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Abstract—This paper aims to propose a new massively 

distributed virtual machine with scalable and efficient parallel 

computing models for High Performance Computing (HPC). The 

message passing paradigm of the Processing Units has a 

significant impact on HPC with high communication cost that 

penalizes the performance of these models. Accordingly, the 

proposed micro-services model allows the HPC applications to 

enhance the processing power with low communication cost. 

Thus, the model based Micro-services Virtual Processing Units 

(MsVPUs) cooperate using asynchronous communication 

mechanism through the Advanced Message Queuing Protocol 

(AMQP) protocol in order to maintain the scalability of the 

Single Program Multiple Data (SPMD) applications. 

Additionally, this mechanism enhances also the efficiency of the 

model based load balancing service with time optimized load 

balancing strategy. The proposed virtual machine is tested and 

validated through an application of fine grained parallel 

programs for big data classification. Experimental results 

present reduced execution time compared to the virtual machine 

based mobile agent’s model. 

Keywords—Parallel and distributed computing; micro-services; 

cloud computing; distributed virtual machine; high performance 

computing 

I. INTRODUCTION  

Recently, computer science application converges to HPC 
one. This is due to the new application expectations for Big 
data analysis [1], and real time information accessibility on 
multiple devices (Smartphones, Laptops, Tablets…). Thus, the 
data to be processed and the related complex computations 

oriented these applications to new HPC processing 
environments (clusters, grids and clouds [2], [3]) which 
provide the required processing power. The HPC systems 
based cloud computing are constituted by a set of distributed 
heterogeneous machines connected through an interconnection 
network and collaborate by their own resources in order to 
provide the processing power with an optimized computation 
time; such as in Amazon Elastic Compute Cloud (EC2) [4] that 
aims to enhance the execution of HPC applications in cloud. 
The collaboration between the distributed processing units is 
based on the HPC environment middleware which orchestrates 
the computation and manages the distribution of data and tasks 
between them. However, the performance of these 
environments is related to the one of their based middleware 
[5]. Normally, this middleware has to manage these two 
following major HPC challenges: 1) Message passing 
challenge the intensive communication between the computing 
units, has a great impact on the global computation time and 
the scalability of these applications, with the corresponding 
high communication cost. 2) Heterogeneity of computing 
nodes challenge the difference of nodes performance influence 
also the global computation time with an unbalanced 
computing environment caused by the overloaded workload of 
the slowest node. Indeed, the middleware based massively 
distributed computing environment has to deal with the above 
challenges in order to provide a scalable and efficient 
massively distributed computing environment. Thus, what are 
the promising paradigms for managing these challenges?  This 
paper presents a new massively distributed virtual machine 
model based on cloud micro-services which aims to implement 
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an asynchronous communication mechanism for computing 
units message passing. The main contributions of this paper are 
that 1) the proposed virtual machine considers providing the 
processing power needed for HPC applications by its 
integrated micro-services team model which is constituted by 
virtual computing units, and 2) considers the communication 
challenge using a lightweight communication mechanism, and 
also 3) considers the heterogeneity challenge by implementing 
a load balancing strategies. The paper is organized as follows: 

 We present the virtual machine based cloud distributed 
computing model and its innovative components 
(Section 3) which are the micro-services.  

 We demonstrate that the model based middleware is 
promising (Section 4); and that by implementing some 
SPMD applications (Section 5) we ensure a scalable 
and efficient cooperative parallel and distributed 
computing environment. 

II. BACKGROUND 

To highlight the aim of this paper, we present the parallel 
and distributed computing [6] field and its key techniques for 
performing intensive computation in a few time. For example, 
in order to perform a password encryption program on 1000 
passwords (Fig. 1) there are two main case study: 1) Sequential 
case where the program is performed on a single machine with 
an execution time TE per password, and the global 
computation time TtSeq= ∑  . Despite, in 2) Parallel and 
Distributed computing case, the program is encapsulated on 10 
machines which cooperate and distribute the data between 
them and work in parallel so that the global computation time 
will be reduced significantly with Tt(p&d)<< TtSeq. The last 
case will perform a high performance computing if the 
computing model integrates some mechanisms for parallel and 
distributed computing challenges; the communication and the 
load balancing challenges. So, the scalable computing model 
will be the one which can optimize significantly the global 
computation time. This model is implemented on parallel and 
distributed virtual machine that orchestrates and manages the 
distribution of data and tasks between the nodes. 

There are several inspiring proposed parallel and 
distributed virtual machines [7]-[11] that used different 
technologies such as the MCC(Mesh Connected Computer) 
mesh and the FPGA (Field-Programmable Gate Array). 
However, the scalability and efficiency of these virtual 
machines depends on the ability of their corresponding 
middleware to handle the HPC computing challenges. The 
Middleware is the main components in the distributed systems 
that can manage a set of heterogeneous nodes. The Multi Agent 
System MAS is a promising technology for implementing such 
middleware. However, the micro-services implements the 
flexibility with the others technologies trends and the easy 
integration in cloud to improve HPC.   

 
Fig. 1. Parallel and distributed computing paradigm. 

III. PROPOSED MASSIVELY DISTRIBUTED VIRTUAL 

MACHINE 

A. Massively Distributed Virtual Machine Architecture 

The proposed massively distributed virtual machine is a 
new parallel and distributed computing environment, 
constituted over distributed heterogeneous nodes in distributed 
system. This virtual machine based micro-services model 
which is managed by cloud middleware, allows performing the 
parallel and distributed programs as services by cooperative 
micro-services team MsVPUs. For each deployed service, the 
Scientifics and researchers can take benefits of the flexibility of 
this virtual machine with the parallel computing models such 
as: SPMD, MPMD, and topologies (2D Mesh, 3D Mesh,…). 
Each MsVPU is an autonomous service that collaborates with 
the computing team using well determined communication 
mechanism for HPC. For example (Fig. 2), in order to perform 
the big data classification the well-known classification 
algorithms; c-means and Fuzzy c-means are implemented in 
this virtual machine as distributed classification service 
(Section 3) according to SPMD architecture. To do so, each 
team worker MsVPU will receive the input data from its team 
leader MsVPU, and perform the classification service and send 
the results back to its team leader in order to accomplish the 
execution of the application. 

 
Fig. 2. SPMD distributed computing model based micro-services approach. 
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B. Distributed Computing Model based Main Components 

In order to perform a high performance parallel and 
distributed computing, the proposed virtual machine model 
collaborate specific types of micro-services according to their 
tasks. When the parallel and distributed program is deployed 
on this virtual machine the micro-services team is created. This 
later is constituted by; Team leader (MsVPU) micro-service 
and the team workers (MsVPUs) that are distributed on each 
node to perform their corresponding services. Each team 
worker (MsVPU) encapsulates the program as service and 
collaborates with the other MsVPUs and provides the results to 
their Team leader (MsVPU) micro-service which manages and 
orchestrates the computing of its team while the execution of 
the program. This virtual machine allows deploying more than 
one parallel and distributed program by its integrated Proxy Ms 
Provider micro-service which works with the Load Balancer 
Ms micro-service in order to choose the appropriate team for 
each application request. The main principal micro-services of 
the model (Fig. 3) are presented as follows: 

  Proxy Ms Provider. This micro-service is the 
mediator between the micro-services MsVPUs and the 
applications. The application requests are sent to this 
micro-service which communicate with the Load 
Balancer Ms  in order to choose and send the request to 
the appropriate micro-service MsVPU. Then, the Proxy 
Ms Provider returns the results to the appropriate 
application.  

 Load Balancer Ms. This micro-service is the one 
responsible of the management of the micro-services of 
the virtual machine. Each micro-service publishes its 
information (name, address, port, and number of CPUs) 
in this micro-service. So, this helps the Load Balancer 
Ms to get the node performance and ensure the load 
balancing of micro-services according to well defined 
load balancing strategies.   

 Team leader MsVPU. This micro-service is the one 
responsible of the execution of the application requests. 
It cooperate with its team works (MsVPUs) in order to 
execute the parallel and distributed programs as 
services and sends the final results to the Proxy Ms 
Provider. This micro-service can be deployed in many 
distributed nodes.   

 Team worker MsVPUs. This micro-service 
corresponds to a CPU. Each MsVPU receives the data 
from its team leader Ms and executes the service and 
returns the results to this later in order to compute the 
finale results.   

 DF Ms. This micro-service centralizes the 
configuration of micro-services of the model. Each 
deployed micro-service will search for its configuration 
on this micro-service. So, the Proxy Ms Provider will 
easily follow the appropriate micro-services of the 
application request. 

 
Fig. 3. Architecture of the Main components of the massively distributed virtual machine.

The UML diagram of the virtual machine model is 
illustrated in Fig. 4, which allows the MsVPUs micro-services 
to collaborate in the grid computing in order to perform the 
distributed services according to different programming 
models and parallel topologies. 

The communication between the computing model main 
components is presented in the sequence diagram of Fig. 5. For 
example, in order to perform the parallel and distributed 

computing service, the application sends the request with the 
input data to Ms Proxy Provider. This later sends this request 
to the Ms Load Balancer which determines the Team leader Ms 
that will perform this request, and sends its address to the Ms 
Proxy Provider which sends the input data to the right Team 
leader Ms in order to perform this request in collaboration with 
its team of MsVPUs. At the end, the final result is send back to 
the application by the Ms Proxy provider.  
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Fig. 4. UML diagram of the proposed massively distributed virtual machine model.

C. Massively Distributed Computing Middleware 

 The Massively Distributed computing Middleware (Fig. 6) 
is a new paradigm based micro-services, which allows dividing 
the complex tasks of the parallel programs to independent sub 
tasks as distributed micro-services deployed on the computing 
model of virtual machine. This computing model cooperates 
the micro-service team leader MsVPU and its micro-services 

team workers MsVPU in order to perform the parallel 
programs on cloud computing platform. So, the scalability and 
efficiency of this middleware are illustrated by its two main 
modules; Communication Optimization Module for 
implementing the asynchronous communication mechanism 
and Load Balancing Module in order to manage the overloads 
between the micro-services. 

 
Fig. 5. Communication diagram of main components of the massively distributed virtual machine. 
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Communication Optimization Module This module 
ensures a lightweight communication mechanism between the 
micro-services of the computing model. This is done, by the 
implementation of the RabbitMQ messaging Framework in the 
computing model. So that the micro-services will use 
asynchronous communication by exchanging messages based 
on AMQP (Advanced Message Queuring Protocol) protocol. 
Furthermore, this module provides three types of message 
queues (data_queue, tasks_queue, and results_queue) which 
store and provide the exchanged messages between the micro-
services. For example (Fig. 7) in order to perform an SPMD 
service, the Team leader Ms micro-service sends the 
computing data to the data_queue, and then this data is sent to 
the appropriate MsVPU micro-services. Each MsVPU will 
execute the service and send the results to the results_queue in 
order to be received by the Team leader Ms.  

LoadBalancing Module This module provides a load 
balancing mechanism for the micro-services of the computing 
model by a specific micro-service the Load Balancer Ms. This 
later collaborates with the micro-services TNPMs (Team Node 
Performance Micro-service) which are deployed on each node 
in order to define the performance index of all the nodes of the 
distributed system, and their loads index. So, the Load 
Balancer Ms will get the set of TNPMs micro-services from 
the DF Ms micro-service, and execute the performance test in 
collaboration with TNPMs micro-services in order to define 
the required metadata for elaborating the load balancing 
strategy (Fig. 8) according to these three global steps:  

 Initial Performance Test of nodes The Ms Load 
Balancer executes the performance test on the node N0, 
and then it sends the data D0 to the TNPMs micro-
services at t0. Each TNPMs micro-service performs the 
performance test on its data D0 and sends the result Ri 
that is composed by (Computation Time Tpi, and the 
number of CPUs NCi), to the Ms Load Balancer at t1(i). 

These results will be used by the Ms Load Balancer in 
order to get the metadata {Execution Time TE (TEi=(t1(i)-t0)), 
and Communication Latency TL (TLi= TEi-Tpi} needed to 
define the initial performance index and the loads index 
respectively according to the following equations:  
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 Performance Index of the Nodes NPI The Load 
Balancer Ms uses the metadata of the initial 
performance test {TE, TL, C0} and the metadata of 
MsVPUs {Ck the complexity of service, and Zk the 
amount of data exchanged between the node N0 and Ni} 
in order to define the performance index NPIi of each 
node Ni by : 

NPIi= 
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Also, the execution time, and the latency of 
communication and the computational time can be 
estimated respectively by : 

 

 

 

Fig. 6. Parallel and distributed computing middleware based micro-services modules.
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 Load Index of the Node NLI: The Load Balancer Ms 
computes the load index of each node Ni by (8) based 
on the total number nbMs of micro-services needed for 
performing the request, and the number n of nodes, and 
the performance index NPI. This micro-service can get 
the micro-services information (address of node, port 
number) in order to choose the appropriate micro-
services on each node Ni for performing the application 

request, by the way to maintain a balanced virtual 
machine.   

 
Fig. 7. Communication diagram of MsVPUs based asynchronous communication mechanism. 

 

Fig. 8. Load balancing strategy based micro-services model.
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IV. APPLICATION & RESULTS 

For testing the scalability and efficiency of the proposed 
virtual machine model, the two well-known SPMD 
classification algorithms; c-means [12] and Fuzzy c-means [13] 
are implemented  as distributed services using the Spring 
Cloud Middleware. 

A. Distributed Implementation 

The classification algorithms are implemented on the 
MsVPUs of the computing model according to the 
communication diagram in Fig. 9. This diagram presents the 
micro-services MsVPUs and their implemented services in 
order to perform the classification of big image. For example, 
in order to perform the classification of the image the c-means 
algorithm is implemented according to distributed 
implementation DSCM (Distributed Service C-means) as 
follows:  

 The Team leader MsVPU divides the input image on 

NS=me   ne elementary images. 

 The Team leader MsVPU sends the elementary images 
NS to the Team workers MsVPUs, one per team worker 
MsVPU(s).   

 Each Team worker MsVPU(s) gets its elementary 
image EI, and performs its classification service. 

 For each iteration t 

{ 

1) The Team leader MsVPU sends the initial class centers 

to all the Team workers MsVPU(s).  

2) Each Team worker MsVPU(s) gets the class centers 

values and performs the classification service 

(doClassificationService). This service allows the Team 

worker MsVPU(s) to perform the classification on its 

elementary image and computes and elementary results :  

ER2(s,k) the sum of colors of each class centers ck, which 
is computed by: 

ER2 (s,k)=∑          
                                    (11) 

ER3(s,k) the sum of the membership matrix of each class 
centers ck, which is computed by: 

ER3(s,k)=∑   
  
                                          (12) 

where pi is the number of pixels of the Team worker 
MsVPU elementary image EI. 

ER1(s) the sum of distances of each class centers ck, which 
is computed by: 

ER1 (s)= ∑                
 (10) 

At the end of the classification, each Team worker 
MsVPU(s) sends its elementary results ER1(s), ER2(s, k), 
ER3(s,k) to its Team leader MsVPU.  

 
Fig. 9. Communication diagram of distributed big data classification model main components. 
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3) The Team leader MsVPU gets the elementary results of 

the Team workers MsVPUs and performs the global 

classification service (doGlobalClassificationService) which is 

based on performing the three following sub services : 

Assembling the elementary results: When the Team leader 
MsVPU receives the elementary results (ER1(s), ER2(s,k), 
ER3(s,k)). This later computes the global results (GER1(k), 
GER2(k), GER3(k)), respectively by (13),(14),(15).  

GER1(k) the global value of ER1(s) of all the 
Team workers MsVPUs.   

 

GER1(k)=∑         
    (13) 

GER2(k) the global value of ER2(s) of all the 
Team workers MsVPUs.   

 

GER2(k)=∑           
    (14) 

GER3(k) the global value of ER3(s) of all the 
Team workers MsVPUs.   

GER3(k)= ∑           
    

 

(15) 

Calculate the new class centers:  The Team leader MsVPU 
computes the new value of class centers based on the value of 
GER2(k) and GER3(k) by (16). 

   
        

       
 

(16) 

Computes the objective function Jt: The Team leader 
MsVPU uses the computed value of GER1(k) to determine the 
objective function by (17). 

Jt =∑         
    (17) 

4) Test of convergence of the algorithm (|Jt-J(t-1)|<Eth). The 

Team leader MsVPU compare the difference between the 

obtained objective function Jt and the one obtained in the 

previous iteration with the error (Eth), if |Jt-J(t-1)|<Eth  (end), 

else (repeat from step 1 with the new value of the class 

centers).  
}// End of iteration t 

 The Team leader MsVPU requests the segmented 
elementary output images from the Team worker 
MsVPUs in order to assemble and provide the c outputs 
images and the final results to the application by Proxy 
provider Ms.  

B. Results 

The scalability and the performance of the proposed model 
are illustrated through an SPMD application. This application 
has to process a satellite image of size (row, column)=(7280, 
7750) pixels on three output images C1, C2, C3 as shown in 
Fig. 10. The two classification services; c-means and fuzzy c-
means using the same initial class centers (1.2, 2.5, 3.8) are 
performed under this application. We conclude in Table 1 and 
Table 2, that the two services; DSCM and DSFCM converge 
dynamically to the same final class centers (4.866, 112.396, 
163.370). Fig. 11 and 12 show the dynamic convergence and 
the error of the objective function of both services. 

 
Fig. 10. Output classification image results using the proposed virtual machine 

based middleware. 

TABLE I. DIFFERENT STATES OF THE DISTRIBUTED FUZZY C-MEANS 

SERVICE (DSCM) STARTING FROM THE CLASS CENTERS (C1, C2, C3) = 

(1.2,2.5,3.8). 

For validating the performance of the proposed model, the 
classification time is analyzed for both services according to 
the involved number of MsVPUs in the classification in 
Fig. 13. We conclude that for both services the classification 
time achieves its minimum values of 26331 ms for DSCM and 
of 153970 ms for DSFCM using 32 MsVPUs. This number of 
MsVPUs is the required number for the classification of this 
case of image. 

To illustrate the performance of the communication 
mechanism and the load balancing of this model, a compared 
study of the proposed model is performed with the mobile 
agent’s model. In this study the corresponding application has 

to process 1000 elementary images of size (1024  786) pixels, 
by the way that 1000 MsVPU micro-services will execute the 
same service of complexity Ck(x)=O(x²) in parallel.  

Iteration 
Value of each class center 

Absolute value 

of threshold 

C1 C2 C3 |Jt-Jt-1| 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

1,200 

0,001 

0,001 

0,219 

1,225 

3,481 

4,089 

4,379 

4,563 

4,706 

4,784 

4,866 

4,866 

2,500 

2,253 

31,030 

47,574 

65,062 

87,135 

99,093 

105,239 

108,870 

110,646 

111,797 

112,396 

112,396 

3,800 

132,119 

138,600 

140,414 

142,384 

145,767 

152,041 

156,876 

160,110 

161,733 

162,822 

163,370 

163,370 

7,50E+00 

1,27E+02 

3,53E+01 

1,86E+01 

2,05E+01 

2,77E+01 

1,88E+01 

1,13E+01 

7,05E+00 

3,54E+00 

2,32E+00 

1,23E+00 

0,00E+00 
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TABLE II. DIFFERENT STATES OF THE DISTRIBUTED FUZZY C-MEANS 

SERVICE (DSFCM) STARTING FROM THE CLASS CENTERS (C1, C2, C3) = 

(1.2,2.5,3.8). 

Iteration Value of each class center Absolute value  

of the error 

C1 C2 C3 |Jn-Jn-1| 

       1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

1,200 

56,561 

18,376 

6,348 

4,745 

4,344 

4,216 

4,180 

4,172 

4,170 

4,170 

4,170 

4,170 

4,170 

4,170 

4,170 

4,170 

4,170 

4,170 

4,170 

4,170 

4,170 

4,170 

4,170 

4,170 

2,500 

123,684 

128,181 

122,692 

116,811 

114,478 

113,824 

113,666 

113,633 

113,630 

113,632 

113,634 

113,636 

113,637 

113,637 

113,638 

113,638 

113,638 

113,638 

113,638 

113,639 

113,639 

113,639 

113,639 

113,639 

3,800 

128,646 

142,342 

153,589 

160,697 

163,436 

164,239 

164,460 

164,523 

164,543 

164,551 

164,555 

164,557 

164,558 

164,559 

164,559 

164,559 

164,560 

164,560 

164,560 

164,560 

164,560 

164,560 

164,560 

164,560 

1,95E+09 

1,03E+09 

2,30E+08 

1,37E+08 

2,41E+07 

1,28E+06 

1,14E+06 

4,42E+05 

1,14E+05 

3,39E+04 

1,21E+04 

5,26E+03 

2,68E+03 

1,51E+03 

8,95E+02 

5,42E+02 

3,31E+02 

2,03E+02 

1,25E+02 

7,69E+01 

4,75E+01 

2,91E+01 

1,78E+01 

1,11E+01 

6,76E+00 

From Fig. 14 and Table 3, it can be seen that the AVPU 
model achieves an acceptable load balancing with 

     
                 

           = 82,5517 s with the error 

i(AVPU)   [0.00014,0.03] and for the proposed model based 

MsVPU      
                  

            = 71,5271 s with 

i(MsVPU)    [0.00014, 0.03] which means a gain of 

performance of    
    

              
         

    
                

           
= 1,15413 

compared to the AVPUs based model. This is due, to the 
lightweight communication mechanism of the micro-services 
compared to the mobile agents.  So, the both models integrate 
the mechanism to ensure high performance computing.   

From Table 4, it can be seen that the both models provide 
autonomous virtual computing units which enhance the 
processing power, and manage the computing challenges; 
heterogeneity of computing nodes and the message passing 
mechanism of computing units. So, the HPC applications can 
take advantages of these two models.  

 

(a) 

 

 (b) 

Fig. 11. Dynamic convergence of DSCM service with initial class centers (c1, 

c2, c3) = (1.2, 2.5, 3.8); (a) Class centers, (b) Error of the objective function. 

 
(a) 
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(b) 

Fig. 12. Dynamic convergence of DSFCM service with initial class centers 

(c1, c2, c3) = (1.2, 2.5, 3.8); (a) Class centers, (b) Error of the objective 

function. 

 

Fig. 13. Classification Time depending on the number of MsVPUs for c-means 

service DSCM and Fuzzy c-means service DSFCM. 

 

Fig. 14. Execution time for each node Ni, for the both computing models; 

Agent AVPU Model and Micro-service MsVPU Model. 

TABLE III. COMPARISON OF EXECUTION TIME FOR EACH NODE NI FOR 

THE BOTH COMPUTING MODELS; AGENT AVPU MODEL AND MICRO-
SERVICE MSVPU MODEL 

Ni 
AVPU Model MsVPU Model 

  
    (ms) i   

   (ms) i 

0 2020513,677 0,007556677 1989694,791 0,007947277 

1 2043923,005 0,019275406 2012147,181 0,01937828 

2 1996003,738 0,004652171 1964820,136 0,004652169 

3 2009285,591 0,001981942 1977301,264 0,001761339 

4 1997420,298 0,003964798 1966256,613 0,003868472 

5 1961371,238 0,021891009 1930789,454 0,021891011 

6 2011818,492 0,003214181 1980248,984 0,003214181 

7 2037281,587 0,015916015 2005008,187 0,015801354 

8 1978621,624 0,013275925 1964954,997 0,004573581 

9 2006293,217 0,000495296 1975019,785 0,000594413 

TABLE IV. COMPARISON BETWEEN THE PARALLEL AND DISTRIBUTED COMPUTING MODELS; AGENT AVPU MODEL AND MICRO-SERVICE MSVPU MODEL. 

 AVPU Model MsVPU Model 

Virtual Processing 
Unit 

Mobile agent Micro-service 

Fault Tolerance Agent clone mechanism 
Micro-service plateform librairies. 
Example for Spring cloud (Netflix Hystrix) 

Load Balancing Agent migration 
 

Micro-service plateform librairies. 
Example for Spring cloud (Eureka) 

Communication 
 
Asynchronous communication with ACL 

(Agent Communication Language) message. 

 
Asynchronous communication with AMQP 

(Advanced Message Quering Protocol) Protocol. 

Deployment With Multi agents platform using JVM 
 
With Micro-service containers using Cloud 

Computing. 

Performance 
 

High High 
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V. RELATED WORKS 

Several inspired researches have been proposed for scaling 
up the cloud computing [14]-[18]. For example in [18], the 
authors presented a new approach for horizontally scaling 
cloud resources, and in [19] for load balancing, and resources 
scheduling [20] in cloud. In [21] the authors presented the 
cloud concept and its emerged services that deal with the IoT 
trends, and they notice also that the applications with complex 
data-intensive computations are the best candidate to take 
advantages of cloud computing. Therefore, by applying the 
parallel and distributed simulation on cloud, the performance 
of these applications depends on the applied synchronization 
algorithms [22]. Our approach considers the performance of 
the HPC applications which are implemented on cloud 
architectures using micro-services, and deals with intensive 
computing units communication.  

The cloud native applications [23], [24] with their related 
micro-services architectures can be promising  methodologies 
for HPC applications in cloud computing. For example in [25] 
the authors presented a performance evaluation of micro-
services architectures using containers: master-slave and 
nested-container, and in [26] they discussed the benefit of 
implementing micro-services architecture for emerging the 
telecom application. Also, the micro-services approach is 
implemented to digital curation infrastructure by devolving 
function into a set of micro-services which grants the 
deployment flexibility and simplify of the development and the 
maintenance [27]. These features of the micro-services 
architectures deal with the new trends of the HPC middleware 
[5], and ensure the scalability of the distributed 
applications [28].    

VI. CONCLUSION 

The massively distributed virtual machine model based 
micro-services for HPC. This model integrates a cooperative 
team of micro-services that are deployed as virtual computing 
components MsVPUs (Micro-service Virtual Processing Units) 
for performing the parallel programs as services according to 
different architectures and topologies. The MsVPUs are the 
virtual processors that enhance the processing power. Also, 
they use the asynchronous communication mechanism based 
AMQP protocol to optimize the communication cost of the 
model. This model implements a load balancing module for 
managing the micro-services and ensures the high performance 
computing. In this paper, the efficiency and the performance of 
this model are illustrated through an application of 
classification using the two services; c-means and Fuzzy c-
means. In each node a specific number of MsVPUs are 
deployed according to the load balancing method. So, the 
MsVPUs cooperate in different nodes and execute the 
application by the way to ensure a balanced virtual machine 
with low communication cost. Compared to the mobile agents 
based model, the proposed model grants a lightweight 
communication mechanism which optimizes significantly the 
communication cost. Also, the proposed virtual machine 
capabilities provides the ability to extended its model to an 
elastic platform that will be deployed in Cloud as PaaS 
(Platform as a Service).     
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