON BETWEEN THE PARALLEL AND DISTRIBUTED COMPUTING MODELS; AGENT AVPU MODEL AND MICRO-SERVICE MSVPU MODEL.

 AVPU Model MsVPU Model

Virtual Processing
Unit

Mobile agent Micro-service

Fault Tolerance Agent clone mechanism
Micro-service plateform librairies.
Example for Spring cloud (Netflix Hystrix)

Load Balancing Agent migration

Micro-service plateform librairies.
Example for Spring cloud (Eureka)

Communication

Asynchronous communication with ACL

(Agent Communication Language) message.

Asynchronous communication with AMQP

(Advanced Message Quering Protocol) Protocol.

Deployment With Multi agents platform using JVM

With Micro-service containers using Cloud

Computing.

Performance

High High

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

248 | P a g e

www.ijacsa.thesai.org

V. RELATED WORKS

Several inspired researches have been proposed for scaling
up the cloud computing [14]-[18]. For example in [18], the
authors presented a new approach for horizontally scaling
cloud resources, and in [19] for load balancing, and resources
scheduling [20] in cloud. In [21] the authors presented the
cloud concept and its emerged services that deal with the IoT
trends, and they notice also that the applications with complex
data-intensive computations are the best candidate to take
advantages of cloud computing. Therefore, by applying the
parallel and distributed simulation on cloud, the performance
of these applications depends on the applied synchronization
algorithms [22]. Our approach considers the performance of
the HPC applications which are implemented on cloud
architectures using micro-services, and deals with intensive
computing units communication.

The cloud native applications [23], [24] with their related
micro-services architectures can be promising methodologies
for HPC applications in cloud computing. For example in [25]
the authors presented a performance evaluation of micro-
services architectures using containers: master-slave and
nested-container, and in [26] they discussed the benefit of
implementing micro-services architecture for emerging the
telecom application. Also, the micro-services approach is
implemented to digital curation infrastructure by devolving
function into a set of micro-services which grants the
deployment flexibility and simplify of the development and the
maintenance [27]. These features of the micro-services
architectures deal with the new trends of the HPC middleware
[5], and ensure the scalability of the distributed
applications [28].

VI. CONCLUSION

The massively distributed virtual machine model based
micro-services for HPC. This model integrates a cooperative
team of micro-services that are deployed as virtual computing
components MsVPUs (Micro-service Virtual Processing Units)
for performing the parallel programs as services according to
different architectures and topologies. The MsVPUs are the
virtual processors that enhance the processing power. Also,
they use the asynchronous communication mechanism based
AMQP protocol to optimize the communication cost of the
model. This model implements a load balancing module for
managing the micro-services and ensures the high performance
computing. In this paper, the efficiency and the performance of
this model are illustrated through an application of
classification using the two services; c-means and Fuzzy c-
means. In each node a specific number of MsVPUs are
deployed according to the load balancing method. So, the
MsVPUs cooperate in different nodes and execute the
application by the way to ensure a balanced virtual machine
with low communication cost. Compared to the mobile agents
based model, the proposed model grants a lightweight
communication mechanism which optimizes significantly the
communication cost. Also, the proposed virtual machine
capabilities provides the ability to extended its model to an
elastic platform that will be deployed in Cloud as PaaS
(Platform as a Service).

REFERENCES

[1] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. S. Netto, and R.
Buyya, “Big Data computing and clouds: Trends and future directions,” J.
Parallel Distrib. Comput., vol. 79, pp. 3–15, 2015.

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, and RH, “Above the clouds:
A Berkeley view of cloud computing,” Univ. California, Berkeley, Tech.
Rep. UCB , pp. 07–013, 2009.

[3] M. Zakarya and L. Gillam, “Energy efficient computing, clusters, grids
and clouds: A taxonomy and survey,” Sustain. Comput. Informatics Syst.,
vol. 14, pp. 13–33, 2017.

[4] A. Marathe, R. Harris, D. K. Lowenthal, B. R. de Supinski, B. Rountree,
and M. Schulz, “Exploiting Redundancy and Application Scalability for
Cost-Effective, Time-Constrained Execution of HPC Applications on
Amazon EC2,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 9. pp. 2574–2588, 2016.

[5] C. Engelmann, H. Ong, and S. L. Scott, “Middleware in Modern High
Performance Computing System Architectures,” in Computational
Science -- ICCS 2007: 7th International Conference, Beijing, China, May
27 - 30, 2007, Proceedings, Part II, Y. Shi, G. D. van Albada, J.
Dongarra, and P. M. A. Sloot, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 784–791.

[6] H. El-Rewini and M. Abd-El-Barr, Advanced Computer Architecture and
Parallel Processing. 2005.

[7] R. Miller and Q. F. Stout, “Geometric Algorithms for Digitized Pictures
on a Mesh-Connected Computer,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 7, no. 2, pp. 216–228, 1985.

[8] J. Wu, J. JaJa, and E. Balaras, “An Optimized FFT-Based Direct Poisson
Solver on CUDA GPUs,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no.
3, pp. 550–559, 2014.

[9] A. Rafique, G. A. Constantinides, and N. Kapre, “Communication
Optimization of Iterative Sparse Matrix-Vector Multiply on GPUs and
FPGAs,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 1, pp. 24–34,
Jan. 2015.

[10] M. Youssfi, O. Bouattane, and M. O. Bensalah, “A Massively Parallel
Re-Configurable Mesh Computer Emulator: Design, Modeling and
Realization,” J. Softw. Eng. Appl., pp. 11–26, 2010.

[11] M. Youssfi, O. Bouattane, F. Z. Benchara, and M. O. Bensalah
Mohammed, “A Fast Middleware For Massively Parallel And Distributed
Computing,” IJRCCT, vol. 3, no. 4, 2014.

[12] O. Bouattane, B. Cherradi, M. Youssfi, and M. O. Bensalah, “Parallel c-
means algorithm for image segmentation on a reconfigurable mesh
computer,” Parallel Comput., vol. 37, no. 4, pp. 230–243, 2011.

[13] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms. Norwell, MA, USA: Kluwer Academic Publishers, 1981.

[14] S. Niu, J. Zhai, X. Ma, X. Tang, W. Chen, and W. Zheng, “Building
Semi-Elastic Virtual Clusters for Cost-Effective HPC Cloud Resource
Provisioning,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 7, pp.
1915–1928, 2016.

[15] B. Mao, S. Wu, and H. Jiang, “Exploiting Workload Characteristics and
Service Diversity to Improve the Availability of Cloud Storage Systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 7. pp.
2010–2021, 2016.

[16] W. Xiao, W. Bao, X. Zhu, C. Wang, L. Chen, and L. T. Yang, “Dynamic
Request Redirection and Resource Provisioning for Cloud-Based Video
Services under Heterogeneous Environment,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 7. pp. 1954–1967, 2016.

[17] H. Wang, Z. Kang, and L. Wang, “Performance-Aware Cloud Resource
Allocation via Fitness-Enabled Auction,” IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 4. pp. 1160–1173, 2016.

[18] D. Grimaldi, A. Pescape, A. Salvi, s. santini, and V. Persico, “A Fuzzy
Approach based on Heterogeneous Metrics for Scaling Out Public
Clouds,” IEEE Transactions on Parallel and Distributed Systems, vol. PP,
no. 99. p. 1, 2017.

[19] J. Zhao, K. Yang, X. Wei, Y. Ding, L. Hu, and G. Xu, “A Heuristic
Clustering-Based Task Deployment Approach for Load Balancing Using
Bayes Theorem in Cloud Environment,” IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 2. pp. 305–316, 2016.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

249 | P a g e

www.ijacsa.thesai.org

[20] X. Xu, L. Cao, X. Wang, X. Xu, L. Cao, and X. Wang, “Resource pre-
allocation algorithms for low-energy task scheduling of cloud
computing,” Journal of Systems Engineering and Electronics, vol. 27, no.
2. pp. 457–469, 2016.

[21] S. Sharma, V. Chang, U. S. Tim, J. Wong, and S. Gadia, “Cloud-based
emerging services systems,” International Journal of Information
Management, 2016.

[22] G. D’Angelo and M. Marzolla, “New trends in parallel and distributed
simulation: From many-cores to Cloud Computing,” Simul. Model. Pract.
Theory, vol. 49, pp. 320–335, 2014.

[23] N. Kratzke and P. C. Quint, “Understanding cloud-native applications
after 10 years of cloud computing - A systematic mapping study,” J. Syst.
Softw., vol. 126, pp. 1–16, 2017.

[24] D. Namiot and M. Sneps-Sneppe, “On Micro-services Architecture,” Int.
J. Open Inf. Technol., vol. 2, no. 9, 2014.

[25] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M.
Steinder, “Performance Evaluation of Microservices Architectures Using
Containers,” 2015 IEEE 14th International Symposium on Network
Computing and Applications. pp. 27–34, 2015.

[26] M. Sneps-Sneppe and D. Namiot, “Micro-service Architecture for
Emerging Telecom Applications,” Int. J. Open Inf. Technol., vol. 2, no.
11, 2014.

[27] S. Abrams, J. Kunze, and D. Loy, “An Emergent Micro-Services
Approach to Digital Curation Infrastructure,” Int. J. Digit. Curation, vol.
5, no. 1, 2010.

[28] N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and L.
Safina, “Microservices: How To Make Your Application Scale,” 2017.

