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Abstract—Lung cancer is the commonest type of cancer with 

the highest fatality rate worldwide. There is continued research 

that experiments on drug development for lung cancer patients 

by assessing their responses to chemotherapeutic treatments to 

select novel targets for improved therapies. This study aims to 

analyze the anticancer drug sensitivity in human lung cancer cell 

lines by using machine learning techniques. The data for this 

analysis is extracted from the National Cancer Institute (NCI). 

This experiment uses 408,291 human small molecule lung cancer 

cell lines to conclude. The values are drawn from describing the 

raw viability values for 91 human lung cancer cell lines treated 

with 354 different chemical compounds and 432 concentration 

points tested in each replicate experiments. Our analysis 

demonstrated the data from a considerable amount of cell lines 

clustered by using Simple K-means, Filtered clustering and by 

calculating sensitive drugs for each lung cancer cell line. 

Additionally, our analysis also demonstrated that the 

Neopeltolide, Parbendazole, Phloretin and Piperlongumine anti-

drug chemical compounds were more sensitive for all 91 cell lines 

under different concentrations (p-value < 0.001). Our findings 

indicated that Simple K-means and Filtered clustering methods 

are completely similar to each other. The available literature on 

lung cancer cell line data observed a significant relationship 

between lung cancer and anticancer drugs. Our analysis of the 

reported experimental results demonstrated that some 

compounds are more sensitive than other compounds; Phloretin 

was the most sensitive compound for all lung cancer cell lines 

which were nearly about 59% out of 91 cell lines. Hence, our 

observation provides the methodology on how anticancer drug 

sensitivity of lung cancer cell lines can be analyzed by using 

machine learning techniques, such as clustering algorithms. This 

inquiry is a useful reference for researchers who are 

experimenting on drug developments for the lung cancer in the 

future. 
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I. INTRODUCTION 

All around the world, cancer is the second leading cause of 
death. However, there is a significant challenge to prescribe 
the right drug for the right cancer patient. Using a large 
number of cancer patient reviews to prescribe anti-cancer 
drugs is neither effective nor practical. Therefore, several 
pharmaceutical companies, non-profit organizations, and non-
government organizations have invested huge funds for the 

prevention, diagnosis, and treatment of cancers. For instance, 
the United States National Cancer Institute (NCI) [1], British 
Cancer Research Campaign (CRC) [2] and the European 
Organization for Research and Treatment of Cancer (EORTC) 
[3]. Besides, the melatonin has also been known as an 
effective agent that avoids both the initiation and promotion of 
cancer. Previous studies [4], [5] demonstrate the importance of 
disruption of melatonin due to exposure to weak 
electromagnetic fields, which may possibly lead to long-term 
health effects in humans. 

A major goal of cancer researchers measures the 
effectiveness of anti-cancer drugs in pursuance to select the 
correct drug combinations based on their genetic and cell line 
structure of each patient, such as customizing medicinal 
products for each patient. Hence, to get a better understanding 
of the underlying cell lines with various cancer types are 
important. However, the methodology for converting the 
genetic measurements into predictive models to assist with 
therapeutic decisions remains a challenge. 

Cancer can be developed anywhere in the human body.   
Human cells grow and break up to form novel cells when the 
body needs them [3]. Then the cells mature or turn into 
damaged ones, and die out, and novel cells get their position 
[6].  Cancer develops when this cycle breaks down. As cells 
become increasingly abnormal, matured or damaged cells stay 
alive as they normally should die; also, novel cells 
unnecessary develop as they are not required [1]. These 
additional cells can split without stopping that forms tumors 
and cysts. Normal cancer cells are different from standard 
cells in numerous ways. The abnormal cancer cell growth 
cannot be controlled. One major characterization is that they 
are less specialized than regular cells. While normal cells 
developed into very different cell types with detailed 
functions, cancer cells do not [2]. 

Most lung cancers originate in the lung carcinomas 
(epithelial tissue of the internal organs) and divide into non-
small-cell lung cancer (NSCLC) [7], [8] and small-cell lung 
cancer (SCLC) [9]. SCLC is a critical type of lung cancer, 
caused by smoking and also responsible for diagnosing cases 
[10]. NSCLC records as the most common type as 85% of all 
lung cancers are this type [11]. There are three different 
subtypes of NSCLC [10], Adenocarcinomas (ADCA), 
Squamous Cell Carcinomas (SQ), and Pulmonary Carcinoids 
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(COID) [12]. ADCA is mostly described by the major 
production of mucus and SQ that usually occurs in larger 
bronchi [13]. 

In the United States (around 19.4%) [14]; in 2012, 1.56 
million people died due to lung cancer [15], and 1.8 million 
related cases are reported [10]. In general, lung cancer does 
not build up on its own; however, it is caused by several 
factors. The environmental pollution also significantly 
contributes to the growth of this particular cancer. Smoking 
cigarettes are the most common and a major reason for lung 
cancer. By various approximations, smoking cigarettes causes 
around 86% of lung cancer, as well as caused by passive 
smoking (exposed to smoke exhaled by other smokers). The 
risks are even higher if a patient has started smoking tobacco 
at a young age. Passive smoking is not that dangerous; 
however, passive smokers have a 25% increased risk of lung 
cancer compared with people who are not exposed to the 
smoke of cigarettes [16]. Albeit, circumstances increase if a 
person is genetically disposed of or has exposure to asbestos 
materials, and past lung illnesses contribute to the risks as 
well. All these instances and circumstances can help the recent 
global growth of lung cancer. There is still no cure nor a 
suitable treatment for lung cancer confirmed, but there are 
ways to restore a patients’ health [16]. 

Currently, lung cancer patients are treated with surgical 
and chemotherapy treatments. These treatments have made 
great aid in lung cancer; however, these treatments may bring 
serious long-term side effects. The main difficulty of the 
chemotherapeutic management of cancer is drug resistance. 
Anticancer drug resistance decreases the effectiveness of the 
drug and helps disease development [17]. This reason requires 
the development of new drug targeting strategies that can be 
used to improve the effects of drug resistance. The main 
purpose of cancer research is selecting the most effective drug 
combinations for each cancer patient based on their genetic 
structure and history. In recent cancer research, drug 
sensitivity prediction is mostly based on the genetic profile 
(gene expression measurements and genetic mutations). The 
advance of using genetic mutations is for expecting the cancer 
sensitivity is controlled by the present non-functional 
mutations as well as other hidden variables [18]. 

In late 1980’s, the United States National Cancer Institute 
developed human cancer cell line anticancer drug screening. 
This screening model was rapidly recognised as a rich source 
of information about cancer cell line sensitivity [19]. A profile 
of cell line sensitivity offers data about the mechanisms of 
growth inhibition with cancer cell killing [11]. In current 
studies, genetic profiles of human cancer cell lines were 
treated with different drugs to allow predictive modeling of 
cancer drug sensitivity [18]. These cells are continuously 
divided and grow over time, under particular laboratory 
conditions [1]. Cancer cell lines (CCL) are used in many 
biomedical researchers to learn the biology of cancer as well 
as to ensure cancer treatments [20], [21]. Those are 
additionally used for different high-throughput applications 
and international mechanistic studies [22]. 

Discovering genetic modifications that aim to react to a 
particular therapeutic agent can help to improve cancer cell to 

produce a perfect cancer medicine. Cancer Cell Line profiling 
of small-molecule sensitivity has appeared as a balanced 
method to measure the connections between genetic or cellular 
features of CCLs and small-molecule reaction [23]. The 
Cancer Therapeutics Response Portal (CTRP) [24] analyzed a 
recognized pathway with major transmissions between 
degrees of difference gene dependency, and sensitive and non-
sensitive cell lines. Recognized pathways and their parallel 
differential dependence networks are more considered to 
discover an important and precise mediator of cell line 
reaction to drugs or compounds [25]. They used a new and 
popular method that is the characterization of human cancer 
samples aligned with a series of cancer drug results that 
compare with genetic changes. It developed mainly from the 
attempts of the Cancer Cell Line Encyclopedia (CCLE) and 
Cancer Genome Project (CGP). Currently, different data 
mining and statistical methods will be used to evaluate drug 
responses of compounds with cancer cell lines [26]. 

Data Mining (DM) in medical research is an emerging 
application to observe the useful information and interesting 
patterns associated with different diseases. A professional DM 
method could be accepted as an analytical tool for efficient 
decision making [27], [28]. In DM, the clustering of dataset is 
more popular, and it has a broad range of applications. There 
are two types of clustering algorithm; descriptive (patterns and 
relationship with the available data) and predictive (calculate 
future aspect data values using the given data) clustering 
algorithms. Generally, in DM clusters and the analytical 
method [29] that discovers the unknown structures are fixed in 
dataset. Clustering is the process of creating groups of general 
objects into groups of similar objects. The application of DM, 
information discovery, machine learning techniques for health 
and medical data is challenging and exciting. The dataset is 
very complex, large, diverse and hierarchical and different in 
quality. The character of the data sometimes may not be the 
greatest for mining process, as the challenge is converting data 
into a suitable form. 

In 2012, Roozgard, et al. suggested sufficient technique for 
early lung cancer detection and developed new predictive 
models for early detection of Non-Small Cell Lung Cancer 
(NSCLC) [30]. There is similar work that has been made to 
the genetic data about lung cancer. For instance, Cabrera, et al. 
identifies new molecular targets for drug design and 
chemotherapy. Lately, the success of this could be noted to 
increase or save the life of lung cancer patients [31]. Another 
study carried out in India (Dharmarajan and Velmurugan) has 
applied with two different lung cancer datasets with two 
different clustering algorithms. This study helps to develop the 
cluster analysis performed in the development of general 
medical application [32]. Palanisamy, et al. have analyzed the 
gene expression profile of leukemia dataset using the 
Weighted K-Means (WKM) algorithm [29], [33]. Information 
about the previous work done by different researchers in the 
relevant analysis between clustering algorithms and the review 
was described. The performance statistics of the different 
dataset for medical and some other related applications were 
discussed. The main focus of this research is to analyze lung 
cancer by using big data and DM clustering methods to find 
suitable medical applications in future. 
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Fig. 1. Graphical abstract (micro abstract).

This paper presents the application of Simple K-means 
clustering and filtered clusters to predict anticancer drug 
sensitivity in Small-Molecule Cancer Cell-Line Sensitivity 
Profiling Data. This research helps to develop the performance 
of cluster analysis in the general medical application 
development. The major purpose of this is to support the 
important method in finding the cluster of the lung cancer 
dataset. Moreover, this analysis shows the flexibility of dataset 
for cluster analysis in the medical field. 

The paper is organized as follows (Fig. 1): Section II 
describes materials and methods and introduces the selection 
criterion of choosing dataset of simulation of the experiments. 
Then it follows with the data analysis with two types of cluster 
g techniques of Simple K-means clustering and Filters 
clustering techniques. In Section III the collection of results 
from data clustering finalized by the presentation of all 
clustered data is displayed. Section IV includes a discussion of 
the results and findings of drug sensitivity for each cell line. 
Section V, in brief, concludes the analysis of simulated test 
and opens up limitations for possible future work in this 
direction on the same topic. 

II. MATERIAL AND METHODOLOGY 

This framework includes five major steps: Raw dataset 
collection, Data inclusion criteria, Dataset preparation, Data 
analysis, and Statistical analysis. 

A. Raw Dataset Collection 

The raw dataset chosen for this experimental simulation 
test was obtained from the National Cancer Institute in USA 
government and the dataset published in 2013 [13]. The 
dataset contains details about Small-Molecule Cancer Cell-
Line Sensitivity Profiling Data used to identify cancer genes 
and lineage dependencies targeted by small molecules. This 
dataset is the combination of raw viability values for each 
cancer cell line treated with different compounds for each 
concentration point tested for each replicate is tested. 

B. Data Inclusion Criteria 

This analysis only used lung cancer raw viability data 
(Instances 408,291), and it filtered it by the use of contextual 
cancer cell line information and annotation data file. 

TABLE I. RAW VIABILITY DATA DESCRIPTION FOR SELECTED 

ATTRIBUTE 

Attribute Name Data Type Description 

ccl_name Nominal Primary name of cancer cell line 

cpd_name Nominal 
Name of compound (INN preferred; 
best available otherwise) 

cpd_conc_umol Numeric 
Final micromolar concentration of 

compound in assay plate 

raw_value Numeric 
Raw observed chemiluminescence 
value 
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Fig. 2. Lung cancer cell line preparation tool.
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Filtered data include the primary name of cancer cell line, 
the name of the compound, replicate serial number, identifier 
for compound stock plate map in Broad Institute (LIMS), 
good  location on assay plate, compound or vehicle or positive 
control, final micromolar (mM) concentration of the 
compound in assay plate, raw observed Chemiluminescence 
value and logarithm (base 2) of raw observed 
Chemiluminescence value [6] (Table 1). The selected lung 
cancer dataset contains 91 cancer cell lines and 354 different 
concentration points. 

C. Dataset Preparation 

This analysis, only considered Lung cancer raw viability 
data from NCI. Once the data is downloaded, the dataset was 
fully unreadable, and it was prepared to determine meaningful 
result to observe a drug for lung cancer that can be used in 
future medical applications. Data preparation depends on the 
dataset that is important to get a correct result. For this 
analysis, we used Lung Cancer Cell Line Preparation Tool 
(LCCLPT), which is shown in Fig. 2. This tool is composed of 
six main processes, namely, 1) select lung cancer raw viability 
data; 2) select attributes manually; 3) group under 91 different 
cells lines; 4) analyze the compound sensitivity using Simple 
K-means and Filtered clustering algorithms; 5) performance 
evaluation; and 6) analyzed through information given from 
NCI. Firstly, the attributes selected from raw datasets; 
therefore, some attributes were removed because they were 
not related to the further analysis. Only the used attributes 
were cell line name, compound name, compound 
concentration, and raw value. In the next group, the lung 
cancer data are under 91 different cancer cell lines. Each cell 
line is treated with 354 numbers of different chemical 
compounds. 

According to Fig. 2 of LCCLPT, there are three main steps 
for the data analysis. These three steps are: Data Selection, 
Data Preparation and Analyze Compound Sensitivity using K-
means Clustering. Therefore, following three different 
algorithms has written for those main steps. All these three 
algorithms are input patterns in the LCCL data analysis using 
K-means Clustering. 

Algorithm 1: Data Selection 

  string [] SelectAttribute = Select 
Attribute for the Data Selection 

  string [] SelectLCCLNames = Select Lung 

Cancer Cell Line Names 

  load a Meta Data of Cancer Cell Lines 

Information and Annotation 

  select Lung Cancer using Filter 

Algorithm 

  determine SelectAttribute for Select 

LCCL Names manually 

  compute the SelectLCCLNames performing 

Data Selection using SelectAttribute 

  save SelectedLCCLNames [n=91] 

 

then 

  string [] FilterAttribute = Filter 

Attribute for the Data Seperation 

  string [] FilterLCCLRawViabilityData = 

Filter LCCL Raw Viability Data 

  load a Data File of Raw Viability 

Values for CCL  

  filter LCCL using Data Selection 

Algorithm [SelectedLCCLNames] 

  determine FilterAttribute for Filter 

LCCL Raw Viabiity Data  

  save FilteredLCCLRawViabilityData 

[n=408,392] 

 

 

Algorithm 2: Data Preparation 

  string [] SelectAttribute = Select 

Attribute for the Data Seperation 

  string [] SelectAttriNames = 

SelectLCCLName,CpdName,CpdConcUmol,RawVal

ue 

  load a FilteredLCCLRawViabilityData 

File 

  select SelectAttriNames for Seperate 

LCCL Raw Viability Data manually 

  save SelectedAttriNames   

 

then 

  divide FilteredLCCLRawViabilityData 

using SelectedLCCLNames 

  seperate FilteredLCCLRawViabilityData 

under SelectedLCCLNames  

  save 

SeperatedFilteredLCCLRawViabilityData 

   

Algorithm 3: Compound Sensitivity Analysis using K-means 

Clustering 

  string [] ClusterAttribute = Cluster 

Attribute for the Data Analysis 

  string [] 

CpdSensitivitySelectbyClustering = 

Compound Sensitivity Select by Clustering 

  string [] ClusterCpdName = The most 

sensitive compond for the LCCL 

  int k = Counter for number of 

attributes 

  int MostSensitiveCpdSelectbyClustering 

= Counter for Most Sensitive Compound 

Selected by Clustering 

   

  load a 

SaperatedFilteredLCCLRawViabilityData 

  compute Sensitive Compound Clusters 

using K-means Algorithm 

  determine Attributes for Compound Name 

Clustering using Attribute Selected LCCL 

  else 

    ClusterAttribute = Attribute selected 

manually 
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  end if 

  while (k=NumberofAttributes) do 

    if k=1 then 

    while (k=NumberofAttributes) do  

      

MostSensitiveCpdSelectedbyClustering = 

MostSenstiveCpdSelectedbyClustering+1 

    end while 

  define string 

[MostSensitiveCpdSelectedbyClustering]Cpd

SelectedbyClustering 

    end if 

    string 

[SensitiveCpdSelectedbyClustering] 

CpdSelectedbyClustering = Compound 

Selected by K-   means Clustering 

Algorithm using ClusterAttribute 

  end while 

    k=0 then 

    for (k=Numberof Attributes) 

        get the Most Sensitive Compound 

in CpdSelectedbyClustering 

  end for 

    ClusteredCpdName = Most Sensitive 

Compound of each LCCL 

  Save ClusteredCpdName 

D. Analysis of Raw Data 

After dividing, the lung cancer data follow two clustering 
methods (Simple K-mean and Filtered) to calculate final 
cluster centroids using a changing number of clusters (k=1 to 
k=6). To analyze both Filtered and Simple K-mean clustering 
results, one needs to tabulate data separately. 

Waikato Environment for Knowledge Analysis, version 
3.8   has been used to carry out the analysis on a computer 
with an AMD Quad-Core A4-6210 APU with AMD Radeon 
R3 Graphics, 1.8 GHz, and Random Access Memory (RAM) 
was 4GB. It allows users to analyze the data from many 
different dimensions or angles, categorizes, and summarizes 
the relationships identified. It contains Clusters for finding 
groups of similar instances in a dataset. In this paper, we used 
lung cell line data and analyzed the data with Filtered and 
Simple k-means clustering scheme. 

1) Simple K-mean Clustering 
The Simple K-means algorithm is one of the simplest 

unsupervised learning algorithms that answer the well-known 
clustering problem [12]. The procedure follows a simple and 
the calm method to classify a given dataset. Through some 
clusters (assume k clusters) static a priori. The K-means 
algorithm can run multiple times to decrease the complexity of 
grouping data. 

2) Filtered clustering 
The Filtered Cluster algorithm is using K-means analyzes 

algorithm data [12]. This procedure also follows a simple 

method to run multiple times to decrease the complexity of 
grouping data. By Using Filtered clustering and Simple K-
means clustering, we analyzed all lung cancer cell lines 
separately. The clustering was performed based on selected 
preparation parameters. Each clustering method used a 
different number of clusters; however, it used the same 
number of attributed for both clusters. 

E. Statistical Analysis 

It is essential to accomplish a statistical hypothesis testing 
by calculating the probability value (p-value) to statistically 
prove that the selected chemical compounds are sensitive to 
lung cancer cell lines and this value should be less than 0.05 
(p-value < 0.05). P-value is the probability of gaining an 
outcome similar to or extreme than what was observed when 
the null hypothesis is true. It was calculated by using the 
application IBM® SPSS® Statistics 20 which were designed 
for hypothesis testing. 

III. RESULTS 

The clustering aims to identify cancer cell line. The most 
sensitive compound for each cell line is to figure out this way 
and also, study the connection between compound 
concentration and drug dosage. After clustering data, the 
results show that some compounds are more sensitive than 
other compounds. 

In the first step of the LCCLPT, the selection required 
attributes of the dataset for the clustering, such as cancer cell 
line name, compound name, final micromolar (mM) 
concentration of the compound assay plate, raw observed 
chemiluminescence value. In the section of this analysis, we 
also analyzed data using the contextual compound information 
and annotation and list of all media components and 
concentrations of data files. The combination of the data for 
this study shows a statistically significant difference in various 
parameters for different lung cancer cell lines. This analysis 
showed a statistically significant difference in 91 different 
lung cancer cell lines. 

The important parameters considered for the selection, 
clustering methods are a number of iterations, within the 
cluster sum of squared errors, and the time taken to build the 
model.  Table 2 shows the number of iterations and the sum of 
squared errors that were computed using K-Mean clustering 
algorithm (k=6) and Filtered clustering algorithm for 
COLO668. 

Using these two clustering algorithms (Simple K-means 
(SKM) and Filtered Cluster) cancer cell line dataset was 
clustered. The Clustering analysis and the results are 
illustrated in Table 3. These two analyzes of clustered 
compounds resulted in totally similar with each other, such as 
final selected compound name, final concentration, and raw 
value. Therefore, further analysis was carried out as analyzing 
these clustering results were based on compound name and 
final micromolar concentration. 
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TABLE II. COLO668 CLUSTERING USING DIFFERENT ALGORITHM 

Clustering Algorithm 

 

Time Taken To 

Build Model 

Number of 

Iterations 

 

Within Cluster Sum Of Squared Errors 

Simple K-mean (k=6) 0.5 seconds 37 4557.349655 

Filtered Cluster 0.06 seconds 9 4778.215454 

TABLE III. FINAL ANALYSIS RESULTS FOR SIMPLE K-MEAN CLUSTERING   

Cancer Cell Line Name Number of Instances Final Compound Name Final Concentration Raw Value 

A549 9504 Phloretin 8.5996 1558371.863 

BEN 3216 Phloretin 8.6047 1258215.255 

CAL12T 4592 Piperlongumine 29.6638 1690291.675 

CALU3 3360 Phloretin 8.5903 1648032.229 

CALU6 10080 Phloretin 8.5903 1504356.098 

CHAGOK1 3360 Phloretin 8.5903 751170.5283 

COLO668 4640 Phloretin 7.9464 521638.3879 

COLO669 4592 Piperlongumine 29.6638 1258651.038 

CORL23 4704 Piperlongumine 29.4864 1695297.647 

CORL279 3360 Phloretin 8.5903 1798751.68 

CORL51 4254 Parbendazole 31.2378 421143.9187 

CORL88 3360 Phloretin 8.5903 571504.6964 

DMS273 3360 Phloretin 8.5903 2449319.152 

DV90 3216 Phloretin 8.6047 750161.187 

ECB1 3072 Phloretin 8.6046 1180258.701 

EPLC272H 3360 Phloretin 8.5903 982414.5714 

HARA 3216 Phloretin 8.6047 1529582.657 

HCC1195 4592 Piperlongumine 29.6638 1352283.998 

HCC1359 4592 Piperlongumine 29.6638 1034469.312 

HCC15 5104 Piperlongumine 28.1711 1171832.382 

HCC1833 4592 Piperlongumine 29.6638 696267.3389 

HCC2108 4592 Piperlongumine 29.6638 2145425.478 

HCC2935 4592 Piperlongumine 29.6638 844840.1045 

HCC33 3216 Phloretin 8.6047 777908.6015 

HCC4006 4592 Piperlongumine 29.6638 1377445.013 

HCC44 3216 Phloretin 8.6047 1965327.553 

HCC78 3072 Phloretin 8.6046 1508638.626 

HCC827 4592 Piperlongumine 29.6638 2018265.432 

KNS62 3360 Phloretin 8.5903 1622770.036 

LC1SQSF 3216 Phloretin 8.6047 1055932.551 

LCLC103H 3216 Phloretin 8.6047 2032721.894 

LCLC97TM1 3360 Phloretin 8.5903 1103119.741 

LU65 3216 Phloretin 8.6047 4977184.126 

LU99 3072 Phloretin 8.6046 1446650.282 

LXF289 4540 Phloretin 7.9464 1130450.536 
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NCIH1048 3360 Phloretin 8.5903 372769.0863 

NCIH1105 4592 Piperlongumine 29.6638 367399.399 

NCIH1299 3360 Phloretin 8.5903 1804504.139 

NCIH1355 3360 Phloretin 8.5903 1277084.392 

NCIH1373 3072 Phloretin 8.6046 1277897.656 

NCIH1435 4640 Phloretin 7.9464 946515.0474 

NCIH1437 6432 Phloretin 8.5972 1408976.654 

NCIH1568 6432 Phloretin 8.5972 472604.4108 

NCIH1573 3360 Phloretin 8.5903 785638.7135 

NCIH1666 3360 Phloretin 8.5903 930566.119 

NCIH1694 4592 Piperlongumine 29.6638 1105512.807 

NCIH1755 5056 Piperlongumine 28.3597 1267151.681 

NCIH1781 5056 Piperlongumine 28.3597 929863.4207 

NCIH1792 6432 Phloretin 8.5972 1911963.046 

NCIH1793 3072 Phloretin 8.6046 901567.8776 

NCIH1836 4704 Piperlongumine 29.4864 272683.3759 

NCIH1876 4592 Piperlongumine 29.6638 544708.1043 

NCIH1915 4640 Phloretin 7.9464 1661567.424 

NCIH1930 4640 Phloretin 7.9464 733179.0226 

NCIH1944 6432 Phloretin 8.5972 655568.961 

NCIH1963 4254 Parbendazole 31.2378 84295.3473 

NCIH1975 6432 Phloretin 8.5972 1670169.267 

NCIH2009 15392 Neopeltolide 7.4405 997846.0259 

NCIH2023 4592 Piperlongumine 29.6638 1719536.76 

NCIH2029 3360 Phloretin 8.5903 361672.1972 

NCIH2030 4592 Piperlongumine 29.6638 1823878.366 

NCIH2073 4704 Piperlongumine 29.4864 1863353.003 

NCIH2081 4592 Piperlongumine 29.6638 968291.4362 

NCIH2110 4704 Piperlongumine 29.4864 20503.3923 

NCIH2122 5104 Piperlongumine 28.1711 1171498.339 

NCIH2126 3216 Phloretin 8.6047 863556.1684 

NCIH2141 4254 Parbendazole 31.2378 968225.1034 

NCIH2172 4592 Piperlongumine 29.6638 1824119.729 

NCIH2286 4640 Phloretin 7.9464 1493044.191 

NCIH23 6432 Phloretin 8.5972 731529.207 

NCIH2342 6207 Neopeltolide 25.5768 918200.7836 

NCIH2405 3360 Phloretin 8.5903 1676250.926 

NCIH3255 4704 Piperlongumine 29.4864 131478.6038 

NCIH358 3072 Phloretin 8.6046 1520317.113 

NCIH441 5104 Piperlongumine 28.1711 1341018.991 

NCIH460 5104 Piperlongumine 28.1711 2059679.053 

NCIH522 3072 Phloretin 8.6046 1048625.351 

NCIH596 5104 Piperlongumine 28.1711 1538213.902 

NCIH650 3360 Phloretin 8.5903 2372745.501 
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NCIH661 3216 Phloretin 8.6047 2055989.346 

NCIH727 3216 Phloretin 8.6047 939856.79 

NCIH810 6576 Phloretin 8.5973 1374307.438 

NCIH82 3360 Phloretin 8.5903 2982554.595 

NCIH841 4592 Piperlongumine 29.6638 1828496.5 

RERFLCKJ 4640 Phloretin 7.9464 1613427.183 

SCLC21H 4254 Parbendazole 31.2378 588623.6477 

SHP77 3216 Phloretin 8.6047 1008581.497 

SKLU1 5056 Piperlongumine 28.3597 1254689.585 

SQ1 4592 Piperlongumine 29.6638 1469531.774 

T3M10 5104 Piperlongumine 28.1711 1057457.328 

VMRCLCD 3360 Phloretin 8.5903 986669.3973 

Table 4 shows the final cluster results for Simple K-mean 

and Filtered cluster analysis for COLO668 cancer cell line. 

Both analyzed results were similar. Fig. 3 illustrates clustering 

visualizations of the Simple K-means clustering algorithm for 

COLO668 lung cancer cell line. We also observed the similar 

cluster visualization using the same cell line for Filtered 

Clustering. Both visualizations show similar results for two 

different clustering methods. 

TABLE IV. COLO668 CELL LINE CLUSTERING FOR DIFFERENT 

ALGORITHMS 

 
Fig. 3. Simple K-means Cluster Visualization (K=6) Lung Cancer Cell Line 

COLO668 

Table 5 shows the analyzed cluster results according to the 
name of the final chemical compound for all cancer cell lines. 
It is clearly visible that a huge number of cell lines were most 
sensitive for Phloretin, it is about 53 out of 91 cancer cell lines 
resulted in Lung cancer (p-value < 0.001). Other three 
compounds are less than 33 cell lines. Therefore, according to 
the cluster results, it shows Phloretin is at the top of the 
compound list. 

Most sensitive compounds for particular cancer cell lines, 
K-means clustering algorithm was used in the cell line dataset. 
Therefore, the numbers of clusters (k) were changed from 1 to 
6 as there are six attributes in the dataset as seen in Table 6 (p 
< 0.001). According to those results, Phloretin is seen in all 
the clusters. 

According to this information (Table 3), each cancer cell 
line shows significant information about the amount of final 
micromolar (mM) concentration of a particular compound. As 
shown in each compound it had a particular range of the 
concentration amount for each cell line. It is shown in Table 7. 

TABLE V. NUMBER OF CELL LINES IN EACH COMPOUND 

Compound Name Number of cancer cell lines 

Neopeltolide 2 

Phloretin* 53 

Parbendazole 4 

Piperlongumine 32 

TABLE VI. CANCER CELL LINE CLUSTERING USING DIFFERENT NUMBER 

OF CLUSTERS 

Number of 

Clusters (k) 
Chemical compound selected by K-means Clustering 

k=1 Phloretin 

k=2 Phloretin, CHEMBL399379 

k=3 Phloretin, CHEMBL399379, 2-bromopyruvate 

k=4 
Phloretin, CHEMBL399379, Tanespimycin, 2-
bromopyruvate 

k=5 
Phloretin,  CHEMBL399379, Tanespimycin, Sildenafil, 

Compound 44 

k=6 
Phloretin, CHEMBL399379, Tanespimycin, Sildenafil, 
Compound 44, Compound 1541A 

TABLE VII. ANALYZED FINAL CONCENTRATION RANGES FOR 

PARTICULAR CELL LINES 

Compound Name Range of micromolar (Mm) Concentration 

Parbendazole 31.2378 

Phloretin 7.9464 ~ 8.6047 

Piperlongumine 28.1711 ~ 29.6638 

Neopeltolide 7.4405 ~ 25.5768 

Clustering Algorithm Simple K-mean Filtered Cluster 

Number of Instances 4640 4640 

Final Compound Name Phloretin Phloretin 

Final Micromolar Concentration 7.9464 7.9464 

Final Raw Value 521638.3879 521638.3879 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 9, 2017 

10 | P a g e  

www.ijacsa.thesai.org 

Our analysis of the clustered result suggests that 
significant studies on lung cancer cell lines indicate that 
biologically each cell line is sensitive to a particular 
compound, as this is considered in both figures as they can 
overlap with each other. Also, studies on lung cancer cell lines 
show biologically or genetically changes due to the changes of 
an anticancer drug observation which should be further 
analyzed with more studies in the future. 

IV. DISCUSSION 

A human cancer cell line mainly represents cancer 
biology. The anticancer drug discovery in basic experimental 
directions worldwide and detailed research studies had 
different results for high-throughput applications [34]. The 
Cancer Cell Line (CCL) sensitivity profiling can develop a 
new patient-matched therapy, that and only needs to be 
confirmed. Several types of medical researchers reviewed for 
small-molecule treatment in CCL models react differently to 
cancer cells. As believed, small-molecule and CCL models 
can be fully controlled through cancer cells by effective 
analysis methods and sensitivity profiling studies [23]. With 
this reason, we measured the Small-Molecule Cancer Cell-
Line Sensitivity Profiling Data to identify sensitive drug or 
compound for each CCL. 

This study has used Small-Molecule Lung Cancer Cell-
Line Sensitivity Profiling Data datasets and input dataset that 
contains an experimental observation of 408,291 instances (or) 
records, and it grouped them under 91 different CCLs (shown 
in micro abstract Fig. 1). When we considered the attributes of 
data samples, there is a connection between the concentration 
of the compound assay plate and raw observed 
Chemiluminescence value of the lung cancer data. 
Researchers have measured Chemiluminescence raw observed 
value with different concentrations of anticancer drugs in lung 
cell line plate. One lung cancer cell line is treated with more 
than 10 different concentrations to increase the accuracy of the 
research. The raw value of Chemiluminescence might vary 
with the concentration of the compound assay plate of the lung 
cancer cell line [1]. According to the results, every compound 
had a particular concentration range. The lung cancer cell line 
has a particular concentration value, and each cell line has 
particular cancer cell line histology type. Therefore, critical 
histology needs of different concentration of anticancer drugs 
are observed [35]. The outcome of this research is useful for 
the Department of Medical application development and 
especially for lung cancer dataset analysis at the National 
Cancer Institute [1]. This research can be used in the future for 
similar types of analysis of lung cancer data in cancer 
institutions [32]. 

This study uses machine learning, clustering technique to 
cluster algorithms of Simple K-means and Filtered clustering. 
Using two clustering algorithms measured, anticancer drug 
sensitivity of small molecule Lung cancer cell line. There are 
three types of machine learning patterns found in this 
technique; supervised, semi-supervised and unsupervised [36]. 
Usually, a machine learning technique has been used for 
medical and many scientific studies to predict drugs [3], [6], 
[8], [9]. Reason for mostly used K-means clustering technique 
is data reduction and has better media accuracy [14]. Usually, 

the time taken will be different from the type of processor 
used. This research was proposed in grouping the 
requirements were a large number of requirements are divided 
into small groups which can be easily analyzed and grouped. 
The performance of the separation based on algorithms was 
analyzed using only the selected four attributes from the total 
number of attributes of the input dataset. For instance, K-
means algorithm has been used for leukemia gene expression 
datasets, to predict the disease [3], [12]. 

This study is also supported by other studies [18], [20], 
[22] as they also have used Simple K-means clustering and 
other clustering methods. However, some studies [19], [21] 
did not support this method and recommended to use Foggy 
K-means. Most of the researchers completed their analysis by 
alternative use of Simple K-means clustering algorithms [16], 
[18]. Simple K-means clustering algorithm technique has the 
major advantage of Simple K-means clustering algorithms 
[23]. Therefore, we selected partition based approaches for 
implementing this work. In contrast, according to our analysis, 
Simple K-means clustering algorithm provides correct 
analysis results for our dataset (Phloretin is one of the most 
suitable drugs for cancers). The research outcome could be 
used by the Department of Medical application development 
and especially for lung cancer dataset analysis in the 
department of molecular oncology in cancer institution [19]. 

Natural herbal products are used in traditional medicine, 
and it is currently considered in anticancer activities [36], 
[37]. These activity indexes, apoptosis stimulation and 
antiproliferative activities [38], as research has shown that 
these natural healing products had no side effects, or as 
minimum side effects were much more reasonable compared 
with that chemotherapeutic [39]. Our analysis results indicated 
that there are four types of compounds more sensitive for all 
lung cancer cell lines, which are Neopeltolide, Parbendazole, 
Phloretin, and Piperlongumine. All these compounds can be 
found in natural sources, including sea sponge, sheep 
intestine, pepper and apple fruits and apple leaves 
respectively. However, Phloretin is the most sensitive drug for 
CCL than other three compounds, according to the results of 
53 cell lines (59%). Phloretin (Ph) is a natural polyphenolic 
compound that exists in apples, pears as well as various 
vegetables are known to have anticancer activities in 
numerous cancer cell lines [40]. Ph has also been made known 
to have anticancer activities by “inducing apoptosis in human 
bladder cancer cells, leukemia cells, and human colon cancer 
cells, and inhibiting the growth, invasiveness, and migration 
of human liver cancer cells” [41]. 

The results obtained from research done by the National 
Natural Science Foundation of China confirmed that Phloretin 
treatment could contain cell production, induce apoptosis and 
inhibit the persistent and migrant ability of Lung Cancer Cell 
Lines probably through the variable expression of apoptosis 
regulators and downstream molecules. Especially, according 
to a study, Phloretin enhanced the anti-cancer ability of the 
human body [40]. Also, the research supported by the Key 
Program of the Shanghai Committee of Science and 
Technology [42] proves that Ph-induces apoptosis in Non-
Small Cell Lung Cancer A549 cells [39]. Additionally, the 
Cancer Therapeutic Response Portal [24], National Center for 

https://www.ncbi.nlm.nih.gov/
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Biotechnology Information [43] and the Genomics of Drug 
Sensitivity in Cancer Project [44] describe the biological 
activity of Ph as it inhibits the Glucose uptake. According to 
this information, Ph is one of the best anticancer drugs for 
future medical inventions as well as for Lung cancers. 

Finally, pharmacological companies and medical institutes 
continuously develop technology and bioinformatics. This 
research enhances the ability of the mechanism of action drugs 
and the interaction with the genetic background of cancer 
genes as well as clinicians to use anticancer agents more 
safely and effectively. With the use of Ph, one can invent 
biologically active anticancer drugs for lung cancer cell lines 
in the future. 

V. CONCLUSION 

Experimental observation using human small molecule 
lung cancer sensitivity profiling data, and analyzed the 
anticancer drug sensitivity by machine learning algorithm 
(Simple k-means and Filtered cluster). The results indicated 
that k-means clustering algorithm could be used to identify 
sensitive drug for lung cancer cell lines used in particular 
concentrations. Furthermore, our analysis confirmed that the 
Neopeltolide, Parbendazole, Phloretin and Piperlongumine 
anticancer drug compounds are more sensitive to all 91 human 
lung cancer cell lines under different concentrations (p-value < 
0.001). All these compounds can be found in natural sources, 
including sea sponge, sheep intestine, pepper and apple fruits 
and apple leaves, respectively. The performance of the 
partitioning based algorithms was analyzed by using only 
selected three attributes from the total number of attributes of 
the input dataset. It is evident that the results show the 
computational complexity of the Simple K-Means algorithm 
with the lung cancer dataset that is better than Filtered 
clustering algorithm for the dataset. The K-Means algorithm is 
efficient for the lung cancer dataset. It is well suited for 
requirement clustering of cancer-related medical applications. 
This study is beneficial as a reference for researchers who are 
experimenting drug developments for cancers such as human 
small molecule lung cancer. 
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