
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

120 | P a g e

www.ijacsa.thesai.org

A Novel Rule-Based Root Extraction Algorithm for

Arabic Language

Nisrean Thalji
1
, Nik Adilah Hanin

2

Department of Computer Engineering, School of Computer

and Communication Engineering

University Malaysia, Perlis, Malaysia

Walid Bani Hani
3

Department of Computer Science

Higher Colleges of Technology

Ras Al Khaimah, United Arab Emirates

Sohair Al-Hakeem
4

Computer Science Department

Ajloun National Univesity

Ajloun, Jordan

Zyad Thalji
5

Department of Management Information System

Imam Abdulrahman Bin Faisal University

Kingdom of Saudi Arabia

Abstract—Non-vocalized Arabic words are ambiguous words,

because non-vocalized words may have different meanings.

Therefore, these words may have more than one root. Many

Arabic root extraction algorithms have been conducted to extract

the roots of non-vocalized Arabic words. However, most of them

return only one root and produce lower accuracy than reported

when they are tested on different datasets. Arabic root extraction

algorithm is an urgent need for applications like information

retrieval systems, indexing, text mining, text classification, data

compression, spell checking, text summarization, question

answering systems and machine translation. In this work, a new

rule-based Arabic root extraction algorithm is developed and

focuses to overcome the limitation of previous works. The

proposed algorithm is compared to the algorithm of Khoja,

which is a well-known Arabic root extraction algorithm that

produces high accuracy. The testing process was conducted on

the corpus of Thalji, which is mainly built to test and compare

Arabic roots extraction algorithms. It contains 720,000 word-root

pairs from 12000 roots, 430 prefixes, 320 suffixes, and 4320

patterns. The experimental result shows that the algorithm of

Khoja achieved 63%, meanwhile the proposed algorithm

achieved 94% of accuracy.

Keywords—Root; stem; rules; affix; pattern; corpus

I. INTRODUCTION

Arabic texts are mainly categorized into two types. The
first type is known as Classical Arabic e.g. the Qur’an text. The
second type is called Modern Standard Arabic (MSA), which is
the form that is used in all Arabic-speaking countries in
publications, media and academic institutions [1]. The Modern
Standard Arabic is then classified into three types, which are
fully vocalized like elementary textbooks, partially vocalized
like newspapers, and the non-vocalized text.

Vowels are used in Arabic to ensure the reading and the
exact meaning of the words. If the word is non-vocalized, in
many cases, it will represent an ambiguous word, and then we
need to read the full sentence and sometimes the whole article
or document to understand the exact meaning.

Root extraction is the process of extracting the root of the
word. Root extraction correlates several terms into one

common representation. Therefore, those words which are
derived from the same root are grouped together. For example,
root extraction algorithms reduce the word "fishing", "fished",
and "fisher" to “fish”. Root extraction is used in information
retrieval systems, indexing, text mining, text classification,
data compression, spell checking, text summarization, question
answering systems and machine translation [2].

Arabic dialect contrasts from the Indo-European dialects
morphologically, semantically, and grammatically. Building an
Arabic root extraction is more complicated than building root
extraction in any other European language such as English.
English language root extraction is only concern with the
removal of prefixes and suffixes [3].

Affixes in Arabic are prefixes, suffixes and infixes.
Prefixes are attached at the beginning of the words, where
suffixes are attached at the end, and infixes are found in the
middle of the words [4]. For example, the word ُوج١ٛرى which
meaning is “like your houses” in English, ن is the prefix, which
is a connected preposition, ُو is the suffix, which is the subject
here, and ٚ is the infix. So, the root is ث١ذ, where in English the
preposition and subject are written separately. So, for the
“houses” word no prefix, no infix, “s” is the suffix, and the root
is “house”.

In Arabic, words are made from roots and patterns. Patterns
are non-consonant letters groupings which can be interceded
on as templates [5]. Patterns can be added to the root of the
word or can be found within the roots of the word following
well-defined models [6]. Many words have the same pattern.
The root of any words can be easily extracted if the word and
the pattern are known. For example, if the words ,ٗٚاعزجذٌز
 therefore the ,ٚاعزفعٍزٗ have the pattern of ٚاعزغجشرٗ, ٚاعزغٙشرٗ
roots will be ثذي, عجش, عٙش respectively.

As a result of a thorough investigation of existing
algorithms, in this work, a new rule-based Arabic Root
Extraction Algorithm (AREA) is proposed. Our algorithm is an
extensive enhancement and improvement work which is done
to overcome the limitations of the previous works that can be
used in both IR and NLP applications in an effective way.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

121 | P a g e

www.ijacsa.thesai.org

This paper is organized as follows. In Section II, the
discussion regarding previous studies and their drawbacks is
presented. Section III describes the proposed methodology,
including details of each process. Section IV explains the
experimental implementation of our algorithm and the
evaluation process. Section V concludes the main points of the
paper and gives some future directions.

II. PREVIOUS STUDIES

AREA can be categorized into a database search approach,
statistical based approach, and a rule-based approach [7].

A. Database Approach

Database search approach is the simplest strategy; it simply
looks for the root of the word in the lookup table. The database
would also include a list of patterns that match different Arabic
words and can be used to help identify different roots.

Most well-known works using this approach are Al-
Fedaghi with Al-Anzi algorithm [8], and Al-Shalabi algorithm
[9]. They proposed an algorithm to generate the root and
pattern of a given Arabic word. The main problem of this type
is when there is no pattern or root is matched from the
database. The limitation of this method is the need to
constantly update the database. Also, there is a possibility that
the algorithm will detect more than one pattern for certain
words.

B. A Weight-Based Approach

With this approach, the algorithm assigns different weights
to letters in the word, and then, using mathematical
calculations to find the root. Al-Serhan, Al Shalabi and Kannan
algorithm [10] is an example of this approach. The main
problem of this algorithm is it gives the same priority for the
extra letters as the original letters. For example, it gives the
same priority to (ف, ن, ة, غ, د) with (س, ط,ػ ,ؿ ,ر, س, ص , ػ,ص
 although these letters sometimes are not the original root ,(,ض
letters. For example, if a word contains the letters (ف, ة) as a
prefix or the letter (ن) as a suffix, the algorithm fails to
identify the root. This happens when it gives the letters’ root
less priority than other letters in the word. For example, if the
letters’ roots in (ئ, ْ ,َ ,أ) and the extra letters are in (ط,ي ,ٖ).

C. A Rule-Based Approach

Most of the AREA in the literature today are rule-based. In
the rule-based approach algorithms, a set of rules are built to
find the Arabic root from the original word. In most cases, this
approach will also use a database of patterns and affixes as
well. These algorithms affected by the way the rules are
arranged as well as the number of rules. Such algorithms would
also involve a pre-processing to find a possible root.

Khoja and Garside algorithm [11] is the most popular rule-
based Arabic root extraction algorithm. Khoja and Garside
algorithm reported 96% accuracy of their algorithm using
newspaper text.

Al-Shalabi [12] presents Arabic root extraction algorithm,
which is a rule-based algorithm that is used to extract trilateral
roots of Arabic words. This algorithm has been tested on a
corpus of 72 abstracts, 10582 words from the Saudi Arabian

National Computer Conference and they achieved 92% of
accuracy.

Another work, Al-Kabi and AL-Mustafa algorithm [13] is
based on affix removal. They tested their algorithm on small
data sets containing 1,827 words. The system unable to analyse
55 words, since their patterns are unknown. This failure mostly
due to foreign (Arabized) words. The system is able to analyse
the rest (1,772 words), but it was stated that the accuracy of
extracting the right roots is 91%.

Sonbol, Ghneim and Desouki algorithm [14] is another
rule-based root-extraction algorithm where the principal idea is
based on the encoding of Arabic letters with a new code that
preserves morphologically useful information and simplifies
it’s capturing toward retrieving the root. They conducted their
experiments using two different corpuses. The first corpus
consists of lists of word-root pairs (167162 pairs). The second
corpus is a collection of 585 Arabic articles from different
categories (policy, economy, culture, science and technology,
and sport). This corpus consists of 377793 words. Overall, the
algorithm yields about 96%-98% of accuracy.

Ghwanmeh, Al-Shalabi, Kanaan, Khanfar and Rabab’ah
algorithm [15] proposed a rule-based algorithm to find trilateral
Arabic roots. According to Ghwanmeh et al, their algorithm
only unable to analyse words that are normally foreign,
irregular, or do not have trilateral roots. A corpus of 242
abstracts from the Proceedings of Saudi Arabian National
Computer conferences in machine-readable form is used in the
testing procedure. The set of abstracts was chosen randomly
from the corpus for analysis. The results obtained showed that
the algorithm extracts the correct roots with an accuracy rate up
to 95%.

Up until now, various rule-based algorithms have been
proposed such as the Kchaou and Kanoun algorithm [16], El-
Defrawy, El-Sonbaty, and Belal algorithm [17], and Ayedh and
Guanzheng algorithm [18] and many more works[19] [20]
[21] [22] [23].

III. METHOD

This section describes the methodology for the new Arabic
root extraction algorithm. The presented algorithm will find all
possible roots for each word. The root is the base form of the
word that gives the main meaning of the word.

A. Normalization

Normalization is the process that leads to the removal of
unwanted letters, punctuations, and non-letters. The
normalization steps consist of the followings:

 Remove kasheeda symbol ("ـ").

 Remove punctuations.

 Remove diacritics.

 Remove non-letters.

 Replace Hamza’s forms ئ ,ئ ,ؤ آ, ,ء with أ .

 Duplicating any letter that has the Shaddah: “ َّ " symbol.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

122 | P a g e

www.ijacsa.thesai.org

B. Extracting the Constant Letters from the Word

The proposed algorithm finds all the possible roots of the
word without removing prefixes and suffixes. It starts by
extracting the constant letters in a word by applying the rules in
the Table I. The starting process of the presented algorithm
differs from most of the previous algorithms, because it does
not start removing prefixes and suffixes from the words’
derivations. Particularly, removing prefixes and suffixes from
the words’ derivations leads to omitting many letters from the
root which leads also to wrong results. Most of the previous
algorithms remove the prefixes and suffixes from the words’
derivations which is depends on the expectation’ processes. In
other words, most of the previous algorithms do not sure
exactly that prefixes and suffixes are affixes or not. For
instance, consider the word “ اعزّبع”. Most of the previous
algorithms remove the prefix “اعذ” from the word because
they depend on the expectation’ processes that the prefix “اعذ”
is founded in their prefix’s lists. As a result, they remove it
directly.

Next, we categorize the Arabic letters into groups as the
work of Sonbol’s Arabic root extraction algorithm. In Arabic,
letters are categorized into two main groups; Constant and
Nonconstant letters. Constant letters are: ' ,'س', 'ط', 'ػ', 'ؿ', 'د', 'ر
 If these letters appear in .''س', 'ص', 'ػ', 'ص', 'ض', 'ظ', 'غ', 'ع','ق' ,'غ
the derivation word, it also should appear in its root. For
instance, the word “ْٚاٌغبؽذ” has “عـ, ؽـ, د” constant letters.
These constant letters must be part of the root. Therefore,
constant letters are not being considered as affix letters.

The second Arabic letters' classification is the Non-constant
letters which are divided into five categories; the prefix letters
{ ، ي ف ،ط ة, }, the suffix letter {٘ـ}, the prefix-suffix letters { ,ن

َْ , }, the uncertain letters { د ,ٞ ,ٚ ,ا } and an extra letter “ح".
We face many urgent issues that need more understanding than
constant letters’ work because constant letters may appear in
the derivation words, but not appear in their root.

TABLE I. RULES OF EXTRACTING THE CONSTANT LETTERS IN THE WORD

No Rules Example

1

Find out the constant letters

in the word. If the number
of constant letters is more

than one letter, then they

will be considered as one of
the expected roots.

The input word “اٌزمبس٠ش”, the
constant letters are {س ,س ,ق}, then

 is one of the possible roots {لشس}

for the word “اٌزمبس٠ش”.

2

Check Ebdal rules to

minimize the constant

letters.

The input word “اصطؾت”, the

constant letters are {ص, غ, ػ, ة},
after applying Ebdal rules the

constant letters become {ص, ػ, ة}

C. Converting the Non-Constant Letters to the Constant

Letters

The Non-constant letters in the derivation’s word are the
original root letters in some cases and considered as the
additional letters to the root in other cases, depending on the
position of the letters. In this section, a certain set of rules are
applied to each letter in the non-constant letters’ group in order
to convert these letters into constant letters.

1) The prefix letters {ة ,ف ,ط ,ي}: The Prefix letters {ي,

 are one of the non-constants’ letters. They are {ة ,ف ,ط

attached at beginning of the words. A certain set of rules has

been implemented on each letter on the prefix letters’ list to

convert these letters from non-constant letters to a constant

letter.

a) Prefix letter ي

Initially, the letter {ي} is a non-constant letter. It can be
converted to a constant letter by applying the following rules:

Rule1: If the letter “ي “ exists after the first constant letter,
then the letter “ي” is treated as a constant letter. For example,
with the word “ًاعزم”, the letters {ع, ق} have been identified
constant letters. And the letter “ي” exists after the first constant
letter. So, the letter “ي” is treated as a constant letter. Then the
constants’ letters list becomes {ي, ق, ع}.

Rule2: Check the position of the letter “ي” in the word. If
the letter “ي” exists in the second half of the word, then it is
treated as a constant letter. For example, consider the word
 is positioned in the second half of the ”ي“ The letter .”اعزٍُ“
word. Thus, in this case, it is considered a constant letter.

Rule3: If the letter “ي” is preceded by the letters “اي”, it is
treated as a constant letter. As it is in the word” ًا١ٌٍ”

Rule4: The letter “ي” is treated as a constant letter if it has
been preceded by one of these letters “د, ٖ, َ, ٞ, ط, ن ,ْ”.
 As it is in the following words” , ٍّٔظ, ٠ٍّظ, وٍّظ, ظرٍّ
 .”٘لان, ِلان, عٍٛن

b) Prefix letter “ط"

Initially, the letter “ط” is a non-constant letter. It can be
converted to a constant letter by applying the following rules:
Rule1: If the letter ”ط” exists after the first constant letter, the
letter “ط” is treated as a constant letter. For example, with the
word “أعٕبط”, the letter “ط” has been identified a constant
letter. Letter “ط” exists after the first constant letter. So, “ط” is
treated as a constant letter. The constants letters list becomes
 .”ط, ط“

Rule2: If the letter “ط” is preceded by the letters “اي”, it is
treated as a constant letter. As it is in the word” اٌغجبع”.

Rule3: The letter “ط” is treated as a constant letter if it has
been preceded by one of the letters “ي, ة, ط, ن, ٘ـ”. As it is in
the words” ٌغّبع, ثغّبع,”

Rule4: The letter “ط” is treated as a constant letter if it
hasn’t been followed by one of the letters “أ, ا, ْ, ٞ, د”. As it is
in the words ”ٌُعىبْ, علا”.

Rule5: Check the position of the letter “ط” in the word. If
the letter “ط” exists in the second half of the word, it is treated
as a constant letter. For example, with the word “١ِإٚط”, the
letter “ط” is positioned in the second half of the word. Thus, in
this case, it is considered a constant letter.

Rule6: When the letter “ط” exists in the prefix part of the
word, it is not possible to decide if the letter “ط” is a constant
letter or not. For instance, the word” اعزّبع”.

c) Prefix letter ف

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

123 | P a g e

www.ijacsa.thesai.org

Initially, the letter {ف} is a non-constant letter. It can be
converted to a constant letter by applying the following rules:

Rule1: If the letter” ف” exists after the first constant letter,
the letter “ف ” is treated as a constant letter. For example, with
the words “أعؾف”, the letters “ط, ػ” have been identified
constant letters. The letter “ف” exists after the first constant
letter. Hence, the letter “ف” is treated as a constant letter. The
constants’ letters list becomes “ط, ػ, ػ”.

Rule2: Check the position of the letter “ف” in the word. If
the letter “ف” exists in the second half of the word, it is treated
as a constant letter. For example, consider the word” اعزٍف”.
The letter “ف” position in the second half of the word. Thus, in
this case, it is considered a constant letter.

Rule3: If the letter “ف” is preceded by the letters “اي”, it is
treated as a constant letter. As it is in the word” ْٕٛاٌف”.

Rule4: The letter “ف” is treated as a constant letter if it has
been preceded by one of these letters “ٞ ,د, ْ, ط, َ, ٘ـ”. As it is
in the following words”رفٍظ, ٔفٍظ, ٘فٛف, عف١ٗ, ِفٍظ, ٠فٍظ,”

d) Prefix letter ة

Initially, the letter {ة} is a non-constant letter. It can be
converted to a constant letter by applying the following rules:

Rule1: -If the letter ”ة” exists after the first constant letter,
the letter “ة” is treated a constant letter. For example, with the
word “صجبػ”, the letters {ص, ػ} have been identified constant
letters. The letter “ة” exists after the first constant letter. So,
the letter “ة” is treated as a constant letter. The constants
letters’ list becomes “ص, ة, ػ”.

Rule2: Check the position of the letter “ة” in the word. If
the letter “ة” exists in the second half of the word, it is treated
as a constant letter. For example, in the word ”عبٌت”, the letter
 positioned in the second half of the word. Thus, in this ”ة“
case, it is considered a constant letter.

Rule3: If the letter “ة” is preceded by the letters“اي”, it is
treated as a constant letter. As it is in the following word”
 .”اٌجبعً

Rule4: If the letter “ة” location is more than two in the
word, it is treated as a constant letter. As it is in the word
 .”ا٢ثذ٠ٓ”

Rule5: The letter “ة” is treated as a constant letter if it has
been preceded by one of these letters “ٞ ,ة, أ, ا, د, ْ, َ, ط, ٘ـ”.
As it is in the following words” ,أثبسوزُ, اثبْ, ثجعط, عجبق, ٘جٛة, ٠جزٍع
 .”ٔجذأ

Rule6: When the letter “ة” exists in the prefix part of the
word, It is not possible to decide if the letter “ة” is a constant
letter or not. Such as the word” ًثبع”.

2) Suffix letter" ٘ـ" : Suffix letter is one of the non-constant

letters and attached at the end of the words. A certain set of

rules has been implemented to convert this letter from non-

constant letter to a constant letter. In this algorithm “٘ـ” is the

only suffix letter.

The letter “٘ـ” is treated as a non-constant letter if the letter
 is ”٘ـ“ exists in the suffix part of the word. The letter ”٘ـ“
treated as an original root letter if it exists in places rather than

the suffix part of the word. Initially, the letter “٘ـ” is a non-
constant letter. It can be converted into a constant letter by
applying the following rules:

Rule 1: If the letter “٘ـ” exists before the last constant
letter, the letter “٘ـ” is treated as a constant letter. For example,
in the word “اعزٙذ”, the letters “ط, د” have been identified as a
constant letter. The letter “٘ـ” exists before the last constant
letter. So, “٘ـ” is treated as a constant letter. The constants
letters list becomes “ط, ٘ـ, د”.

Rule 2: Check the position of the letter “٘ـ” in the word. If
the letter “٘ـ” exists in the first half of the word, it is treated as
a constant letter. For example, consider the word” رٙبِخ”. The
letter “٘ـ” position is in the first half of the word. So, in this
case, it is considered a constant letter.

Rule 3: The letter “٘ـ” is considered as a constant letter if
the letters “ٚا” exist at the end of the word and the letter “٘ـ”
appears just before the letters “ٚا” , such as ” ,أزجٙٛا, أِب٘ٛا
 .”رلا٘ٛا

Rule 4: The letter “٘ـ” is treated as a constant letter if it has
been preceded by one of the letters “ة, ط, ف, ن, ي, ٘ـ, ح”, such
as” ,ً٘أعٙتاٌذ٘ظ, اٌزٍٙف, أشجٙه, فمب٘خ, اعٍٙٗ, رأ ,”

3) The prefix-suffix letters “م, ن ,ك”: The Prefix-Suffix

letters {ن, ْ ,َ} are non-constant letters; a certain set of rules

has been implemented on each letter on the Prefix-Suffix

letters’ list in order to convert these letters from non-constant

letters to constant letters. The Prefix-Suffix letters are treated

as constant letters to the root if these letters exist in the Prefix

part or the suffix part or of the word. In contrast, they are

treated as original root letters if they exist in the places rather

than the prefix part or the suffix part of the word.

a) The Prefix-Suffix letter “ ن”

Initially, the letter “ن” is a non-constant letter; it can be
converted to a constant letter by applying the following rules:

Rule1: The letter “ ن” is treated as an original root letter if
it exists between constant letters. In the word “اٌشىش”, the
letters “ػ, س” are identified as a root letter. Then the letter “ن”
exists between the two constants letters, “ن” letter is treated as
a constant letter also. Thus, the constant letters list is “ػ, ن, س”.

Rule2: The letter “ن” is considered as a constant letter if it
appears in the first half of the word and not following the “ ,ف
ٚ” letters, such as ” أولائٙب, اٌىٍّبد, ِىبعش”.

Rule3: The letter “ن” is considered as a constant letter if it
appears in the second half of the word and before the last
constant letter, such as ”إٌّىش, إٌىبػ”.

Rule4: The letter “ن” is considered as a constant letter if it
appears in the second half of the word and has been followed
by “, ٠ٓ, د, اد” letters, such as ”اٌّإرفىبد, اٌّغبو١ٓ, رجبوذ”.

Rule5: When the letter “ن” exists in the prefix or suffix
part of the word, it is not possible to decide if “ن” is a constant
letter or not. The word is ambiguous, such as ”ششان, وض١ت”

b) The Prefix-Suffix letter ” َ “

Initially, the letter “َ” is a non-constant letter; it can be
converted to a constant letter by applying the following rules:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

124 | P a g e

www.ijacsa.thesai.org

Rule1: The letter “َ” is treated as an original root letter if it
exists between constant letters. For example, with the word
 are identified as root letters, the letter ”ع, ق“ the letters ,”أعّبق“
“َ” exists between the two constants letters, and “َ” letter is
treated as a constant letter. “َ” letter is added to the constants
letters list. In this case, one of the possible roots for the word
 .”عّك”is ”أعّبق“

Rule2: The letter “َ” is considered a constant letter if it
appears in the second part of the word and before the last
constant letter, such as ”ثبٌزّىش, ٚاٌّىش”.

Rule 3: The letter “َ” is considered a constant letter if it
appears in the first part of the word and is positioned after the
first constant letter, such as ”ص١ٍّخ ”

Rule4: The letter “َ” is treated as a constant letter if it
appears in the first part of the word and has been preceded by
one of the letters “ٞ ,ا, د, such as ”ٟرّذػ ، اِزٕع, ٠ّش”.

Rule5: The letter “َ” is considered a constant letter if it has
been preceded by one of the letters “ٞ ,ٚ ,ا” only in case the
letters “ٞ ,ٚ ,ا” are appeared after the last constant letter in the
word, such as ”َٛاٌشؽ١ُ, غعبَ, اٌم”.

Rule6: The letter “َ” is considered a constant letter if it
appears just after the last constant in the word, such as ” ,ّٓاٌشؽ
 .”اٌعغُ

Rule7: The letter “َ” is considered a constant letter if it
appears in the second part of the word and followed by the
letter “اد”, such as “اٌغبٌّبد”.

Rule8: The letter “َ” is considered a non-constant letter if
the word consists of three constant letters and the letter “َ”
appears just before the first constant letter, such as ” ,ٌٍّطجٛع
 .”اٌّفعً

c) The Prefix-Suffix letter “ْ”

Initially, the letter “ْ” is a non-constant letter; it can be
converted to a constant letter by applying the following rules:

Rule1: The letter “ْ” is treated as an original root letter if it
exists between constant letters. For example, in the word
 have been identified as constant ”ع, ق“ the letters ,”أعٕبق“
letters. Then the letter “ْ” is treated as a constant letter. The
letter “ْ” is added to the constant letters list. In this case, one
of the possible roots for the word “أعٕبق” is the root ”عٕك”.

Rule2: The letter “ْ” is considered as a constant letter if it
appears in the first part of the word and it has been preceded by
one of these letters “ْ ,اي” , such as ”ُٙإٌٛاؽٟ, ٕٔشئ”.

Rule3: The letter “ْ” is considered a constant letter if the
word ended with the following letters “١ِٓ, ِبء” , such as
 .”الأ١ّٙ٠ٓ, الأظّبء“

Rule4: The letter “ْ” is considered as a constant letter if it
appears in the second part of the word and followed by the last
constant letter, such as the words” , ثبلاعزٕغبءشاٌّإٔ ”.

Rule5: The letter “ْ” is considered a non-constant letter if
the word consists of three constant letters and “ْ” letter
appears just before the first constant letter, such as ” “٠ٕٚضعظ.

4) The uncertain letters “ؤ, ئ The uncertain :” ء, و ,أ ,ا ,

letters “ؤ , ئ can appear in any part of the word. A ”ء, ٚ ,أ ,ا ,

certain set of rules has been implemented on each letter to

convert these letters from non-constant letters to a constant

letter by applying the following rules:

Rule1: The letter “ؤ” is considered as a constant letter if it
not proceeded by one of these letters “أ, ٚ, ٞ, ا”, such as
 .”اٌّإٌف, اٌجإط“

Rule2: The letter “ئ” is considered as a constant letter if it
appears in the word and has not been preceded by one of the
letters “ا ,ٞ ,ٚ” such as “اٌزئت, اٌّئجش”.

Rule3: The letter “ا” letter is considered as a constant letter
if it appears in the word and followed by the letter “ح”, such as
 .”اٌصلاح, اٌشعبح“

Rule4: The letter “ء” is considered as a constant letter if it
appears in the word and has not been preceded by one of the
letters “أ, ٚ, ٞ, ا”, such as “اٌّشء”.

Rule5: The letter “ٚ” is considered as a constant letter if it
appears in the word and has been preceded by “اي” letter, such
as “ّٗاٌٛلا٠بد, ا١ٌٌٛ”.

5) The extra letter “ة”: The extra letter “ح" is not from the

root’s letter. Therefore, we remove this letter from the word.

D. Extracting All Possible Patterns for the Word

In the previous step, finding all constant letters will
minimize the possible root’s letters. The problem is when the
algorithm does not find three constant letters or more, the
algorithm tries to expert each letter in the word to complete the
missing letter in the root.

1) Extracting all possible patterns when constant letters

are three or more
Most of the Arabic words are derived from trilateral Arabic

roots. However, there are very few quadric-literal Arabic roots
relative to the number of trilateral Arabic roots. Most of the
studies which related to Arabic Root extraction either are based
on a dictionary of Arabic roots or use a set of rules to identify
the verb patterns of the Arabic words. The rules are selected
depending on the number of letters in the word to find the
Arabic roots. In this section, we explain how to extract all
possible patterns when constant letters are three or more. One
possible verbal pattern exists if the word consists of three or
more constant letters. The steps are summarized in Table II.

TABLE II. EXTRACTING PATTERNS WHEN CONSTANT LETTERS ARE THREE

OR MORE

No. Steps Result

1 The input word ْٚاٌؾبشذ

2 Find constant letters ػ ػ د

3

If constant letters are more than two letters,
replace the first constant letter with “ف”

letter; then replace the second constant
letter with “ع” letter, after that replace the

rest of constant letter with “ي” letter.

 اٌفبعٍْٛ

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

125 | P a g e

www.ijacsa.thesai.org

According to Table II, with the word “ْٚاٌؾبشذ,” three
constant letters are found in the word, which is forming one
possible root for the word; it is “ؽشذ.” To find the pattern of the
word “ْٚاٌؾبشذ”, replace “ػ” letter with “ف” letter; then replace
 letter, in ”ي“ letter with ”د“ letter, after that ”ع“ letter with ”ػ“
order to achieve the pattern” ْاٌفبعٍٛ ”. Another example that
contains four constant letters with the word “اٌّزذؽشعبد,” .
There are four constant letters forming the possible root
 ”.اٌّزفعٍلاد“ Therefore, the pattern is ”.دؽشط“

2) Extracting all possible patterns when constant letters

are less than three
If the number of constant letters less than three letters, there

will be more than one possible pattern. For instance, in the
word”ٝاٌزم,” there is just only one constant letter “ق.” In this
case, we cannot build the pattern because we should have at
least three constant letters to build the complete pattern.
Therefore, the algorithm tries to find another two constant
letters in the word in order to form the correct possible
patterns. Note that all letters in the word are the candidate to be
constant letters. Therefore, the suggested letters are “اٜ ,اد ,اي,
 Referring to the suggested letters, the possible .”رٝ ,ٌٝ ,ٌذ
patterns are “ٍٝفعز, ٝفٍعٍ Refer the process . “اٌفعً ,افزعً,افعٍٝ,فٍزعً,
in Table III.

TABLE III. STEPS TO EXTRACT ALL POSSIBLE PATTERNS WITH JUST ONE

CONSTANT LETTER

No. Steps Result

1 The input word ٝاٌزم

2 Find constant letters ق

3
Find all possible other two

letters
 رٝ ,ٌٝ ,ٌذ ,اٜ ,اد ,اي

4 Extract all possible patterns ٍٝاٌفعً ,افزعً,افعٍٝ,فٍزعً,فٍعٍٝ,فعز

3) Exclude the wrong patterns by applying the rules
In the previous section, some of the extracting of the

possible patterns “ٍٝاٌفعً ,افزعً,افعٍٝ,فٍزعً,فٍعٍٝ,فعز “, patterns are
wrong because the non-constant letters in the patterns are in the
wrong places. So, the present algorithm applies the rules in
section C in order to reject the wrong patterns.

TABLE IV. EXAMPLE OF EXCLUDING THE WRONG PATTERNS BY APPLYING

THE RULES

No. Steps Result

1 All possible patterns ٍٝاٌفعً ,افزعً,افعٍٝ,فٍزعً,فٍعٍٝ,فعز

2
Check the rules of non-

constant letters
 are rejected فٍزعً,فٍعٍٝ

3 The accepted patterns ٍٝاٌفعً ,افزعً,افعٍٝ,فعز

With the word”ٝاٌزم,” the suggested patterns” ٍٝفٍع, ًفٍزع ” are
removed from the list after applying the rules. As indicated
earlier for “ي” letter rule, if “ي” letter exists between two
constant letters, it is considered as a constant letter. At the

same time, it could not be extra letters. Therefore, the possible
patterns are “ٍٝفعز, ًافعٍٝ, افزع .see the Table IV ”اٌفعً ,

4) Minimizing the possible patterns by comparing them

with patterns’ list
A list of patterns in the corpus of Thalji [24] is

automatically extracted and this list contains ”4320” patterns.
In order to ensure that the possible patterns are correct, they are
compared with the patterns’ list if they are not found they are
rejected. For example, for the possible patterns in the
word”ٝاٌزم”, the pattern “ٍٝفعز” is not found in the list, so it is
rejected, and the remaining possible patterns are”ٍٝافزعً,افع,
 .”اٌفعً

TABLE V. MINIMIZING PATTERNS BY COMPARING THEM WITH PATTERNS’

LIST

Steps Result

Possible patterns ٍٝاٌفعً ,افزعً,افع

Compare the patterns with a pattern list ٍٝفعز is rejected

The accepted patterns ٍٝاٌفعً ,افزعً,افع

E. Extract All Possible Roots for the Word

1) Finding all possible roots by matching the patterns
After finding all possible patterns, now all the possible

roots that match the patterns are extracted. For example, in the
word”ٝاٌزم”, the possible patterns are”ٍٝاٌفعً ,افزعً ,افع” .
Therefore, the possible roots are”رمٝ ,ٌمٝ ,ٌزك”.

2) Finding all possible roots by applying Ebdal rules
After careful and considered review of the content of the

Arabic dictionaries such as “Lessan AL-Arab” [25], it has been
found that this dictionary has roots like” , س, ظطش, صدصطجً, صطفً
 However, this the dictionary doesn’t apply the Ebdal rule .”صدف
[26]. So, the Ebdal rules are always not applied. In our
algorithm all the possible roots are returned with applying
Ebdal rules and with don’t apply it, to be in the safe side. Our
proposed algorithm returns all the possible roots for each word
by applying Ebdal rule and returning suggested roots without
applying it.

F. Solve the Problem with Shaddah

This work is for the non-vocalized text. So, in many cases
the writers don’t write Shaddah above the letter, hence, the
algorithm will try to check for missing Shaddah. It is started
from the second letter in the word to check for missing
Shaddah for all letters except the vowel letters. For example,
the word "اٌجش", the algorithm is generated by these possible
missing Shaddah, "اٌٍجش, اٌججش, اٌجشس".

G. Solve the Problem with a Missing Vowel in Ealal Rules

In Arabic language, if the root has one or more long vowel,
in derivation words these letters may be deleted. For example,
for the root "لٛي", one of possible derivation word is "ًل".
During the derivation process, the long vowel "ٚ" letter is
deleted. So, in this case, the algorithm gives all possible cases
of missing long vowel letter. The algorithm is generated these
possible missing vowels "ٍٛٚلً, لٛي, ل".

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

126 | P a g e

www.ijacsa.thesai.org

H. Solve the Problem by Changing the Vowel in Ealal Rules

In Arabic language, if the root has one or more long vowel,
in derivation words these letters may be changed to deferent
long vowel letter [27]. For example, with the root "لٛي", one of
possible derivation word is "لبي". During the derivation process,
the long vowel "ٚ" letter is changed to different long vowel
letter, which is "ا". So, the algorithm gives all possible cases of
changing long vowel letters. For example, with the word "لبي",
the algorithm is generated these possible different vowels ,ًل١"
 .لٛي"

I. Minimizing Possible Roots by Comparing them with

Roots’ List

The algorithm generates a large number of possible roots,
especially for words that found less than three constant letters
and for vowel roots, because vowel roots have many more
special cases. The presented algorithm uses the roots’ list of
Thalji [24] to minimize the possible roots. This list has 12000
roots. For example, the case of "ُ٘دس" word, the algorithm
generates these root ٠ذس, داس, دٚسادس, ٚدس , ,د٠ش, دسا, دسٚ, دسٞ, دسس
but the root "٠ذس " is excluded, because it is not founded in
root’s list.

J. Solve the Problem with Length One Words

In Arabic, there are some few words with only one letter
length like " ِقِ، عِ، س", these words are derived from vowel root
with length three letters, and these vowel letters are deleted
during derivation process. The presented algorithm tries to find
the root for such words by generating all possible vowels roots
and all permutations. For example, with the word “ ِق” all
possible vowel letters are listed in Table VI, then these roots
are compared with roots list of Thalji if these roots are founded
the root is accepted otherwise the root is rejected.

TABLE VI. GENERATED ROOTS FOR WORD ” ِق”

Generated root Accepted or not

 Accepted الب

 Not accepted الٛ

 Not accepted الٟ

 Not accepted ااق

 Accepted اٚق

 Accepted ا٠ك

 Not accepted ٚلب

 Not accepted ٚلٛ

 Accepted ٚلٟ

 Accepted ٚاق

 Accepted ٚٚق

 Not accepted ٠ٚك

 Not accepted ٠مب

 Not accepted ٠مٛ

 Not accepted ٠مٟ

 Not accepted ٠بق

 Not accepted ٠ٛق

 Not accepted ١٠ك

K. Try to Find Other Roots

For words like the word "ُ٘دس", the algorithm result only
includes these roots " دسس دسأ، دسٞ، دٚس، ٚدس, ". In this word’s
case, the algorithm just finds two consonant letter and tries to
find the third one, not the fourth one also. So, it misses the
root "ُ٘دس" . In this case, the algorithm tries to check the word
itself "ُ٘دس", since it’s length is four. So, the result is دسأ، ,دسُ٘
"دسٞ، دٚس، ٚدس ." دسس ،

IV. EXPERIMENT AND EVALUATION

In this section, the presented algorithm is compared with
the Arabic root extraction algorithm of Khoja and Garside,
which is the most popular Arabic root extraction algorithm,
and the only Arabic root extraction algorithm that publicly
available for download. Khoja and Garside tested their Arabic
root extraction algorithm using newspaper text and achieved
95%. Specifically, we make a pure and completely comparison
between the algorithm of Khoja and Garside and the presented
algorithm on the corpus of Thalji. Thalji’s corpus is an
automatic corpus that is built from ten old Arabic dictionaries.
This corpus is mainly built to test and fairly compare Arabic
roots extraction algorithms. This corpus contains 720,000
words roots pair, which helps to avoid the interference of a
human expert normally needed to verify the correct roots of
each word used in the testing or comparison process.
Moreover, this corpus has more than 4,320 types of words
which derived from (12000) roots. So, it guarantees the
comprehensiveness of words.

The experimental result shows that the accuracy of the
algorithm of Khoja and Garside is 63%, and the accuracy of
the presented algorithm achieves 94%. As shown in Figure I.

Fig. 1. Accuracy of Khoja Algorithm and the Presented Algorithm.

We observed that the following limitations caused the
decrement of accuracy for the algorithm of Khoja and Garside:

1) The algorithm of Khoja and Garside is missing a large

number of roots, prefixes, suffixes, and patterns. The

dictionary of Khoja and Garside is restricting the result for just

4,748 roots, 3,822 trilateral roots, 926 quadrilateral roots.

Because the algorithm of Khoja and Garside ignores 7252

roots, the result of ignoring these roots causes wrong results

because if one uses any of ignoring roots, he/ she will not find

63%

92%

0%

20%

40%

60%

80%

100%

Khoja and

Garside's

Algorithm

The presented

algorithm

 Accuracy

 Accurcy

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

127 | P a g e

www.ijacsa.thesai.org

the correct result or will not achieve the correct root. For

example, the word "ٍِّٛع" is stemmed to the wrong root "ٌٚع",

because it misses the root "ٍِع", also the word “"لأصذلبئه is not

stemmed because it is missing the pattern "لأفعلائه", the same

thing will occur to the following words ٠ؾشِٛٔٙٓ :” , اخٍعٛ٘ٓ,

, اصطؾت, اصطٍؼ, لأصذلبئه, ٔغزخذِٙب, ششوبؤٔبشرغزجذي, ؽبعٛة, اصد٘ ”.

2) The algorithm of Khoja and Garside suffers from affix

ambiguity problems. For example, it returns "١ِع" root for the

word اعزّبع"" , but it should also return the root "عّع", this is

because it starts by removing the longest suffix or prefix, but

sometimes its neither prefix nor suffix, its root’s letters.

3) The algorithm of Khoja and Garside, again, returns just

one solution for non-vocalized words, ignoring other possible

solutions. For example, the word "ًل", the possible roots

are"ٍٟلٛي, لًٍ, لٍٛ, ٚلً, ل١ً ل", where the result is just "ًٍل".

4) The algorithm of Khoja and Garside replaces a weak

letter with the letter “ ٚ”, which occasionally produces a root

that is not related to the original word. For example, it returns

 which is the wrong root, the "أص١ً" root for the word "صٛي"

right root is "ًأص".

5) The algorithm of Khoja and Garside may generate

invalid roots or fail to find roots for words that contain Ebdal

rule “اثذاي” like ,اصطٍؼ, اصطؾت"and "صد٘شا .

6) The algorithm of Khoja and Garside, also, doesn’t deal

with Shaddah. For example, with the word “"ٚأة , it returns the

root"ٟأث", where the possible root also is “أثت”.

To be fair, the followings are the limitation points of the
proposed algorithm:

7) The presented algorithm unable to find the root of

words is in the word “"ر٠عٛعخ , the algorithm result is just “رعع”

root. In this well-known word’s case, if the algorithm finds

three constant letters, it returns them as trilateral root which

becomes the result. At the same time, the presented algorithm

is not deal with exchanging the constant letter with the vowel

letter because this case rarely happened.

8) The presented algorithm gives all possible roots of the

word. However, this causes a misunderstanding result for the

researcher to find which the exact root for the word is. This

limitation coming up clearly because the presented algorithm

deals with words rather than completed meaningful sentences

in a paragraph.

V. CONCLUSION AND FUTURE WORK

In this study, we investigate the rules which are based on
the existing Arabic root extraction, analyse most previous
Arabic root extraction algorithms, inspired by all their strong
ideas, and overcome the weaknesses’ points. This study
continues what the others already started by performing
extensive enhancement and improvements.

The presented Arabic root extraction algorithm is compared
with the Arabic root extraction algorithm of Khoja and
Garside, which is a well-known Arabic root extraction
algorithm. The algorithm of Khoja and Garside yields 95% of
accuracy when it was tested in the selective data set. However,
the experimental result shows 63% accuracy when we tested

their algorithm using Thalji’s corpus. At the same time, we test
the proposed algorithm on the same corpus and able to achieve
94%. The main reason of decreasing the percentage of the
algorithm of Khoja and Garside from 95% to 63% is because
of the different datasets that are used in the testing process.
This proved that the algorithm of Khoja and Garside has
insufficient rules to handle bigger test data with wider diversity
and variation of words.

We plan to enhance the accuracy of the presented algorithm
by solving its weakness points as stated in the above. The
future works will include the enhancement of rules to obtain
just the exact root instead of multiple roots, which requires the
algorithm to analyse and understand the sentence or sometimes
the paragraph.

REFERENCES

[1] G. Kanaan, R. Al-shalabi and M. Sawalha, "Improving Arabic
information retrieval systems using part of speech tagging," pp. 32-37,
2005.

[2] Z. Thalji, "A New Algorithm to Minimize Names in the Arabic
Language," International Journal of Applied Engineering Research, vol.
13, no. 18, pp. 13950-13960, 2018.

[3] S. Al hakeem, G. Shakah, B. Abu Saleh and N. Thalji, "Developing an
effective light stemmer for Arabic language information retrieval,"
International Journal of Computer and Information Technology, vol. 5,
no. 1, pp. 55-59, 2016.

[4] T. M. T. Sembok and B. AbuAta, "Arabic word stemming algorithms
and retrieval effectiveness," In Proceedings of the World Congress on
Engineering , vol. 3, pp. 3-5, 2013.

[5] R. Kanaan and G. Kanaan, "An improved algorithm for the extraction of
triliteral Arabic roots," European Scientific Journal, vol. 10, no. 3, pp.
346-355, 2014.

[6] B. Abuata and A. Al-Omari, "A rule-based stemmer for Arabic Gulf
dialect," Journal of King Saud University-Computer and Information
Sciences, vol. 27, no. 2, pp. 104-112., 2015.

[7] E. Al-shawakfa, A. Al-Badarneh, S. Shatnawi, K. Al-Rabab’ah and B.
Bani-Ismail, "A Comparison study of some Arabic root finding," Journal
Of The American Society For Information Science And Technology,
vol. 61, no. 5, pp. 1015-1024, 2010.

[8] S. Al-Fedaghi and F. S. Al-Anzi, "A new algorithm to generate Arabic
root-pattern forms," proceedings of the 11th national Computer
Conference and Exhibition, 1989.

[9] R. Al-shalabi and M. Evens, "A Computational Morphology System for
Arabic," In Proceedings of the Workshop on Computational Approaches
to Semitic Languages. Association for Computational Linguistics., pp.
66-72, 1998.

[10] H. M. Al-Serhan, R. Al Shalabi and G. Kannan, "New approach for
extracting Arabic roots," Proceedings of the 2003 Arab conference on
Information Technology, pp. 42-59, 2003.

[11] S. Khoja and R. Garside, "Stemming Arabic text," Lancaster, UK,
Computing Department, Lancaster University, 1999.

[12] R. Alshalabi, "Pattern-Based Stemmer for Finding Arabic Roots,"
Information Technology Journal, pp. 38-43., 2005.

[13] M. N. Al-kabi and R. AL-Mustafa, "Arabic Root Based Stemmer,"
Proceedings of the International Arab Conference on Information
Technology, 2006.

[14] R. Sonbol, N. Ghneim and M. S. Desouki, "Arabic Morphological
Analysis : a New Approach," In Information and Communication
Technologies: From Theory to Applications, 3rd International
Conference, IEEE, pp. 1-6, 2008.

[15] S. Ghwanmeh, S. Rabab'Ah, R. Al-Shalabi and G. Kanaan, "Enhanced
Algorithm for Extracting the Root of Arabic Words," Sixth International
Conference on Computer Graphics, Imaging and Visualization, pp. 388-
391, 2009.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

128 | P a g e

www.ijacsa.thesai.org

[16] Z. Kchaou and S. Kanoun, "Arabic stemming with two dictionaries ," In
Innovations in Information Technology, International Conference IEEE. ,
pp. 688-691, 2008.

[17] M. El-Defrawy, Y. El-Sonbaty and N. Belal, "A Rule-Based Subject-
Correlated Arabic Stemmer ," Arabian Journal for Science and
Engineering , vol. 41, no. 8, pp. 2883-2891, 2016.

[18] A. Ayedh and T. Guanzheng, "Building and Benchmarking Novel
Arabic Stemmer for Document Classification ," Journal of
Computational and Theoretical Nanoscience , vol. 13, no. 3, pp. 1527-
1535, 2016.

[19] K. Taghva, R. Elkhoury and J. Coombs, "Arabic Stemming without a
root dictionary," In Information Technology: Coding and Computing,
International Conference, IEEE, pp. 152-157, 2005.

[20] E. Al-Shammari and J. Lin, "A novel Arabic lemmatization algorithm,"
Al-Shammari, E., & Lin, J. (2008, JulyIn Proceedings of the second
workshop on Analytics for noisy unstructured text data ACM. , pp. 113-
118, 2008.

[21] M. N. Al-Kabi, S. A. Kazakzeh, B. M. Abu Ata, S. A. Al-Rababah and I.

M. Alsmadi, "A novel root based Arabic stemmer," Journal of King
Saud University-Computer and Information Sciences, pp. 94-103, 2015.

[22] A.-K. N. Al-Kabi, "Towards Improving Khoja Rule-Based Arabic
Stemmer," In Applied Electrical Engineering and Computing
Technologies (AEECT), IEEE Jordan Conference, pp. 1-6, 2013.

[23] F. Abu Hawas and K. Emmert E, "Rule-based approach for Arabic root
extraction: new rules to directly extract roots of Arabic words ," Abu
Hawas, F., & Emmert, K. E. (2014). Rule-based approach for Arabic
rJournal of Computing and Information Technology, vol. 22, no. 1, pp.
57-68, 2014.

[24] N. Thalji, N. A. Hanin, Y. Yacob and S. Al-Hakeem, "Corpus for Test ,
Compare and Enhance Arabic Root Extraction Algorithms,"
International Journal of Advanced Computer Science and Applications,
vol. 8, no. 5, pp. 229-236, 2017.

[25] M. Ibn Manzur, Lisan Al-Arab, no date.

[26] A. Abu altaeeb, Ebdal Book, Damascus: Arabic Language Group, 1961.

[27] E. Abdulaleem, Tayseer Ealal and Ebdal, Cairo: Dar Ghraib For
Printing, Publishing and Distribution, 1993.

