
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

369 | P a g e

www.ijacsa.thesai.org

Visualizing Computer Programming in a Computer-

based Simulated Environment

Dr. Belsam Attallah

Assistant Professor, Division Chair, Department of Computer Information Science, Higher Colleges of Technology (HCT), UAE

Senior Fellow, Higher Education Academy (HEA), UK

Member, British Computer Society (BCS), UK

Abstract—This paper investigated the challenges presented by

computer programming (sequential/traditional, concurrent and

parallel) for novice programmers and developers. The researcher

involved Higher Education in Computer Science students

learning programming at multiple levels, as they could well

represent beginning programmers, who would struggle in

successfully achieving a running program due to the complexity

of this theoretical process, which has no similar real-life

representation. The paper explored the difficulties faced by

students in understanding this challenging, yet fundamental,

subject of all Computer Science/Computing degree programmes,

and focused on the advantages of visualization techniques to

facilitate the learning of computer programming, with

recommendations on effective computer-based simulated

platforms to achieve this visualization. The paper recommended

the application of virtual world technologies, such as ‘Second

Life’, to achieve the visualization required to facilitate the

understanding and learning of computer programming. The

paper demonstrated extensive evidence on the advantages of

these technologies to achieve program visualization, and how

they facilitated enhanced learning of the programming process.

The paper also addressed the benefits of collaboration and

experimentation, which are ideal for learning computer

programming, and how these aspects are strongly supported in

virtual worlds.

Keywords—Computer programming; programming; object-

oriented programming; programming language; parallelism; multi-

threading; multithreading; concurrency;; visual; visualization;

visual environment; virtual worlds; second life; virtualization.

GOALS AND METHODS

The goals of this research are to assemble literature related
to the difficulties faced by novice programmers and students
learning computer programming at the Higher Education (HE)
level, investigating the advantages of program visualization
techniques to this process and recommending an effective
computer-based simulated environment to achieve this
visualization.

Both quantitative and qualitative research methods have
been applied to achieve the outcomes of this research
(questionnaires, observations and students‟ feedback). An
intensive literature review has been carried out to document
the problem formulation, and to support the research outcomes
and recommendations.

PAPER OUTLINE

The research paper covers the following:

1) An introduction to the research, its aim and objectives.

2) Literature review on the problem formulation: This

covers the complexity acknowledged by researchers and

educators of the programming process at different levels.

a) Traditional programming.

b) Multithreading programming (concurrency and

parallelism).

3) How visualization techniques are employed in a

collaborative and simulated virtual environments to facilitate

the learning of programming.

a) How collaboration environments are exploited in the

learning of programming.

b) The employment of various visualization tools in the

learning of programming.

c) The application of virtual world technologies in the

learning of programming.

d) Former applications of virtual world technologies in

the learning of programming.

4) The conclusion and future scope of the research.

I. INTRODUCTION

There is significant research acknowledging the level of
complexity in the computer programming subject generally
and at the Higher Education (HE) level. Programming skills
require in-depth understanding of the complex theoretical
concepts within this subject, which are recognized to be
difficult to grasp by learners due to lack of real-life
representation. Students who struggle in understanding and
learning the abstract concepts of computer programming are
likely to either withdraw from their course or choose another
career path that does not involve programming [1].

This paper focuses on identifying the challenges faced by
novice programmers and HE students in learning the different
levels of computer programming, and provides
recommendations on the techniques and platforms needed to
overcome these challenges. In addition to visualization, the
paper also explores the advantages of simulation,
collaboration, interactivity and experimentation to support the
process of learning computer programming.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

370 | P a g e

www.ijacsa.thesai.org

II. RESEARCHERS AND EDUCATIONISTS ACKNOWLEDGING

THE DIFFICULTIES FACED BY THE STUDENTS TRYING TO

LEARN COMPUTER PROGRAMMING

A. Traditional Programming

Programming is “a central element of the discipline of
computing, an important practical skill for computing, and an
essential component of the undergraduate curriculum” [2]. A
large number of researchers and educators investigated and
confirmed the complexity of the programming theory process.
Programming curriculum is an essential and fundamental
subject in Computer Science degree programmes that all
students in this field are required to learn [3]. Programming
languages have extensive and complex syntaxes, which results
in great learning difficulties for novice learners and a high
dropout rate from qualifications including this subject [3]. In
spite of the advances within other Computer Science fields;
learners still believe that their computing courses are
dominated by programming subjects [2].

There are various factors which may contribute to the loss
of students‟ interest in Computer Science degree programmes,
the most significant of which is the difficulties faced by
students in the programming module of these courses; these
difficulties result in high failure and dropout rates in
preliminary programming modules at the HE level, which
could reach as high as 30%-50% [4]. The difficulty in learning
and teaching programming concepts is, therefore, confirmed
by the high rate of failure and withdrawal in the introductory
programming courses at universities [5].

Computer programming forms a common issue of concern
amongst many universities due to the problems faced by their
HE students in this subject in their first year of studies. In [6],
authors confirmed that programming is a compulsory subject
and an essential component in Computer Science curriculum,
and that many novice learners often drop out from their degree
courses due to either performing poorly or failing in
programming subjects, which are considered the most hated
and feared areas in a Computing qualification. In emphasizing
the difficulty of the programming process, the reference
clarified that programming techniques and skills are also hard
to teach, not only because the traditional teaching methods are
not very effective in the areas of scripting and problem
solving, but also because such skills are best learned through
experience. The difficulty in teaching this subject becomes
even more challenging when trying to teach object-oriented
programming to beginning learners [6].

In addition to Computer Science studies, programming is a
very common subject in many fields of technology that are
taught by a large number of universities in the world, although
some courses only deliver the basics of it [7]. Unfortunately,
learners usually face difficulties in understanding this subject
even in the introductory courses, as these difficulties are not
only because of the complex theory concepts in the subject,
but also in various issues related to program construction,
which often resulted in decreasing students‟ retention rate [7].
Novice learners in introductory programming courses are
required to comprehend the concepts, syntax, and semantics of
a programming language and then be able to apply their
understanding in coding a program and solving programming

problems; therefore, students of such courses consider
learning to program as a difficult subject [8].

In [9], authors explained that “Programming is one of the
essential and most difficult skills to learn in the computer field
and other disciplines. Programming can seem more
troublesome for novices who have not learned programming
concepts, usage and other basic programming skills”.
Beginning learners of programming find it non-inspiring to
learn this subject, and this is one of the reasons why the
majority of students in this field cannot do coding by
themselves [9]. A non-user-friendly graphical environment
makes the learning of programming difficult and
programming problems more complex; while an interactive
learning environment, where support and guidance are
provided for students would help in overcoming a large
amount of these difficulties [9].

In [10], authors confirmed that due to the various
difficulties faced by beginning learners when trying to
understand and learn computer programming, a large number
of them fail this subject, and consequently withdraw from
their Computer Science courses. Despite the fact that
researchers and educators identified the challenges faced by
novice learners in this subject, they are still struggling to
recommend effective measures to support practitioners in this
challenging area [10]. The reference explained the outcomes
of the research carried out on beginning HE students, who
considered computer programming as a traditional theoretical
subject (similar to history), and that it is based on reading
rather than practicing. These outcomes also showed that the
students felt demotivated to get involved in the learning
process as they failed to understand the programming
instructions or achieve encouraging results. The reference
indicated that the highest complexity faced by their students in
learning programming is not only the understanding of the
basic concepts, but also in how to successfully apply these
concepts in a more advanced construct. Although certain
students understand the syntax and semantics of a
programming language, they fail to employ them correctly to
achieve a functional program [10].

The major cause of non-completion in Computer Science
degree programmes, is the difficulties faced by students in the
transition period from Further Education (FE) to HE, where
many of them having either little or no confidence in their
programming skills; therefore, one of the significant
challenges in HE Computer Science education is to have an
effective learning platform in order to achieve major
enhancements in students‟ understanding, learning and
achievement in the programming subjects [11].

Despite the fact that programming nowadays is considered
a highly valuable skill, novice learners often express strong
reactions to learning this subject due to the difficulties they
face in understanding it [12]. Not only students face
difficulties in this field, but also its lecturers, who sometimes
find programming issues more challenging than students do,
e.g. „understanding programming structures‟ and „designing a
program to solve a certain task‟ [12]. Research confirms that
teachers of programming continuously investigated new
methods to support their learners to overcome the difficulties

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

371 | P a g e

www.ijacsa.thesai.org

they face at the start of Computer Science studies [13].
Physical lectures and traditional teaching methods failed most
of the time in encouraging programming learners to get
involved in relevant programming activities [13]. The skills
required by learners to become good programmers are far
beyond the syntax and semantics of a programming language,
and the complexity of this subject results in high levels of
failure at the start of Computer Science studies, as learners
consider that they do not even understand the most basic
concepts of programming due to their abstract nature, which
has no similar real life representation [13].

The „Grand Challenges in Computing Education‟
Conference, hosted by the British Computer Society (BCS),
2004, indicated the teaching and learning of computer
programming as a major concern within the academic
community worldwide. It clarified that learners view this
subject as „dry‟ and „boring‟ rather than „enjoyable‟ and
„creative‟, and this has demotivated people to apply for
Computer Science qualifications. The Conference added that
this was also accompanied by poor achievement and retention
rates in Computer Science courses, which resulted in the
opinion that, even after graduation, students of Computer
Science studies clearly expressing their dislike of
programming and their unwillingness to study it [2].

B. Multithreading Programming (Concurrency and

Parallelism)

This area is considered one of the most complex subjects
in Computer Science studies. This is due to the high degree of
complexity in its theory concepts related to the threading
mechanism that is applied by the computer operating system
in the processor and memory units, which accordingly, makes
the programming of it even more difficult.

The different executions of a multithreaded program may
present different sets of results based on the structure of the
threads and the way they communicate with each other within
the program. This non-deterministic situation makes a
multithreaded program difficult to write, test and debug [14].

A number of researchers and educators confirmed the
complexity of coding a multithreaded (concurrent and/or
parallel) program. Multithreaded programs are not only
extremely difficult to write, but they are also very difficult to
analyze, debug, and verify, as these processes are much harder
than those in a sequential program [15]. Research in this area
emphasized the negative impacts of the non-deterministic
situation in the multithreading process. Conventional wisdom
has assigned the difficulties of understanding this process to
non-determinism, as repeated executions of the same program
given the same input value(s) could well show different
behaviors [15]. The complexity of multithreaded programs lies
in the large number of states that the program could possibly
be in at any given time [16]. The process of debugging a
multithreaded program is a challenging task that requires
certain specialized knowledge and tools; this is due to the
difficulty in determining the state in which the program was at
the time of failure, which is a frustrating situation for
developers [16].

These complex multithreading concepts are difficult to
grasp by novice learners; this is because of the large number
of false assumptions made by students on the scheduling
process of multiple threads in a program, and that they are
unable to imagine what actually happens during the program
execution due to the non-deterministic nature of threads
scheduling, which makes it extremely possible that successive
executions of the same multithreaded program produce
different outcomes [17]. It is also difficult to teach
multithreading programming, as lecturers need to find a way
to visualize these complex concepts to students to facilitate
their understanding and increase their confidence regarding
program testing and debugging [17].

In [18], authors explained the complexity of the
multithreading concepts by clarifying the process of having
multiple threads within one program. It indicated that each
thread is performing a task that works separately from the rest
of the program, which makes the concept difficult to
understand by many programmers. In sequential programs, the
lines of code written by programmers are executed
sequentially, which is the reason behind not understanding the
situation of having a number of little programs (i.e. multiple
threads), each of which has its own execution sequence,
running inside one large program [18].

Due to the increased requirements on maximizing
computer performance and productivity, multithreading
nowadays is unavoidable for programmers; however,
multithreaded programs are particularly difficult to write and
debug correctly, and they are much more demanding and
challenging than writing and verifying a sequential program
[19]. The complexity of multithreading programming is
widely acknowledged; however, the necessity of it has
become more urgent [20]. People are quickly overwhelmed by
the concept of concurrency, as they find it much more difficult
to understand and learn compared to sequential code, as
partially ordered operations could well make even careful
people miss possible thread overlaps [20]; while parallelism
caused the computer applications to become more complex
resulting in increased difficulties in their design,
implementation, verification, and maintenance, which has
become widely acknowledged by developers [21].

III. EMPLOYMENT OF VISUALIZATION TECHNIQUES USING

COLLABORATIVE AND SIMULATED VIRTUAL ENVIRONMENTS

TO FACILITATE THE LEARNING OF PROGRAMMING

A. Utilizing Collaboration Environments

Many researchers highlighted the advantages of
„Collaborative Learning‟ to facilitate the understanding and
learning of computer programming, and that collaborative
learning is strongly achievable in virtual worlds.

In [22], authors defined „Collaborative Learning‟ as an
effective teaching and learning approach that is focused on
adding value to students‟ understanding via interacting with
others, where they are encouraged to share ideas and talks.
Virtual worlds, e.g. Second Life, provide the students with a
new opportunity to have the experience of interactive
education in a computer-based simulated environment that
facilitates achieving the objectives of collaboration,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

372 | P a g e

www.ijacsa.thesai.org

engagement and experimentation [23]. Collaborative
simulation activities form around half of the reviewed
education literature in virtual worlds (over 100 academic
papers) [24], while educators have long employed role-playing
and simulation as a pedagogic tool in the education sector
[25].

The proceedings of the 2013 International Higher
Education Teaching and Learning Association Conference:
Exploring Spaces for Learning, handled the issue of engaging
and retaining HE students using „cutting-edge‟ technologies
and innovative pedagogies, one of the major areas of which
was: „Collaboration and immersion discover best practices in a
virtual world of Second Life‟ [26].

In the field of computer programming, collaborative
environments offer significant support to students in
programming activities, which is an effective approach for
learning this subject [1]. In [27], author discussed the use of
scientific visualization in the field of „Big Data‟, indicated that
the visualization process of scientific data, which is key to its
analysis and understanding, is not a simple task to achieve. As
human beings are „optimized‟ to interact within a 3D world, a
virtual world environment such as Second Life or OpenSim
enables people to walk into a representation of their data,
while collaborating and interacting with each other within the
same virtual space [27]. This is largely applicable to
visualizing the data of program variables and the program
execution during runtime. Constructivist activities or problem-
based learning, e.g. in Computer Science simulations, form the
strongest examples of the use of virtual tools, as virtual worlds
provide a strong support for collaborative work and learner
interaction in a simulated environment [24] (see Fig. 1 below).

Fig. 1. Learning computer programming collaboratively in virtual worlds.

Research demonstrated that collaborative learning is
considered an effective pedagogical feature for preliminary
programming courses, as programming with peers is
particularly appropriate for learning how to code a program
[10]. The environment that promotes collaboration is able to
offer important support for the activities to learn computer
programming, as students need to communicate within their
group, argue and give opinions, which encourages the type of
reflection needed for effective learning of programming [10].
The virtual simulated environment “enables synchronous
collaboration among students because the system permits two

or more avatars to edit the same object and share the same
code while programming it” [10]. Constructivists and
educators involved in constructionist learning might be able to
recognize the potential in this environment, as it provides
them with an accessible means for the creation of rich,
immersive and appealing 3D framework for situated and
experiential learning, and also communication tools to support
dialogue and collaborative learning [10].

B. Application of Different Visualization Tools in the

Learning of Computer Programming

In [1], authors explained the features and applications of
different visualization tools/environments and a number of
other similar program visualization software, which were
created by developers to facilitate the learning and
understanding of computer programming. These tools were
ALICE, JELIOT, BlueJ and RAPTOR, which have been used
to teach introductory computer programming courses (sources
from 2000-2005). Students used these environments to drag
and drop chunks of code into a canvas in order to achieve a
visual representation of the computer program. This resulted
in isolating these blocks of code from the rest of the program,
which consequently, meant that these environments lacked
both a comprehensive view of program visualization and also
students‟ engagement in a platform that does not support
collaboration [1].

In [28], authors explained some other visualization tools
such as jGRASP, which presented a static visualization of
program execution, and ViRPlay3D/ViRPlay3D2, which
presented some aspects of virtual world environments (avatars
to represent learners exercising programming in a sandbox);
however, this platform only facilitated the scripting process,
but lacked support for collaborative learning, which is a strong
feature offered by virtual world technologies.

C. Application of Virtual World Technologies in the Learning

of Computer Programming

This paper focuses on a different visualization technique,
which involves the application of virtual world technologies to
visualize complex theory concepts of computer programming
in order to enhance students‟ understanding and learning of
this subject at the HE level. The research involved HE in
Computer Science students in a university center in England,
UK. Visualization scenarios were designed in the virtual
world of „Second Life‟ to support the learning of challenging
programming concepts as part of the HE Computer Science
Year-1 and Year-2 programming courses. These visualization
scenarios were scripted by the researcher using the
programming language embedded within Second Life, called
„Linden Labs Scripting Language (LSL)‟. Many researchers
confirmed the similarity of syntax and semantics between LSL
and C++ language, which the selected HE students were
studying as part of their Computer Science qualification. In
[29], authors highlighted that the LSL‟s main syntax and
operators are expressive of those in Java and C++
programming languages. It explained that Second Life
implements a compiler for the LSL language that contains
C++ source code. In [10], authors confirmed the above by
saying that the programming of objects in Second Life is
performed by the use of LSL scripting language, the keywords

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

373 | P a g e

www.ijacsa.thesai.org

and structure of which are similar to those in C Language. The
way the variables are declared in LSL language is the same as
that in C++, and the multiple methods of creating a loop in
LSL are almost identical to those in C++ [30].

In the visualization scenarios designed for this research, a
number of eye-catching 3D objects were chosen to be
programmed by learners within Second Life, e.g. Pokémon.
This was meant to enable them to visualize the execution of
challenging program instructions in order to improve their
understanding of the relationship between the scripts and the
actual implementation process and results. The type of the 3D
objects was selected to add interest for learners and make their
learning process enjoyable. These visualization scenarios
enabled learners to view the immediate effects of script
changes on each 3D object, i.e. visualizing the program
execution. This assisted learners to understand how each
program instruction works. Particular emphasis was placed on
instructions related to loops and functions – for the
Introduction to Programming course, and on classes and
objects – for the Object-Oriented Programming course.

To demonstrate the benefit obtained from these
visualization scenarios, below is an example of a program
instruction handled by this research, which was visualized
within Second Life. Learners found this instruction extremely
difficult to understand and to imagine how it works and what
the potential execution outcomes are. They considered
visualizing this instructions‟ execution within Second Life
very beneficial to their understanding of its function, structure
and results. The advantages of visualizing programming
instructions within the virtual platform were confirmed by
students‟ answers to the following question asked by the
researcher to the learners at the end of a whole session
explaining the „For Loop‟ in the physical classroom: “Which
of these two For-Loop scripts result in moving the object six
steps towards the X-axis?”

(1)

For (i=0; i<6; i++)

 llSetPos(llGetPos()+<i,0,0>);

(2)

For (i=0; i<6; i++)

llSetPos(llGetPos()+<1,0,0>);

Some students were confident of their answer, and some
were not. Those who were not 100% confident were permitted
by the researcher to provide a prediction based on their
current/background understanding of programming. It was a
surprise to both the researcher and learners that all the answers
of confident learners were wrong, while around half of not
fully confident learners gave the correct answer; however,
they were unable to correctly justify it. This was then followed
by using the virtual environment to visualize the execution of
the above code. When the students worked on moving their
„Pokémons‟ in Second Life, they were able to view the
difference in the number of steps moved by the object as a
result of the execution of each script sample. Following this
visualization, they were able to provide confident explanations

on how each „For Loop‟ of the above works. All learners
confirmed that the process of explaining this instruction using
the resources of a physical classroom, i.e. whiteboard,
flipchart, projector, etc. did not facilitate the understanding of
how this instruction works to the same degree that the
visualization of it in virtual worlds did. This basic script was
just an example of how confusing and complex programming
instructions could be for novice learners [31].

The object-oriented programming visualization scenario,
on the other hand, focused on using certain metaphors and
sculptures within virtual worlds to visualize the challenging
abstract concepts of „classes‟ and „objects‟. This was meant to
improve the understanding of what they mean, how they work,
and why we need them in an object-oriented program. In this
visualization scenario, learners were allowed the opportunity
to compare, for example, between a portrait of a flower on the
wall (a class) and an actual sculpture of the same flower
planted in the ground (an object of the class) and their
properties and functions, which mimicked classes and objects
in an object-oriented program [31].

When learning programming collaboratively in virtual
worlds, each student can have their own 3D object(s) to code;
however, working collaboratively with other learners within
the same virtual space enabled them the opportunity to
communicate their ideas and script changes to each other. This
allowed them to view the influences of these changes on the
object behavior of their peers compared to that of their own
objects, and consequently, modify their scripts successfully to
achieve the required outcomes. Therefore, collaborative
learning can strongly facilitate the learning of programming
and develop the other set of skills necessary for this subject
(see Fig. 2 below). The virtual world of Second Life “enables
synchronous collaboration among students because the system
permits two or more avatars to edit the same object and share
the same code while programming it” [10].

Fig. 2. Sharing the programming of 3D objects in virtual worlds between

multiple learners.

A detailed questionnaire was distributed to students to
capture their feedback on the application of virtual worlds to
visualize the programming process [31]. The outcomes were
as follows (see Fig. 3 below):

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

374 | P a g e

www.ijacsa.thesai.org

 The thoughts of slightly over 50% of learners, who
initially considered this subject as difficult to
understand and learn, were reversed following
exercising programming in virtual worlds.

 Twenty-one percent more learners confirmed that
effective understanding and learning of the complex
theory concepts of this programming subject were
achieved following the visualization activities in virtual
worlds.

 Ninety-four percent of learners confirmed that affective
quality was improved in the virtual platform. This
figure was almost double the percentage obtained for
affective quality in the physical world.

 Thirty-seven percent more learners confirmed that
visualizing and learning this level of programming
within virtual worlds is more engaging.

Fig. 3. Computer programming questionnaire, Year-1.

With regards to the introduction to object-oriented
programming in Year-1, and as can be seen in Fig. 3 above,
the questionnaire on the visualization scenario showed that:

 In agreement with the outcomes of the Introduction to
Programming visualization scenario, the thoughts of
slightly over 50% of learners, who initially considered
this subject as difficult to understand and learn, were
reversed following exercising programming in virtual
worlds.

 Thirty-one percent more learners confirmed that
effective understanding and learning of the complex
theory concepts of this programming subject were
achieved following the visualization activities in virtual
worlds.

 Ninety-three percent of learners confirmed that
affective quality was improved in the virtual platform.
This figure was a lot higher than double the percentage
obtained for affective quality in the physical world.

 Eighty-three percent of learners confirmed that
visualizing and learning this level of programming
within virtual worlds is more engaging. This figure
was, again, a lot higher than double the percentage
obtained for the physical world.

Moving to the Object-Oriented Programming, which is a
more complex subject compared to normal programming (as
highlighted earlier), this subject is delivered in Year-2 and the
students were introduced to the subject towards the end of

their Year-1 introductory programming studies. It was
reasonable to expect that students at this higher level (Year-2)
would be more confident in learning programming compared
to Year-1 students, as these Year-2 students have already
studied the introduction to programming in their Year-1.
However, the results of the below questionnaire revealed
otherwise.

The questionnaire on the Object-Oriented Programming
visualization scenario (which was designed by a different
lecturer), revealed that as high as 77% of Year-2 students still
consider the object oriented programming as a difficult
subject. This confirmed that computer programming is an area
of concern to HE students in Computer Science courses at all
levels. The complexity faced by students in learning
programming is not only the understanding of the basic
concepts, but also in the process of applying these concepts
correctly to achieve more advanced constructs. Although some
students understand the syntax and semantics of a
programming language, they fail to use it correctly to create a
program [10].

The questionnaire showed that more than three quarters of
students confirmed that Object-Oriented Programming is a
difficult subject, and a slightly higher percentage of students
agreed that the virtual world exercise improved their
understanding and learning of the complex theory concepts of
the subject, while 90% of them agreed to enhanced affective
quality and 64% found this learning process more engaging
[31] (see Fig. 4 below).

Fig. 4. Computer programming questionnaire.

On the other hand, the visualization scenario designed in
virtual worlds to visualize the complex theory concepts of
multithreading techniques (Concurrency and Parallelism) was
applied on the BSc in Computer Science students, who found
this module to be the most challenging amongst all the other
modules. Before using virtual worlds to visualize the
multithreading techniques, the researcher was used to drawing
a number of sketches on the whiteboard for students to
represent the computer Random Access Memory (RAM) and
processor, with a number of arrows representing the data flow
between these two components (for individual examples).
More drawings and arrows were then added to show how the
operating system controls the swapping and priority of tasks
(threads) inside a computer and the time slots allocated to
them within the processor. However, these sketches on the
whiteboard could get very crowded and confusing for
students, especially when more components are added (drawn
on the board), e.g. the input/output devices and virtual

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

375 | P a g e

www.ijacsa.thesai.org

memory. In addition, there was no clear representation on the
board of the sequence of actions and their individual
consequences.

In order to visualize the multithreading techniques, the
researcher carried out a thorough investigation for a
comparable real-life example that requires a similar queuing
process to receive the service (i.e. the queuing of threads in
RAM by the operating system), and how the structure of the
queue is affected by a higher priority arrival. The intension
was to build the scenario in virtual worlds on the selected real-
life example, in order to achieve a clearer and intuitive
illustration for the students to enable them to compare the
situation to that inside a computer system.

The outcome of the investigation was to choose a buffet
restaurant example with a single restaurant keeper/waiter,
where customers need to queue to get food, ice cream and
drinks. The comparison between this real-life example and the
multithreading techniques was as follows: The customers‟
queue represents the queue of tasks/threads within the
computer RAM waiting to be served by the processor, while
the food buffet, ice cream counter and the drink machine
represent different resources/cores within the computer
processor. The single restaurant keeper, who coordinates the
providing of services, represents the operating system, while
the restaurant tables and chairs represents the computer virtual
memory having stand-by tasks (seated customers in the
restaurant example) waiting for a space to join the queue in
order to get served. Finally, the counter on the side having
plates and cups, where the customer needs to go out of the
queue to get a plate, represents the input/output devices in a
computer system, where a task in RAM needing an input
value cannot be served by the processor until it gets it. Fig. 5
and 6 show the virtual restaurant designed in Second Life to
visualize the multithreading techniques.

Fig. 5. Multithreading Techniques visualization scenario (queauing

technique in RAM with tasks in the virtual memory).

Fig. 6. Multithreading Techniques visualization scenario (swapping of tasks

between the RAM and virtual memory).

In the virtual restaurant scenario, some students were
required to act the role of customers queuing to get food,
desserts or a dink (representing computer tasks queuing in
RAM), while other students were required to sit down around
the tables when the queue was full (representing tasks stored
in the computer virtual memory) waiting for any of the
queuing customers to finish, then the restaurant keeper
(another student representing the role of the computer
operating system) would ask them, one by one, to join the
queue. Throughout this process another student is asked to act
the role of a VIP customer who arrived to a busy restaurant
having a full queue and a number of other seated customers
waiting to be served (representing a high priority task joining
a full RAM) [31].

Within this visualization scenario, a number of different
multithreading situations were explained to the students, using
the above restaurant metaphors, with their impacts and
outcomes, e.g. when a higher priority task is placed by the
operating system at the start of the queue in RAM changing
the order of execution for all the remaining tasks, having a full
queue with or without tasks in the virtual memory, and having
a single core (Concurrency) or multiple cores/processors
(Parallelism). Being part of this number of different situations
and their visual impacts facilitated students‟ understanding of
the complex abstract concepts of the multithreading process
and the various factors affecting the execution of tasks in a
computer system. In addition, the situation of role-playing the
different computer components contributed greatly to this
enhanced learning [31].

The observations by the researcher confirmed that the
students found this visualization scenario extremely useful in
understanding the different aspects of the multithreading
process and the need for it. The researcher directed well-
selected questions to the students (during and after the virtual
exercise) to test their level of understanding and learning, and
also to record their evaluation of their experience in virtual
worlds.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

376 | P a g e

www.ijacsa.thesai.org

The outcomes of the questionnaire distributed to students
to capture and record their feedback on this visualization
scenario showed the following outcomes (see Fig. 7 below):

 The thoughts of slightly over 50% of learners, who
initially considered this subject as difficult to
understand and learn, were reversed following
exercising programming in virtual worlds.

 As high as 96% of learners confirmed that effective
understanding and learning of the complex theory
concepts of this programming subject were achieved
following the visualization activities in virtual worlds.
This figure was almost double the percentage obtained
for the physical world.

 Hundred percent of learners confirmed that affective
quality was improved in the virtual platform compared
to 62% for the physical world.

 Hundred percent of learners confirmed that visualizing
and learning this level of programming within virtual
worlds is more engaging compared to 57% for the
physical world.

Fig. 7. Statistics of Multithreading Techniques, B.Sc. Students.

The process of visualizing the complex theory concepts of
programming was more effective in virtual worlds as it
engaged students in this immersive environment much more
than the situation in the physical world where the viewer
watches the program code passively. Interactivity and
experiential learning were strongly achieved here. The virtual
world environment inspired expressive and dynamic
discussions on programming concepts, as students built their
own visualization of the program, and followed the
presentation of it more engagingly.

The researcher‟s observations throughout the different
stages of this research demonstrated that students felt more
relaxed in repeating their programming activities in virtual
worlds when making mistakes or when not fully achieving
their targets. This was due to the flexibility offered by the
virtual world environment, and the fact that there were no
physical consequences involved, e.g. being embarrassed in
front of other students and/or the lecturer. This resulted in
more engagement and involvement in the learning process,
and consequently enhanced students‟ acquired skills and
achievement in this field. As students were represented in
avatars within the virtual world platform, they had less
hesitation in asking basic questions or requesting more
information. The facility of having a private channel in
Second Life was very beneficial to students in carrying out

private chatting (via text) with the lecturer. This inspired more
interaction especially for the shy students, and increased their
self-confidence in discussing their concerns without feeling
embarrassed for lagging behind others.

D. Previous Applications of Virtual World Technologies in

the Learning of Computer Programming

As highlighted in the previous sections of this paper,
research activities in the learning of programming area were
explained by [10]. However, their paper indicated that
although the main target of the research work was to
investigate the possibility of using the Second Life virtual
world as a platform for the teaching and learning of an
imperative computer programming language, the research
focused primarily on investigating the potential problems that
could be faced by both teachers and students in this
environment, and whether such problems could be solved and
how.

In [1], authors carried out a study in Deakin University and
Monash University, Australia, regarding the learning of
computer programming in virtual worlds. It investigated the
affordances of Second Life for „experiential problem-based
learning pedagogies‟, and the potentials and limitations of this
platform for learning the programming subject. The study
generated very positive answers in terms of the advantages of
Second Life virtual world for learning computer
programming.

In [32], authors explained an application of Second Life in
the computing courses of the School of Computing, University
of Portsmouth, UK. It described that Second Life was used in
two areas: 1) Human Computer Interaction (HCI) Unit, and
2) Computer Engineering Projects Unit, both of which involve
a great deal of programming requirements.

In [33], authors also studied the application of Second Life
to engage and motivate the HE Computing students of the
Computer Information Systems Department at Borough of
Manhattan Community College, New York, USA. It explained
that a teaching and learning platform was designed in Second
Life to assist the students in overcoming the difficulties in
their study. It clarified that the designed platform included a
lecture area, group study rooms and interactive teaching and
learning activities, which aimed at better engagement of
students and the improvement of the retention data within the
Computer Science programme.

In [13], authors introduced Second Life in the learning of
computer programming in two higher education academic
institutions in Portugal, where they used the 3D virtual world
environment to visualize and contextualize some
programming aspects. The use of visualization helped the
programming students to better understand these aspects,
because visual representations are easier to retain and handle,
and that having an instant visualization of instruction results
enabled students to directly judge whether their idea was right
or wrong [13]. Second Life users were able to create avatars
and 3D objects, and to program their behavior using the
Linden Scripting Language (LSL); the benefit of this is the
students‟ ability to execute the programming code
concurrently and that several students are able to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

377 | P a g e

www.ijacsa.thesai.org

simultaneously work over the same code and/or object, which
provided the advantage of immediate presentation of program
execution [13].

IV. CONCLUSION AND FUTURE SCOPE

Learning computer programming forms a cause of concern
to a large number of novice programmers and students
studying this field at the HE level. Research revealed that
these concerns are the main reason behind HE students‟
withdrawal from their computing courses, achieving poorly or
failing the modules that include programming concepts.

Research also showed that there are a number of software
tools to visualize program structure for learners; however, the
majority of them promoted static visualization, which did not
generate the degree of support needed for the programming
complex theoretical process.

This research demonstrated that there are strong
indications of benefits of visualizing the program structure in
virtual worlds, as this platform offers great advantages such as
collaboration, simulation, interactivity and experiential
learning, which are ideal for learning computer programming.
This did not only cover enhancements to students‟
understanding of the programming complicated process, but
also increased their engagement in the sessions, enhanced
affective quality and improved their achievement.

The future scope could be utilizing virtual reality
technology to facilitate the learning of programming with a
comprehensive comparison between the advantages and
limitations of both computer-based simulated environments.
Aspects such as lecturer/students‟ satisfaction, ease of use and
the technical issues involved could form the main points of the
proposed comparison.

REFERENCES

[1] Sajjanhar and J. Faulkner, “Exploring Second Life as a Learning
Environment for Computer Programming,” Deakin University and
Monash University, Australia, Scientific Research, Creative Education,
vol. 5, no. 1, pp. 53-62, January 2014.

[2] McGettrick, R. Boyle, R. Ibbett, J. Lloyd, G. Lovegrove and K. Mander,
“Grand Challenges in Computing Education,” British Computer Society
(BCS). The Computer Journal, vol. 48, no. 1, pp. 42-48, January 2005.

[3] L. Morgado, B. Fonseca, M. Esteves, P. Martins, “Improving teaching
and learning of computer programming through the use of the Second
Life virtual world,” The Polytechnic Institute of Leiria and the
University of Trás-os-Montes e Alto Douro, Portugal, British Journal of
Educational Technology, vol. 42, no. 4, pp. 624-637, July 2011.

[4] S. Dasuki and A. Quaye, “Undergraduate Students‟ Failure in
Programming Courses In Institutions Of Higher Education In
Developing Countries: A Nigerian Perspective,” American University of
Nigeria. EJISDC, vol. 76, no. 8, pp. 1-18, 2016.

[5] J. Kaasbøll, O. Berge, R.E. Borge, A. Fjuk, C. Holmboe and T.
Samuelsen, “Learning Object-Oriented Programming,” Norway:
University of Oslo and InterMedia. 16th Workshop of the Psychology of
Programming Interest Group, Carlow, Ireland, pp. 86-96, April 2004.

[6] Miliszewska and G. Tan, “Befriending Computer Programming: A
Proposed Approach to Teaching Introductory Programming,” Victoria
University, Melbourne, Australia. Issues in Informing Science and
Information Technology, vol. 4, pp. 277-289, 2007.

[7] Lahtinen, K. AlaMutka and H.M. Järvinen, “A Study of the Difficulties
of Novice Programmers,” Tampere, Finland: Institute of Software
Systems, Tampere University of Technology. ACM Digital Library, vol.
37, no. 3, pp. 14-18, June 2005.

[8] R. Matthewsa, H.S. Hinb and K.A. Chooc, “Practical use of review
question and content object as advanced organizer for computer
programming lessons,” The University of Nottingham, Malaysia
Campus & Multimedia University, Malaysia. Elsevier, Science Direct,
vol. 172, pp. 215-222, January 2015.

[9] M. Sasaki, S.M. Taheri and H.T Ngetha, “Evaluating the Effectiveness
of Problem Solving Techniques and Tools in Programming,” Gifu
University, Japan. IEEE Xplore, Science and Information Conference,
London, UK, July 2015.

[10] Fonseca, M. Esteves, L. Morgado and P. Martins, “Using Second Life
for Problem Based Learning in Computer Science Programming,”
Pedagogy, Education and Innovation in 3-D Virtual Worlds. The
Polytechnic Institute of Leiria and the University of Trás-os-Montes e
Alto Douro, Portugal. Journal of Virtual World Research, vol. 2, no. 1,
ivwresearch.org, April 2009.

[11] M. Huggard, “Programming Trauma: Can It Be Avoided?” Proceedings
of the British Computer Society (BCS), Grand Challenges in
Computing: Education. Newcastle, England, pp. 50-51, March 2004.

[12] Costa and M. Piteira, “Learning Computer Programming: Study of
difficulties in learning programming,” IPS–ESTSetúbal & IPS–
ESTSetúbal, Lisboa, Portugal. ACM Digital Library. ISDOC '13
Proceedings of the 2013 International Conference on Information
Systems and Design of Communication, pp. 75-80, July 2013.

[13] M. Esteves, B. Fonseca, L. Morgado and P. Martins, “Contextualization
of Programming Learning: A Virtual Environment Study,” Portugal:
Polytechnic Institute of Leiria & University of Trás-os-Montes e Alto
Douro. 38th ASEE/IEEE Frontiers in Education Conference, Saratoga
Springs, NY, October 2008.

[14] H. Cui, J. Wu, J. Gallagher, H. Guo and J. Yang, “Efficient
Deterministic Multithreading Through Schedule Relaxation,” Cascais,
Portugal: Department of Computer Science, Columbia University.
SOSP'11 - Proceedings of the 23rd ACM Symposium on Operating
Systems Principles, pp. 337-351, October 2011.

[15] J. Yang, H. Cui, J. Wu, Y. Tang and G. Hu, “Determinism Is Not
Enough: Making Parallel Programs Reliable with Stable
Multithreading,” Columbia University, Communications of the ACM,
vol. 57, no. 3, pp. 58-69, February 2014.

[16] J. Roberts and S. Akhter, “An Introduction to Multi-threaded Debugging
Techniques,” Go Parallel, Intel Corporation, USA, 2011.

[17] Malnati, C.M. Cuva and C. Barberis, “JThreadSpy: Teaching
Multithreading Programming by Analyzing Execution Traces,” ACM
Digital Library, PADTAD '07 Proceedings of the 2007 ACM workshop
on Parallel and distributed systems: testing and debugging, pp. 3-13,
July 2007.

[18] Rick, T. Mohiuddin and M. Nawrocki, “LabVIEW Advanced
Programming Techniques,” Chapter 9: Multithreading in LabVIEW.
Boca Raton: CRC Press. Taylor & Francis Group, LLC, 2007.

[19] M. Huisman and C. Hurlin, “Permission Specifications for Common
Multithreaded Programming Patterns,” France: INRIA Sophia Antipolis,
December 2007.

[20] E.A. Lee, “The Problem with Threads,” Electrical Engineering and
Computer Sciences, University of California, Berkeley, USA. Technical
Report No. UCB/EECS-2006-1, IEEE Computer, vol. 39, no. 5, pp. 33-
42, May 2006.

[21] M. Duranton, D. Black-Schaffer, S. Yehia and K. De Bosschere,
“Computer Systems: Research Challenges Ahead. The HiPEAC Vision
2011/2012,” High Performance and Embedded Architecture and
Compilation, Seventh Framework Programme. HiPEAC Compilation
Architecture, October 2011.

[22] A.E. Woolfolk, M. Hughes and V. Walkup, “Psychology in Education,”
Harlow: Pearson Longman, 2008.

[23] Y. Huang, S. Backman and K. Backman, “Student attitude toward
virtual learning in Second Life: A flow theory approach,” Taylor &
Francis [Online], Journal of Teaching in Travel & Tourism. Clemson
University, Clemson, South Carolina, USA, vol. 10, no. 4, pp. 312-334,
November 2010.

[24] Duncan, A. Miller and S. Jiang, “A taxonomy of virtual worlds usage in
education,” British Journal of Educational Technology (BJET), vol. 43,
no. 6, pp. 949-964, January 2012.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

378 | P a g e

www.ijacsa.thesai.org

[25] S. Fitzsimons, “An Exploration of Teaching and Learning in A Virtual
World in The Context of Higher Education,” PhD thesis, School of
Education Studies, Dublin City University, Dublin, July 2012.

[26] P. Blessinger and C. Wankel, “Proceedings of the 2013 International
Higher Education Teaching and Learning Association Conference:
Exploring Spaces for Learning,” St. John's University, New York, USA.
Conference organized by: UCF, HETL (Higher education Teaching &
Learning), Faculty Center for Teaching & Learning, 2013.

[27] Cioc, “Immersing Yourself in Your Data: Using Virtual World Engines
to Solve “Big” Data,” Astrobetter [Online], March 2013. [Accessed 12
July 2016].

[28] J. Sorva, V. Karavirta and L. Malmi, “A Review of Generic Program
Visualization Systems for Introductory Programming Education,” Aalto
University, Finland. ACM Digital Library. Vol. 13, no. 4, Article No.
15, November 2013.

[29] W. Moldenhauer, J.C. Browne and C. Lin, “Bringing Verification to a
Virtual World,” CiteSeerX. Honors Thesis, Department of Computer
Sciences, University of Texas, Austin, USA, May 2007.

[30] J. Gomez, “Chapter 4: Logic,” LSL Wiki [Online], 2012. [Accessed 02
May 2016].

[31] Attallah, “The affordances of virtual world technologies to empower the
visualisation of complex theory concepts in computer science:
Enhancing success and experience in higher education,” PhD, University
of the West of England, June 2015.

[32] J. Crellin, E. Duke-Williams, J. Chandler and T. Collinson, “Virtual
Worlds in Computing Education,” School of Computing, University of
Portsmouth, UK. Taylor & Francis [Online], Computer Science
Education Journal, Web-based technologies for social learning in
computer science education, vol. 19, no. 4, pp. 315-334, December
2009. [Accessed 07 June 2016].

[33] Y. Chen, J. Doong, and W. Ching-Song, “A 3D Virtual World Teaching
and Learning Platform for Computer Science Courses in Second Life,”
Computer Information Systems Department, Borough of Manhattan
Community College, CUNY, New York City, New York, U.S.A &
Department of Information Management China University of
Technology, Taipei, Taiwan. IEEE Xplore [Online], December 2009.
[Accessed 09 May 2016].

