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Abstract—This paper presents the implementation of a 

parallelization strategy using the OpenMP library, while 

developing a simulation tool based on a cellular automaton (CA) 

to run urban growth simulations. The characterization of an 

urban growth model CA is shown and it consists of a digitization 

process of the land use in order to get all the necessary elements 

for the CA to work. During the first simulation tests we noticed 

high processing times due to large quantity of calculations 

needed to perform one single simulation, in order to minimize 

this we implemented a parallelization strategy using the fork-join 

model in order to  optimize the use of available hardware. The 

results obtained show a significant improvement in execution 

times in function of the number of available cores and map sizes, 

as a future work, it is planned to implement artificial neural 

networks in order to generate more complex urban growth 

scenarios. 
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I. INTRODUCTION 

The evolution in the land use of the territory is a 
fundamental element in our society, since it manifests different 
variables that affect our daily life, for example, accessibility to 
different points of interest within the city, slopes of the land, 
etc. This evolution has gained interest mainly fueled by the 
different environmental problems especially those in urban 
areas [1]. Thanks to the advances in the computing field and 
the development of important analytical tools such as 
Geographic Information Systems (GIS) or simulation models, 
the study of the changes taking place in metropolitan areas has 
been promoted [2]. The analysis of the environmental 
alterations that result from these changes and the development 
of new planning instruments, has caused that different 
disciplines, specifically the Artificial Intelligence (AI), 
approaches from a computer and mathematical point of view to 
give alternative solutions to this problem [3]. 

Numerous modeling tools have emerged in recent years. In 
the case of urban growth, the models based on cellular 
automata (CA) are the most widely used [4]. Regression 
models, artificial neural networks (ANNs), multi-criteria 
evaluation techniques (MCE), and still incipient, agent-based 
models (ABM) can also be found. 

The CA based models are oriented fundamentally towards 
the representation of the attributes of a given geographic region 

in a two-dimensional lattice, in which a neighborhood radius is 
defined and a certain rule of evolution is applied in order to 
define the behavior of the CA. With the use of these models it 
has been possible to generate territorial scenarios prospectively 
[5]. To generate these scenarios, a characterization of a CA is 
needed, this has different components, such as the size of the 
study area, maps of urban uses, map scales, neighborhood 
radius, evolution rules, slopes, and others geographical 
factors [6]. 

The developing of a CA based simulation tool to generate 
territorial scenarios prospectively in order to implement future 
simulation techniques, bring us to address some challenges. 
One of them was, the huge amount of mathematical operations 
needed in one single simulation, because the complexity of the 
algorithm to do such operations results to be exponential. 

One key calculus in the whole simulation process is, the 
transition potentials (TPs) of each cell in the map, these TPs 
show the probability of a cell to change from one state to 
another. The amount of these TPs have a direct impact on the 
computation cost needed to perform the mathematical 
calculations. 

To optimize these calculations, we enhanced sequential 
algorithms with parallelization strategies in order to maximize 
computational hardware. The library OpenMP (Open Multi-
Processing), widely used in parallel programming, helps to 
implement a parallel strategy called fork-join. This allows to 
take advantage of hardware resources for the execution of 
processes in shared memory [7]. 

The present work aims to implement the fork-join strategy 
to speed up the necessary TPs calculations and to compare the 
results against the first sequential algorithm used in the 
simulation. 

The base maps for the experiments where generated from 
the study area of Culiacan, México. Being the faster growing 
city in the State of Sinaloa, we plan to use the simulation tool 
to understand the dynamics of the urban changes and to 
forecast for planning urban development as a future work. 

The remainder of this paper is structured as follows. All 
material and methods such as, the study area, digitation 
process, CA model and OpenMP are defined in Section II. 
Calculus of transition potentials for each pixel using the fork-
join model are explained in Section III. Also proposed 
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implementations and experiments are analyzed. Finally, the 
study is concluded with future research directions. 

II. MATERIAL AND METHODS 

A. Study Area and its Digitization 

The municipality of Culiacan is located in the central 
region of the State of Sinaloa (Fig. 1), forming part of the 
northwest of Mexico. The corresponding coordinates are: 24° 
48'15 "N (north latitude) and 107° 25'52" O (longitude west), 
with an altitude of 54 meters above sea level. The city of 
Culiacan concentrates 81% of the population of the 
municipality that in the last 20 years has registered a very 
significant territorial and demographic growth, according to the 
last census of the National Institute of Statistics and Geography 
(INEGI), with population of around 800,000 inhabitants. In 
1980 the city had an urban area of 5,163 hectares, by 1990 it 
increased to 7,377 hectares and by 2001 there were 9,800 
hectares. This growth occurred in a disorderly, that is, anarchic 
way under the protection of political leadership resulting in the 
city currently having more than 275 neighborhoods, most of 
them formed in common lands, ecological reserved areas, 
places without feasibility of utilities due to its topographic 
composition [8]. 

 
Fig. 1. Culiacán Sinaloa, México. 

 
Fig. 2. Urban area of Culiacán 1997 and the study polygon (in red). 

 

Fig. 3. Urban area of Culiacán 2004 and the study polygon (in red). 

The digitization of the study area consisted in the 
generation of vector cartography over an orthophoto mosaic of 
the study area (Fig. 2 and 3). We worked with orthophotos 
(GeoTIFF) in the urban area of 1997 on a scale of 1: 20000, 
and in 2004 on a scale of 1: 10000, projected in WGS 84 / 
UTM 13N. The Geographic Information Systems (GIS) used 
were ArcMap® for vector maps, and IDRISI Selva ® for raster 
maps. 

The digitization process (Fig. 4), urban land uses where 
classified in order to generate vector maps for each of them. 

 
Fig. 4. Process of digitization of the urban area on the orthophoto of 1997. 
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Fig. 5. Raster map 1997 Culiacan city. 

 

Fig. 6. Raster map 2004 Culiacan city. 

TABLE I. URBAN USE CLASSES 

Urban Land Use Value in Raster Map 

Residential 1 

Commerce 2 

Industrial 3 

All generated maps from the study area were converted 
from vector to raster format, with the option “to raster image” 
placed in the module IDRISI Database Workshop. 

The resulting raster maps (Fig. 5 and 6) and the 
classification of urban uses (Table I).  Raster maps are the 
input for the CA model. 

To manage map files we used GDAL (Geospatial Data 
Abstraction Library). This is a library of free use for the 
reading and writing of geospatial data providing low-level 
functions that allow the manipulation of raster files. 

B. Celular Automaton Model and TP 

The fundamental idea in CA Models is that the state of a 
cell at any given time depends on the state of the cells within 
its neighborhood in the previous time step, based on a set of 
transition rules [9]. The CA model used in this investigation is 
the one proposed by R. White (2), is a constrained cellular 

automata for high-resolution modelling of urban land-use 
dynamics [10]. 

As previously mentioned (Section I), the CA models are 
oriented towards the representation of the attributes of a given 
geographic region in a two-dimensional lattice, raster maps 
provides these data format to the CA. 

A raster map can be represented formally by an array of 
real values. This matrix is represented as  *   + of order 

    such that             where each element 
  ,   -      . 

A neighborhood filter matrix (1) is required to analyze each 
element   ,   -, this neighborhood is formally represented 

  *   +  of order     such that       where each 
element   ,   -       . 

   [

                      
               
                      

]

              

          (1) 

The neighborhood filter is used to calculate the transition 
potential from state   to   for each element   ,   - . The 

calculation methodology is detailed below: 

         (  ∑             )                 (2) 

Where, 

   : Is the transition potential of state   to state  . 

 : Stochastic perturbation term.     
,   (      )- . 

(            ), and    allows you to adjust the size 
of the disturbance 

  : represents the suitability of the state of the cell. 

  : Euclidean distance from the cell to the nearest road. 

   : Calibration matrix, contains the weights of each cell 
as a function of its state k and distance d. 

    {
        
      

  

  is the index of the cell in the current neighborhood,   

The transition potential     of each cell     is calculated 

only if the suitability of the objective state     . That is, for 

each cell (pixel) in the map, its transition potential will be 
calculated except for those in which its suitability is equal to 
zero. For the neighborhood calculation, the calibration matrix 

     gives each neighbor cell      a weight based on its state 

and distance (subscript   formula 1) concerning the analyzed 

cell    . The nearby neighbor cells will generally have a higher 

weight, positive values are taken for an attractive effect and 
negative for repulsive effect, these values tend to decrease as 
the distance increases between the analyzed cell and its 
neighbor, this is called Distance Decay Effect. When analyzing 

the neighbor cells, the      component helps to filter 
(multiplying by 1) cells with the same state. 
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Fig. 7. Transition potential process. 

Visually, in Fig. 7(a) we have the urban land use map, in 
Fig. 7(b), the neighbor is set to 3x3 around the analyzed cell. 
Fig. 7(c) calculates the transition potential     of each cell 

from its current state   to a desired state  , the higher is 
selected. For this case we set as the higher to urban use. 
Fig. 7(d) analyzed cell change its value to the higher urban use. 
Fig. 7(e) shows observation window moves to the next cell. 

An epoch has been completed when the last cell of the map 
is calculated. A simulation may require one or more epochs. If 
we take into account that this calculation must be done for each 
pixel of the map, we find a problem of computational 
complexity  (  ), this means, larger size of the input maps 
would increase the execution time of the simulation 
exponentially. 

To handle this complexity, it was necessary to define a 
strategy to streamline the calculations, and this has been 
achieved with the development of programming modules in 
which parallel programming models are used by the OpenMP 
library. 

C. Openmp the Fork-Join Model 

OpenMP is a shared memory application programming 
interface, provides functions to facilitate shared memory 
parallel programming, and it is intended to be suitable for 
implementation on SMP architectures, OpenMP is based on the 
fork-join model [11], [12]. 

Under fork-join model, a program starts with a single 
execution thread, this is named as the initial thread. When a 
parallel directive (#pragma omp parallel) is executed in a 
current thread, it will create a group of threads (fork) called, 
parallel region. In this region, every thread can collaborate with 
the other threads. At the end of the directive, the parallel region 
terminates (join), and the initial thread is the only which 
continues. Fork-join model shown in Fig. 8 [11]. 

 
Fig. 8. Fork-join model. 

 
Fig. 9. Fork-join model with nested parallel region. 

In addition, if required, OpenMP has the ability to create a 
parallel region inside another (nested), therefore, it is possible 
to divide a task as much as necessary and as much as the 
hardware allows it to, as shown in the Fig. 9. 

III. PROPOSED ALGORITHM AND EXPERIMENTS 

To create an OpenMP program from a sequential one, we 
must first to identify sequence of instructions that may be 
executed concurrently by more than one processor [11]. 

We identified the calculus of transition potentials    , as 

the portion of sequential code which can be parallelized in 
order to do the mathematical operations using more than one 
processors’ core. 

Fig. 10 shows a schematic of the implementation of the 
strategy to carry out the calculation of two urban uses. In the 
raster map, an observation window is defined, that window is 
analyzed in two cores, the transition potentials are calculated 
(   and   ), one per core, the higher is selected and assigned as 
a new value to the cell. 

For n urban uses, the basic idea is, for each cell     we 

must calculate their     from the current state    to objective 

state    where      urban uses. Fig. 11 illustrates the process. 
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Fig. 10. Calculation of the transition potential (one per core) of a cell to two 

possible uses. 

 

Fig. 11. Calculation of the transition potential for    urban uses. 

 
Fig. 12. Algorithm to calculate transition potentials. 

The proposed algorithm (Fig. 12) to calculate the transition 
potentials is: 1) The epochs are defined. 2) The loop is set from 
the first cell to the last one. 3) The value of the current pixel is 
obtained. 4) The number of processor cores to be used is 
established (based on the number of dynamical uses). 5) The 
directive omp_set_num_threads(nCores) is used to establish 
the number of threads and the quantity of processor cores to 
use. 6) The parallel region #pragma omp parallel is initialized. 
7) The thread number j = omp_get_thread_num() is identified. 
8) The result of the potential of the analyzed cell is assigned to 
the potential vector, once the calculation has been completed in 
all cores. 9) The highest calculated potential is assigned to the 
analyzed cell. 

The implementation was performed on an HP ProLiant 
ML350 G6 server, 12 GB RAM, 2 Intel Xeon E5645 
processors (2.40 GHz), Linux Centos 6.9 operating system. 

A. Experiments 

Three conditions were considered for the experiments: 
1) resolutions of raster maps from the study area. 2) Number of 
epochs for each resolution. 3) Times from sequential and 
parallel algorithm. 

Table II summarizes the maps used. 

Times from these 3 sets of resolutions were measured using 
the sequential algorithm and the one with the fork-join model. 

TABLE II. RASTER maps RESOLUTION 

resolution pixel size 

cols rows (meters) 

397 366 50 

9,925 9,150 25 

19,850 18,300 1 

TABLE III. RUNNING TIMES FOR EACH RESOLUTION 

pixel resolution pixel size Execution times (minutes) 

cols rows  (meters) Sequential OpenMP 

397 366 50 0.08 0.02 

9,925 9,150 25 53.24 13.01 

19,850 18,300 1 214.1 54.69 

 
Fig. 13. Simulation times with different resolutions, 1 Epoch each. 

1: 0 to epoch; 

2: (0,0) to mapSize (nxm); 

 { 

3: pixel = cell(nxm); 

4: nCores = nDinamicUses; 

5: omp_set_num_threads(nCores); 

6: #pragma omp parallel 

          { 

7:               j = omp_get_thread_num(); 

8:               vectorP [j]=calculateP 

(pixel,j); 

          } 

9:   newMap(nxm) = hPotential (vectorP); 

}  
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TABLE IV. RUNNING TIMES FOR EACH RESOLUTION 

pixel resolution pixel size Execution times (minutes) 

cols rows  (meters) Sequential OpenMP 

397 366 50 0.46 0.11 

9,925 9,150 25 230.23 58.91 

19,850 18,300 1 929.18 245.42 

 

Fig. 14. Simulation times with different resolutions, 5 epochs each. 

Table III shows the firs results for 1 epoch, times are shown 
in minutes. 

It is evident the correlation in the maps sizes and the 
running times, as shown in Fig. 13 and 14, simulation times 
grow as we incremented the map sizes. 

Table IV shows the first results for 5 epoch, times are 
shown in minutes. 

B. Discussion 

Execution times using sequential and parallel algorithms 
increase along with the maps size, but no linearly. As we 
expected, sequential method is the one that takes the most time 
to complete the calculations. OpenMP helped to reduce in 
almost 4 times the execution times. 

At lower resolutions, there is no big difference due to the 
minimum execution times. Resolutions around     pixels 
should not represent big challenge when working with small 
number of urban uses, for our experiments we use 3. 

Since most simulations require from 3 to 8 urban uses and 
maps sizes from       to       pixels, it is necessary to 
implement a strategies to enhance calculations in the 
development of this kind of tools. 

The number or epochs is critical in this, depending of the 
kind and configuration, every simulation needs several epochs. 
As shown in Table IV, for maps sizes lower than       pixels, 
we expect times under 59 minutes in our future simulations. 

IV. CONCLUSION AND FUTURE WORK 

OpenMP provides mechanisms that help to reduce 
execution times when implemented in a simulation model 
based on a cellular automaton obtaining improvements of up to 
4 times. 

Since numerous simulations must be performed in order to 
achieve different tasks such as calibrating the simulation 
model, perform sensitivity analysis or tests with different urban 
uses, OpenMP must be considered as a very interesting option 
when implementing algorithms for this area. 

Future work: First, our CA based simulation tool became 
faster after the implementation of the parallelization strategy to 
calculate transition potentials, now we need to continue testing 
more resolutions and urban uses.  Second, we are considering 
implementing CUDA along with artificial neural networks in 
order to improve the forecast of urban growth. 
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