
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 8, 2017

An Efficient Scheme for Real-time Information
Storage and Retrieval Systems: A Hybrid Approach

Syed Ali Hassan∗, Imran Ul Haq∗, Muhammad Asif∗, Maaz Bin Ahmad† and Moeen Tayyab‡
∗Department of Computer Science and Information Technology

Lahore Leads University, Lahore, Pakistan
† COCIS, PAF Karachi Institute of Economics and Technology, Karachi, Pakistan

‡ International Islamic University, Islamabad, Pakistan

Abstract—Information storage and retrieval is the fundamen-
tal requirement for many real-time applications. These systems
demand that data should be sorted all the time, real-time
insertion, deletion and searching should be supported and system
must support dynamic entries. These systems require search
operations to be performed from massive databases implemented
by various data structures. The common data structures used
by these systems are stack, queue or linked list all having their
own limitations. The biggest advantage of using stack is that
binary search can be performed on it easily while on the other
hand insertion and deletion of nodes involves more processing
overhead. In linked list, insertion and deletion of nodes is easier
but searching operation involves more processing overhead as
binary search cannot be performed efficiently on it. In this
paper, a hybrid solution is presented for such systems, which
provides efficient insertion, deletion and searching operations.
Results show the effectiveness of the proposed approach as it
outperforms the existing techniques used by these systems.

Keywords—Insertion; deletion; array; linked list; binary search;
linear search

I. INTRODUCTION

The efficient information retrieval, insertion and searching
is the basic need for most of the applications of this mod-
ern computing era. These applications require efficient data
structures to store and retrieve large amount of information.
Normally the information is either stored in arrays or linked
list. In arrays, searching can be done efficiently using binary
search technique. As binary search is less computationally
intensive as compared to the linear search especially when the
data set is too large, so it is the desired searching technique
used by many real-time applications. But the problem using
array is that insertion and deletion of nodes requires more
shifting operations which becomes a hurdle to use it in real-
time scenarios. Linked list efficiently resolve this issue of
real-time insertion and deletion of nodes as it requires only
updating the pointers values, so it seems more appropriate to
use it in real-time applications. But the main problem using
linked list is that binary search cannot be implemented on it
directly because we cannot search a node without traversing all
the previous nodes. This is because the memory allocation of
linked list is not contiguous and is allocated at run time while
in arrays the nodes reside on contiguous memory locations.

Linear search algorithm searches a node from array or
linked list by inspecting each of the nodes in it and comparing
it with the search node. In linear search, time required to find
a node directly depends on the total number of elements in

the array or linked list. So, the complexity of linear search is
O(N) [1], [2] as in Big-O notation. This search technique has
the simplest implementation, so it can be applied to array list
and all types of linked lists. But it is not efficient when the
size of the list is too large. It is useful only when the size
of an array or a linked list is small. Binary search is more
efficient searching technique and is quite suitable when the
number of nodes is more in an array list. The requirement of
binary search algorithm is that the elements of an array must
be in sorted form [1], [2]. Every iteration of this algorithm
makes half the search interval of its previous iteration, so
lesser number of comparisons is required to search a node.
The complexity of binary search algorithm is O(log2 N). So
if we can manage to apply binary search efficiently on linked
list, it would become an ideal data structure for supporting
real-time insertion, deletion and searching. It may enhance the
performance of many real-time applications like vehicle exit-
control system.

In this paper, a hybrid solution is presented in order
to facilitate the real-time applications in terms of efficient
insertion, deletion and searching. In it a linked list is used
to store nodes data and a combination of linear and binary
searching techniques are used to efficiently find a node. The
proposed technique outperforms the existing solutions for these
kinds of applications.

The rest of the paper is organized as follows. Section
II presents the related work. The proposed methodology is
presented in Section III. Section IV presents the experimental
analysis. Finally, the conclusion is drawn in Section V.

II. RELATED WORK

As discussed in the previous section, binary search algo-
rithm can only be applied to sorted array whether it is static
or dynamic. This algorithm cannot be directly implemented
to linked list [2]. Although the advantages of binary search
can be obtain through organization of array elements in non
linear data structure tree [3]. Binary search tree searches an
element in equal amount of time as taken by binary search
O(log2 N)[1], [4]. But it is difficult to maintain and manipulate
binary search tree.

The second option to implement binary search on linked list
is to copy all the elements of linked list into either sorted array
or a binary search tree [5]. This option is again not practical for
maintenance of the data as each time searching will be faster
but require more processing of creating and copying elements.

www.ijacsa.thesai.org 427 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 8, 2017

Extra overload will be faced by processor in obtaining the
benefits of binary search. Several other researchers worked in
this domain. Kumar et al. [6] discussed that linear search is
efficient than binary search if we add sorting time also in case
of binary search. The argument can be nullified in applications
where sorted data is a requirement. Arora et al. [7] presented
a two way linear search approach through which searching is
performed from both ends of the list. It is efficient only in
cases where the node to be searched belongs to the second
half of the list. Chadah et al. [8] tried to reduce the worst
case time of binary search algorithm by increasing number
of comparisons in each iteration. Naidu et al. [9] targeted the
large memory requirements of doubly linked list and proposed
an implementation of single linked list to achieve the benefits
of doubly linked list. The Ex-Or operation was used in single
list in order to traverse in both direction.

The third option is to derive a new methodology that
can perform computationally efficient searching in linked list.
This may help to develop a real-time information storage and
retrieval systems that allows searching, insertion and deletion
operations.

III. PROPOSED SOLUTION

Let us consider a doubly linked list structure that consists
of a set of sequentially linked records called nodes. Each node
contains ‘info’ and ‘links’ fields. The ‘info’ field stores the
information and reference or pointer to the previous and next
node in the linked list containing ‘links’ field. In doubly linked
list, navigation is possible in both forward and backward ways
easily as compared to single linked list. According to the
proposed solution, linked list is organized in order of ‘info’
field in an ascending order. After that, a track of few selected
key nodes is maintained in a separate array of pointers. This
pointer array is known as sparse array.

Fig. 1. Arrangement of the doubly linked list and sparse array.

Fig. 1 shows the arrangement of the sorted doubly linked
list and sparse array. The sorted linked list consists of K ∗N
number of elements and the first node of each block is taken as
key node. The address of each key node is stored in the sparse

array. In Fig. 1 there are K numbers of key nodes and N is
the number of entries between two key nodes. In this work,
sparse array is used to perform the searching, insertion and
deletion operations in the linked list. The following sections
describe the searching, insertion, deletion and up gradation of
sparse array.

A. Searching Operation

To search the desired pattern in the linked list, a hybrid
binary linear search technique (HST) is proposed based on
the sparse array. In this technique, initially binary search is
performed using key nodes sparse array. If the desired pattern
is present in the key nodes than output of binary search is
its exact location i.e. for searched pattern 10, 120, 9915 and
10004. On the other hand, if the data we are looking for is not
located in the key nodes than the outcome of binary search
are two key nodes ‘Ki’ and ‘Kf ’ between whom the desired
pattern can be laid. In this case linear search is performed on
linked list records between ‘Ki’ and ‘Kf ’ to find the exact
pattern location. For example, if we want to search pattern
‘9960’ than outcome of binary search will be key node ‘(K−
2)N + 1’ and ‘(K − 1)N + 1’ using these key nodes linear
search can be performed on linked list. The block diagram of
the proposed searching algorithm is shown in Fig. 2.

Start

Get Search Pattern

End

True

Perform Binary Search

using Sparse Array

Pattern Found

Perform Linear Search

 between two Key Nodes

Ki and Kf

False

Fig. 2. Block diagram for the proposed search technique.

In the proposed HST, binary search helps to reduce the
search time by either giving exact match or by reducing the
search space by giving the address of two key nodes as a linear
searchs starting and ending point. The pseudo code for binary
and linear search using sparse array is presented in Algorithm
1 and 2, respectively.

Algorithm 1: SparseArrayBinarySearch(S,n, Pattern,N)

• Input: Sparse array S, n is the total number of elements
in S, Pattern is the value to be search and N is the
number of records between two key nodes

• Output: Position k such that S[k]→ info = Pattern, or
two key nodes Ki and Kf for linear search if desired

www.ijacsa.thesai.org 428 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 8, 2017

pattern is not found.

1) i ← 0, j ← n-1, k ← (i+j)/2, Ki ← -1, Kf ← -1, and
r ← 0

2) while (i ≤ j)
3) do
4) if(S[k] → info > Pattern) then j ← k-1 and r ← 1
5) else if(S[k] → info < Pattern) then i ← k+1 and r

← -1
6) else return k // successful search
7) if(i > j)
8) Ki ← k
9) if(r > 0) then Ki ← Ki-1

10) if(Ki > N-1) then r= N-1
11) else if(Ki < 0) then r= 0
12) else Kf ← Ki+N return Ki and Kf //end if(i > j)
13) k ← (i+j)/2 //end while

Algorithm 2: SparseArrayLinearSearch(S,Pattern,Ki, Kf)

• Input: Sparse array S, Pattern to be search, linear
search starting and ending points Ki and Kf

• Output: Position i such that S[i] → info = Pattern, -1
if desired pattern is not found

1) i ← Ki and LN ← S[i]
2) while (i ≤ Kf)
3) do
4) if(LN → info = Pattern) then return i
5) else LN = LN → next
6) i ← i + 1 //end while
7) if (i < Kf) then return i
8) else return -1

B. Insertion Operation

To insert a given pattern in a sorted linked list, following
five steps are involved. First, a new node is allocated and input
pattern is stored in the ‘info’ field of the node. Second, to
concatenate the new node with sorted linked list, insertion
location is determined by using HST. Third, ‘link’ fields of
new node; store the addresses of its previous and next node in
sorted linked list. Fourth, the ‘link’ fields of the previous and
next node are modified according to new node. Finally, up-
gradation of sparse array is made which is necessary for the
further operations. Fig. 3 shows the block diagram for node
insertion operation.

C. Deletion Operation

This operation is used to delete a specific node from the
sorted linked list. The node deletion is a four step process.
First, a node whose ‘info’ field contains the desired pattern is
determined using proposed HST. Second, redirection of ‘links’
is performed in the previous and next nodes of the node to
be deleted. Third deleted node is De-allocated. Finally, up-
gradation of sparse array is performed according to modified
linked list for further operations. Fig. 4 shows the block
diagram for node deletion operation.

Start

Get Insertion Pattern

End

Allocate New Node

 and Store Input Pattern

Locate Insertion Position

using Hybrid Search

Insert Node after

Links Modification

Update Sparse Array

Fig. 3. Block diagram for node insertion operation.

Start

Get Deletion Pattern

End

Locate Deletion Node

using Hybrid Search

Delete Desired Node after

Links Modification

Update Sparse Array

Fig. 4. Block diagram for node deletion operation.

D. Updating of Sparse Array

The insertion and deletion of nodes from the linked list
demand up-gradation of the sparse array. The up-gradation is
performed according to deletion or insertion operation. In case
of insertion operation, all the key nodes that exist beyond the
insertion location will be replaced with their corresponding
next node in the linked list. On the other hand, after deletion
operation all the key nodes that exist beyond the deletion
location will be replaced with their corresponding previous
node. The pseudo code for up-gradation of the sparse array is
given in Algorithm 3.

Algorithm 3: UpDateSparseArray(S,k,m,n)

• Input: S is sparse array, k denotes the index from
where S is needed to be upgrade, m indicates the op-
eration insertion or deletion after which up-gradation
is required and n is the numbers of entries in S.

www.ijacsa.thesai.org 429 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 8, 2017

• Output: Upgraded sparse array S

1) i ← K
2) while (i ≤ n)
3) do
4) if(m = 0) then S[i] = (S[i] → previous) // in case of

deletion
5) else S[i] = (S[i] → next // in case of insertion
6) i ← i + 1 //end while

IV. EXPERIMENTAL ANALYSIS

The experiments are conducted on PC with intel-core i3-
2100 CPU @ 3.1 GHz and 2 GB RAM. The proposed
system is a combination of linked list and sparse array based
hybrid search (HS-LL) technique. The comparison of the
proposed information storage and retrieval system is done
with two possible scenarios. First one is based on array using
binary search (BS-AR) and second is based on the linked list
and linear search (LS-LL) methodology. The experiments are
performed on sorted array and linked list having different range
of entries between 5000 and 100,000.

Tables I, II and III list the experimental results in terms of
the time taken Ts to search, insert and delete the entries using
three information storage and retrieval systems, respectively.
The experiments are performed by considering the boundary
cases i.e, by performing searching, inserting and deletion
operations at the start and end position (index or node) in
both array and linked list.

Table I indicates that the data searching from sorted array
using binary search (BS-AR) performs equally well in both
cases either data to be search is located at the start or end of
the array. It is observed that data searching in linked list using
linear search technique (LS-LL) is worse when desired data is
located at the end of the linked list. In this case, searching time
is directly related with the number of entries in the linked list.
Table I shows that proposed solution (HS-LL) almost perform
equally well as that of binary search in array. Fig. 5 shows the
performance analysis of three techniques in terms of time taken
to search a node or entry located at the middle of linked list
and array. It depicts that HS-LL and BS-AR perform equally
well and have better performance than LS-LL technique.

Fig. 5. Data searching using LS-LL, BS-AR and HS-LL.

Table II illustrates that data insertion at the start of the
sorted array using BS-AR takes significant time due to shifting

of huge amount of data. Contrarily, array insertion is efficient
when element is inserted at the last index because no shifting
operations are required to sort the array data. Table II also
demonstrates that linked list insertion using linear search (LS-
LL) at the start is efficient because insertion position is found
at the first attempt during linear searching. On the other hand,
node insertion using linear search at the end gives the worse
performance because huge processing time is consumed to
search the node insertion position. Table II depicts that the
linked list insertion with proposed hybrid search technique
(HS-LL) perform equally well in both cases either data is
inserted at the start or end of the sorted linked list. Fig. 6
depicts the performance analysis of three techniques in terms
of time taken to insert a node or entry at the middle of linked
list and array. It shows that HS-LL have better performance
than BS-AR and LS-LL technique.

Fig. 6. Data insertion using LS-LL, BS-AR and HS-LL.

Table III shows that for deletion operation behavior of all
the techniques is similar to that of insertion operation. The
data deletion from the start of the sorted array takes significant
time due to shifting of all array elements. On the other hand, it
takes small time when element is deleted from the end of array
because shifting operations are not required in this case. Table
III lists that linked list deletion using linear search from the
start of the sorted linked list is efficient because desired node
is found at the first attempt during linear searching. Contrarily,
last node deletion takes maximum time due to huge searching
time to locate the desired node. Table III depicts that the linked
list deletion with the proposed hybrid search technique perform
equally well in both cases either data is deleted from the start
or end of the sorted linked list. Fig. 7 shows the performance
analysis of three techniques in terms of time taken to delete
a node or entry from the middle of linked list and array. It
shows that HS-LL have better performance than BS-AR and
LS-LL technique.

The experimental results indicate that the proposed HS-LL
solution performs equally well for data searching, insertion and
deletion either at start or end. It also outperforms the rest of
the two possible scenarios.

It should be noted that the performance of proposed so-
lution is highly correlated with the size of the sparse array.
For the large size of sparse array, huge shifting operations are
required for its up-gradation. Contrarily, small size reduces the
overhead related to sparse array up-gradation process at the
cost of increase in linear search. Therefore, size selection of

www.ijacsa.thesai.org 430 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 8, 2017

TABLE I. DATA SEARCHING TIME (µSEC)

No. of Entries 5000 10000 20000 30000 50000 100000
Position Start End Start End Start End Start End Start End Start End
BS-AR 1 1 1 1 1 1 1 1 1 1 2 1
LS-LL 1 75 1 109 1 248 1 348 1 720 1 771
HS-LL 1 1 1 1 1 1 1 2 2 2 3 3

TABLE II. DATA INSERTION TIME (µSEC)

No. of Entries 5000 10000 20000 30000 50000 100000
Position Start End Start End Start End Start End Start End Start End
BS-AR 43 1 85 1 164 1 247 1 415 2 831 2
LS-LL 1 51 1 102 1 204 1 312 1 545 1 804
HS-LL 2 1 3 1 8 3 12 6 24 11 58 24

TABLE III. DATA DELETION TIME (µSEC)

No. of Entries 5000 10000 20000 30000 50000 100000
Position Start End Start End Start End Start End Start End Start End
BS-AR 46 1 91 1 181 2 273 1 458 1 913 2
LS-LL 1 60 1 125 1 251 1 396 1 633 1 768
HS-LL 2 1 3 2 7 3 13 6 22 10 55 22

Fig. 7. Data deletion using LS-LL, BS-AR and HS-LL.

sparse must be optimum in such a way that it neither increases
the shifting operations nor hurts the searching performance. In
this experimental analysis the size of sparse array is taken as
64.

V. CONCLUSION

This paper presented an efficient information storage and
retrieval system to facilitate the real-time applications. In this
solution, linked list is used to store the information and a
hybrid linear binary search technique based on sparse array
is proposed to perform efficient data insertion, deletion and
searching operations. The experimental results reveal that the
proposed methodology outperforms the existing techniques for
such kinds of applications.

REFERENCES

[1] Jean-Paul Tremblay and P. G. Sorenson: “An Introduction to data
structures with applications”, Mcgraw Hill Computer Science Series,
2nd Edition.

[2] A. Oommen and C. Pal: “Binary Search Algorithm”, Journal Of
Innovative Research In Technology, 1(5), 800-803, 2014.

[3] S. Pushpa1 and P. Vinod: “Binary Search Tree Balancing Methods: A
Critical Study”, International Journal of Computer Science and Network
Security, 7(8),2007.

[4] P. P. Thwe and L. L. W. Kyi: “Modified Binary Search Algorithm for
Duplicate Elements”, International Journal of Computer and Commu-
nication Engineering Research (IJCCER), 2(2), 77-81, 2014.

[5] P. Das and P. M. Khilar: “A Randomized Searching Algorithm and
its Performance analysis with Binary Search and Linear Search Algo-
rithms”, The International Journal of Computer Science and Applica-
tions (TIJCSA), 1(11), 11-18, 2013.

[6] D. Kumar and M. Sharma: “Binary search is faster than the linear
search”, International Journal of Innovative Research in Technology,
1(5), 796-799, 2014.

[7] N. Arora, G. Bhasin and N. Sharma: “Two way Linear Search Algo-
rithm”, International Journal of Computer Applications, 107(21), 6-8,
2014.

[8] A. R. Chadha, R. Misal and T.Mokashi: “Modified Binary Search Algo-
rithm”, International Journal of Applied Information Systems (IJAIS),
7(2), 37-40, 2014.

[9] D. Naidu and A. Prasad: “Implementation of Enhanced Singly Linked
List Equipped with DLL Operations: An Approach towards Enormous
Memory Saving”, International Journal of Future Computer and Com-
munication, 3(2), 2014.

www.ijacsa.thesai.org 431 | P a g e

