
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

9 | P a g e

www.ijacsa.thesai.org

Human Related-Health Actions Detection using

Android Camera based on TensorFlow Object

Detection API

Fadwa Al-Azzo
a, 1

, Arwa Mohammed Taqi
a, 2

, Mariofanna Milanova
b, 3

a
System Engineering Department,

b
Computer Science Department

University of Arkansas at Little Rock, Arkansas, USA

Abstract—A new method to detect human health-related

actions (HHRA) from a video sequence using an Android

camera. The Android platform works not only to capture video

images through its camera, but also to detect emergency actions.

An application for HHRA is to help monitor unattended

children, individuals with special needs or the elderly. The

application has been investigating based on TensorFlow Object

Detection Application Program Interface (API) technique with

Android studio. This paper fundamentally focuses on the

comparison, in terms of improving speed and detection accuracy.

In this work, two promising new approaches for HHRA detection

has been proposed: SSD Mobilenet and Faster RCNN Resnet

models. The proposed approaches are evaluated on the NTU

RGB+D dataset, which it knows as the present greatest publicly

accessible 3D action recognition dataset. The dataset has been

split into training and testing dataset. The total confidence scores

detection quality (total mAP) for all the actions classes are

95.8% based on the SSD-Mobilenet model and 93.8% based on

Faster-R-CNN-Resnet model. The detection process is achieved

using two methods to evaluate the detection performance using

Android camera (Galaxy S6) and using TensorFlow Object

Detection Notebook in terms of accuracy and detection speed.

Experimental results have demonstrated valuable improvements

in terms of detection accuracy and efficiency for human health-

related actions identification. The experiments have executed on

Ubuntu 16.04LTS GTX1070 @ 2.80GHZ x8 system.

Keywords—Android camera; TensorFlow object detection API;

emergency actions; detection accuracy

I. INTRODUCTION

Generally, the elderly, children and the people with special
needs are considered to be in need of care and supervision of
their behavior all the time. Safety is a priority especially when
their caregivers are not available to prevent accidents like
falling, passing out or nausea due to an existing medical
conditions or unforeseen dangers to prevent such accidents as
in falling, nausea This led us to build an application to detect
the abnormal actions through the Android platform and in the
future, it can be manipulated to send a alerting message to the
observer to provide the necessary assistance as soon as
possible. The Object detection is a common concept for
computer vision methods for definition and labeling objects.
Human action detection is one of the top massively studied
topics that can be used for surveillance camera. Most of the
techniques include substantial limitations when it comes to the
specific form of computational resources, the dependence of

the motion of the objects, disability to differentiate one object
from another, the absence of proper data analysis of the
measured trained data, and a major interest is over the speed of
the movement and illumination. Therefore, drafting, applying
and recognizing new methods of detection that manage the
present limitations, are much needed. The techniques of object
detection can be applied both to still images or video images.
The objective of human action detection is to detect each
appearance of a specific action in a video and to localize every
detection identified together in space and time. Recently, the
video action recognition performance has improved based on
Deep Learning (DL) approaches. Human action detection task
is challenging compared to the human action recognition
because of the change in size of the human and in addition to
the spatio-temporal location. Generally, deep learning has been
connected with data centers and large clusters of great-powered
GPU machines. Nonetheless, it can be highly expensive and
time-consuming to transfer all of the data in the device and
deliver it across a network connection. Implementation on a
mobile makes it possible to deliver real interacting applications
using a method that is not possible when you should wait for a
network round trip. The smartphone is being added to video
surveillance systems almost everywhere at any time. In other
words, the video surveillance system for mobile has spread and
expanded significantly in recent times so you can monitor your
home or business when you are away. Smartphone devices
with a camera are a massive part of our daily lives. However,
there is a growing interest in the interaction between the users
and their devices. The interaction between the user, the phone,
and real-world objects [1] represents the many variations of
smart device applications.

Objects detection utilizing a mobile camera has many
functions like video surveillance, object stability, and collision
revocation.Most techniques have been used to detect tracking
objects from a non-stable platform. Whereas these techniques
require the movement parameters of the camera to be
recognized, that is frequently not easily obtainable or are
incapable of object detection if the tracking object’s size is
small. In this paper, we aim to present a new detection
application for video images of human health-related actions
using Android phone’s camera. The software is based on Deep
learning system running on TensorFlow’s Object Detection
API using Android platform. A robust tool gives it straight to
construct, train, and use object detection models. In most of the
cases, training a complete convolutional network from scratch

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

10 | P a g e

www.ijacsa.thesai.org

is time-consuming and needs massive datasets. Accordingly,
this problem can be resolved by utilizing the power of transfer
learning with a pre-trained model [2] using the TensorFlow
API.

An Android platform has been used toward the object
recognition applications [1], which works on images taken
through a built-in camera. Android is gradually growing to be
the commonly utilized platform amongst the smartphone
technologies as a monitor. The user can have access to the
correct human action from the object by which the required
action is marked upon the detected object. The recognition of
the object detection in a video frames on an android is
completely developed. Once the object is appropriately
detected, it could be saved and accessible for future
applications.

The contributions of this study are as follows.

 Videos of human actions are selected based on health
needs and it defined emergency actions that must be
taken consideration because it is important to detect
them quickly and with high accuracy.

 Most advanced methods have been utilized for training
the various human action classes in order to guarantee
that it learns all the samples of the entire video frames.

 Model performance has been evaluation through detec-
tion accuracy by measuring the confidence source mAP
for each action class and total mAP for all the classes.

 The number of steps of the training and evaluation pro-
cesses can be controlled to get the least error
(classification loss) to make the classification of the
action class correct and also make the location of the
human action as the lowest error (localization loss) to
bounding detection box on the right place.

 By using the Android camera, the efficiency and power
of the model detector can be enhanced. That is because;
the Android detection results were compared to the
detection process using TensorFlow Object Detection
Notebook technique.

The paper is organized as follows. Section II discusses the
related works. Details of object detection technique is
presented in Section III. Section IV explains TensorFlow
object detection API technique. The Feature extraction
algorithm defined with details in Section V. Section VII
presents the proposed technique that includes the experimental
settings, training and evaluation processes and detection
approach with experimental results. Discussion of the
significance of this work is discussed in Section IX. Finally,
Section X concludes this work.

II. RELATED WORKS

Human action detection using image-processing methods
on smartphones as Android device is a developed conception.
Wherefore only, a meager published literature was usable.
Most of the obtainable literature focuses on the desktop
applications. The topic studied in [3] showcases a collection of
critically trained elements in a star model that is called Pictorial
Structure. It can be said that this paper could be viewed as a 2-

layer model, consisting of the first layer and the second layer
will include the star model. The research in [4] utilizes the
common field information which was related to [5] which was
based on the manually designed Histogram of Gradients
(HOG) descriptors. [6] represents the objectness measure by
simply utilizing 8 × 8 binarized normed gradients (BING)
features. This process is easy and quick and it is done by
calculating the objectness of each image boundary box at any
scale by using a few atomic operations. The paper [7] presents
a design for bidirectional retrieval of images and sentences by
using a deep, multi-modal embedding of visual and natural
language data. In addition, they also display a structured max-
margin objective, which enables their model to incorporate
these parts over modalities. A design that creates natural
language descriptions of images and their regions is shown in
research [8] while approaching supported datasets that include
images and their sentence information in order to learn about
the inter-modal correlation between language and visual
images. Their model is set up on an aggregate of Convolutional
Neural Networks over image regions and bidirectional
Recurrent Neural Networks over sentences. The work in [9]
examines the conclusion of disfiguring part models from 2D
images to 3D spatio-temporal volumes in order to study their
efficiency for action detection in video.

Action detection model presented in [10] , first decomposes
human actions towards temporal key poses and then to spatial
action parts. Precisely, they began by clustering cuboids
around every human joint to dynamic-pose lets by using a new
descriptor. The structure of paper [11] merges strong computer
vision techniques for forming bottom-up region with modern
improvements in learning high performance of convolutional
neural networks. The resulting system based on R-CNN is
called: Regions with CNN features.

III. OBJECT DETECTION TECHNIQUE

Generally speaking, the object detection methods apply an
image classifier to an object detection function which is
becoming efficient methods; it involves changing the size and a
position of the object in the test image and then utilizing the
classifier to recognize the object. The multi- bounding box
method [12] is a familiar model that has been reported in. Over
the past few years, a method covering the extraction of several
filter regions of objects utilizing region proposals as performed
by R-CNN. Thereafter, the process of making classification
decision [13] with filter regions utilizing classifiers has been
described. However, the R-CNN method could be time
consuming because it needs a larger amount of crops, which
will result to duplicate the calculation from overlapping crops.
Such calculation verbosity was resolved by the use of a Fast R-
CNN [14] that inserts the completed image once within a
feature extractor so the crops would end up sharing the
calculation amount of feature extraction.

In this work has used the developed software tool for the
Android camera; it focuses on two recent TensorFlow object
detection API models: SSD_Mobilenet framework, and the
Faster R-CNN-Resent framework. The algorithm proposed for
HHRA detection model is important to understand how
efficient the framework performs.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

11 | P a g e

www.ijacsa.thesai.org

IV. TENSORFLOW OBJECT DETECTION API

TensorFlow Object Detection API’s package is a process to
resolve object detection problems. This is a technique of
detecting real-time objects in an image. In agreement with the
documentation and the paper [2] that shows the library, what
makes it exclusive is that it is capable to trading accuracy for
speed and memory application (vice-versa). Therefore, you can
modify the model to satisfy your requirements and your
platform, like a smartphone. The Tensorflow Object Detection
API library contains multiple out-of-the-boxes object detection
structures like SSD (Single Shot Detector), Faster R-CNN
(Faster Region-based Convolutional Neural Network), and R-
FCN (Region-based Fully Convolutional Networks).

In addition to different feature extractors such as
MobileNet, Inception, and Resnet; those extractors are actually
important since they represent a major part in the
speed/achievement trade-off of the framework. In fact, training
from scratch to cover an entire convolutional network is time
consuming and requires hugs datasets. To avoid this problem,
transfer learning is applied with a pre-trained model relating
the TensorFlow API. The transfer learning [15] is a machine
learning approach where a model advanced for a function is
reused as the outset point for a model on a second function. It
is a common strategy in deep learning where pre-trained
models are adopted as the starting point on computer vision
processing function given the large calculation and time
resources wanted to develop neural network models. The
benefit of utilizing a pre-trained model is that alternatively of
creating the model from scratch, a model trained for a similar
problem can be applied as a starting point for training the
system. In this work, the experiments have used the pre-trained
model/checkpoints SSD MobileNet and Faster R-CNN- Resent
[16] from the TensorFlow Zoo.

A. Faster R-CNN

A Faster R-CNN network [12] uses as input a whole image
and a group of object proposals. Accordingly, the first
processes the whole image including some convolutional
(conv.) and max pooling layers to generate a conv. feature
map. Next, for every object proposal, a region of interest (RoI)
extracts a fixed-length feature vector of the feature map. Every
feature vector is supplied to a concatenation of fully connected
(fc) layers, which eventually branch for two relationship output
layers: one that creates softmax probability rating through N
object categories and addition to taking all “background”
category plus adding a layer that produces outputs four real-
valued numbers for each of the N object categories. Each
collection of 4 values encodes filtered bounding-box positions
for one of the N categories. The RoI pooling layer utilizes max
pooling to change the features under each actual region of
interest in a slight feature map by a fixed spatial range of H ×
W, where H and W denote a layer hyper-parameters. A RoI in
[12] is a rectangular window in a conv. feature map. Every RoI
is determined over a four-variable (r, c, h, w) where it defines
its top-left corner (r, c) and its height and width (h, w). The RoI
max-pooling operates through dividing the h × w RoI window
into an H × W grid of sub-windows of estimated size (h/H ×
w/W). Thereafter the max-pooling values in every sub-window
within the corresponding output grid cell. Faster R-CNN has
two processes for object detection. First process, images are

processed utilizing a feature extractor model (e.g., MobileNet,
VGG,) named the Region Proposal Network (RPN), and at the
same time several medium-level layers are applied to expect
the category bounding box proposals. Second process, the box
proposals are utilized to crop features from the same medium
feature map, which are then inputted to the rest of the feature
extractor model with a view for predicting a category label and
its bounding box will improve for every proposal. Lastly, the
Faster R-CNN does not crop proposals straight from the image;
instead, it runs the crops again over the feature extractor, which
will drive to more replicated computations.

B. SSD

A Single Shot Multibox Detector (SSD) [17] was presented
in 2016 by researchers from Google. The SSD is a rapid single-
shot object detector for multiple classes. It utilizes a one feed-
forward convolutional network to assume classes
straightforward and anchor stabilizer without needing another
step for each proposal classification process. The important
feature of SSD is the employ of multi-scale convolutional
bounding box outputs connected to various feature maps at the
highest of the network. The VGG-16 was applied as the core
network because of its effective performance in high-quality
image classification functions and transfer-learning training in
order to enhance the results. The bounding box technique of
SSD is driven by Szegedy’s project [18] on MultiBox, and an
Inception mode convolutional network is used. The MultiBox's
loss task mixed two significant parts that performed their path
to SSD. The first part is confidence loss that measures how
confident the system is of the objects of the calculated
bounding box. However, the second part is location loss, which
measures the distance of the network’s predicted bounding
boxes from the ground truth ones through the training process.

The SSD applies smooth L1-Norm [19] to determine the
location loss. Regarding classification process, the SSD
performs object classification. Therefore, for every predicted
bounding box, collections of N categories predictions are
calculated for each likely category in the dataset. Furthermore,
feature maps are a description of the interest features of the
image at various scales, hence working MultiBox on multiple
feature maps rises the likelihood of any object whether large or
small which to be eventually detected, localized and properly
classified.

V. FEATURE EXTRACTION

The aim of feature extraction is to decrease a variably sized
image to a packed set of visual features. Typically, image
classification models are built by applying strong visual feature
extraction techniques. While they depend on either
conventional computer vision approaches, (e.g. filter based
methods, histogram techniques, etc.) or on deep learning
approaches, they all have the same goal: extract features from
the input of image which are appropriate for the task, and apply
these features in a classification process to define the class of
the image. In object detection systems, a convolutional feature
extractor is a base network that is implemented in the input
data to obtain advanced features. The collection of the feature
extractor is supposed to be highly significant, which is because
of the number and types of layers, the number of parameters
and other characteristics, which immediately influence the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

12 | P a g e

www.ijacsa.thesai.org

execution of the detector. In this paper, two feature extractors
which have been selected are the most used in the area of
computer vision.

A. Resnet

Deep learning networks have been developed and moved to
a high level of sophistication in detection applications when a
Microsoft Research released for a Deep residual networks
(Resnets) [20]. The Resnets that are above 100-layer deep have
demonstrated state-of-the-art accuracy for challenging
recognition functions on ImageNet [21] and MS COCO [22]
competitions that included object detection, image
classification, and semantic segmentation. The validity of
Resnets has been confirmed by multiple visual recognition
applications and by non-visual applications including speech
and language. Deep Network is of significant interest in neural
network architectures, however, deeper networks are further
challenging to train. The residual learning structure helps the
training of these networks and allows them to be deeper 
activate performance in both visual and non-visual functions.
In the deeper network, the additional layers much better
approximate the mapping than its conventional counterpart and
decrease the error.

The residual function utilize that can be
reorganized into , where and x
performs the accumulated non-linear layers and the identity
function (input=output) respectively. Moreover, the main
concept of Resnet is to inserting a termed “identity shortcut
connection” that jumps one or more layers. Generally, Resnets
involves several stacked “Residual Units”, where each unit can
be represented in a common form:

), (1)

 (2)

Where and are input and output of the l-th unit,

and F represents a residual function. In [20] h(x_l) = x_l
represents an identity mapping and f is a ReLU [23] function.
The basic concept of Resnets is to learn the collective residual

function with regard to), with an important option of

applying an identity mapping) = this is achieved by

linking an identity overstep connection (“shortcut”).

B. Mobilenet

Mobilenet [24] was created for active inference in different
mobile vision functions. The network structure of Mobilenet
depends on depthwise separable convolution. It is an advanced
state of the inception module, wherever parted spatial
convolution for each channel is used which indicated as
depthwise convolutions [25]. The 1x1 convolution with all the
channels to combines the output indicated as pointwise
convolutions are applied. As a result, the division in depthwise
and pointwise convolution increase the efficiency performance
furthermore, it enhances the accuracy, while a cross-channel
and spatial correlations mapping is learned independently. The
MobileNet has been displaying to reach an accuracy identical
to VGG-16 on ImageNet with exclusive 1/30th of the
calculation cost and model magnitude. Its structuring blocks set
are depthwise separable convolutions which factorize a

standard convolution for a depthwise convolution and a 1 × 1
convolution as shown in Fig.1ultimately, decrease the pair of
the calculation cost and a number of hyper-parameters.

VI. TENSORFLOW IN ANDRIOD

The Android model of the TensorFlow library [26] is a
single project that builds and installs four sample applications
(TF Detect, TF Classify, TF Stylize, and TF Speech) [27],
which all use the same underlying code. The sample
applications all take input video from a phone's camera. The
TF Detect app is going to be used in this work. The base of the
TensorFlow is written in C++ to begin towards building the
process for the Android. In order to establish for Android, JNI
(Java Native Interface) has to be applied to call the C++
functions such as loadModel, obtain predictions, etc. A shared
object (.so) file will be built, that is a C++ compiled file and a
jar file that will involve JAVA API, which calls for the native
C++, and the JAVA API will be called to make things achieved
simply. There are software, dependencies, and packages
required: Android Studio, Android SDK and Android NDK.
Android Studio import a new project using the directory from
the TensorFlow repo called “Android”.

Essentially, NDK (Native Development Kit) [28] is a great
tool in the evolution of mobile applications. Particularly if you
need to improve a multiplatform application, the NDK is
excelled in this field. Since the same code written in C++ for
Android can be ported and run the same way on the iOS,
Windows or any other platform without changing the original
code. This really keep a lot of time in the development of
applications, which are advanced for doing run on multiple
platforms; as games and other traditional applications.

SDK (software development kit) [29] is a tool with more
tool applications, data files, and model code. The SDK
supports you in developing code, which uses a special system
such as extension code for utilizing features of an operating
system (Windows SDK), drawing 3D graphics by a specific
system (DirectX SDK), or writing a code to make a device like
a mobile phone perform what you need.

VII. PROPOSED TECHNIQUE

In this paper, the proposed model aim to detect human
health-related actions from videos of N frames by using
Android camera. The dataset splits into training and testing
dataset. First step is to label the dataset by drawing a bounding
box (ground truth) around each video frame of human health-
related action. Then, save them as XML file. The XML file
converts to a CSV file and thereafter, TensorFlow that is called
“TFRecords” converts the CSV file into a format that is
readable. The proposed HHRA model uses two per-trained
models of TensorFlow object detection API that are Faster R-
CNN-Resnet and SSD-Mobilenet for training the dataset.
Model evaluation will be done during and after training. Lastly,
it will demonstrate how to export the model to Android for
detect the action type using Android camera. Under the object
detection algorithm utilizing deep learning, there are many
parameters that are learned from the data. Fig.1 describes the
basic block diagram for proposed the HHRA model in this
paper. The setting of TensorFlow object detection API of the
models that used in this work as following as

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

13 | P a g e

www.ijacsa.thesai.org

Fig. 1. Basic Block Diagram for Proposed the HHRA Model.

A. Faster R-CNN-Resnet

The methodology mentioned in the [12] [20] is used in this
work. It has been using the weights by an abbreviate normal
distribution with a standard deviation of 0.01. The
intial_learning_ rate is 0.003 and a momentum _optimizer
value is 0.9 with batch size equals 1. A loss function
procedures the softmax function for classification loss and the
smooth L1 function for localization loss. A function is used as
the activation function. The input for each video frame was
resized to 606 × 1024 pixels.

B. SSD-Mobilenet

Following the methodology mentioned in the papers [17]
[24] it has been initializing the weights by an abbreviate
normal distribution with a standard deviation of 0.03. The
intial_learning_ rate is 0.003 with a learning_ rate_ decay of
0.9997 and a momentum _optimizer_value is 0.9 with batch
size equals 32. A loss function uses the sigmoid function for
classification loss and the smooth L1 function for localization
loss. A ReLU function is used as the activation function. The
input for each video frame was resized in this framework to
300 × 300 pixels.

VIII. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset and Preprocessing

The proposed detection method are evaluated on the NTU
RGB+D dataset [30], which is defined as the present biggest
widely obtainable 3D action recognition dataset. The dataset
includes more than 56k action videos and contents 4 million

frames. In this paper, seven different human health-related
actions of video sequences were selected from NTU RGB+D
dataset (Falling, Nausea, Headache, Neck pain, Sneezing,
Staggering, and Stomachache) presented as frames sequences
for training using TensorFolw object detection models and
testing using Android’s camera. The training dataset was
created by manually tagging the human action in the video
frames using LabelImg software [31] because it is needed to
have a ground truth of what exactly the object is. In other
words, it is important to draw a bounding box around the
person with his action as shown in Fig.2, so the system knows
that this “action” inside the box is the actual human action.
Each person with his action was tagged as a name of the
human activities related to the type of action (a health-related

action). LabelImg saves the annotations as XML-files in
PASCAL VOC format is prepared for creating TFRcords (Te-
nsor Flow record format). Each dataset requires a label map
connected with it, which represents a mapping from string
class names to integer class IDs. Label maps should always
start from ID1. In this work, there are seven IDs related to
seven human health-related actions. The 1920x1080 sized
video frame (and the corresponding annotation files) were later
resized to improve the model training efficiency. Once all the
frames were labelled, the next step was to split the dataset into
a train and test the dataset.

B. Training and Evaluation

In this work, the pre-trained with one of the models
(SSD_Mobilenet or Faster R-CNN-Resnet) was fine-tuned for
NTU RGB+D dataset using manually labeled video frames of
HHRA saved this tagged data as an XML file and adapted this
XML file to a CSV file. Next, the CSV file is converted to
TFRecord file by satisfying the similar specifications as shown
in Fig.1. The entire training process is addressed by a
configuration file recognized as the “pipeline”. The pipeline is
split into several essential structures that are responsible for
determining the model, the training and evaluation process
parameters, and both the training and evaluation dataset inputs.
Actually, the TensorFlow advises that the training should apply
one of their own and already trained models as an outset point.
The idea behind this is that training a completely new model
from scratch might need an excessive amount of time.
Therefore, the TensorFlow gives various configuration files,
which only needs a number of changes that correspond to a
new training environment. The results of the training and the
evaluation stages can be observed by applying TensorFlow’s
visualization platform, TensorBoard [32]. This tool can
observe various metrics such as the training time, total loss,
number of steps and much more. The TensorBoard also runs
while the model is being trained, making this an excellent tool
to confirm that the training is going in the right direction. The
given checkpoint file for the models is applied as a beginning
point for the fine-tuning process.

Fig. 2. Sample of Stomachache Action Frame Surrounded by a Bounding

Box.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

14 | P a g e

www.ijacsa.thesai.org

The changes are made so that the variable num_classes,
num_steps to pause the training earlier, fine_tune_checkpoint
to point to the location of the model downloaded, and the
input_path and label_map_path variables of the
train_input_reader and eval_input_reader to point to the
training and testing dataset, as well as the labels map.
Primarily, training data as well as evaluation data are needed
during the training process. The training data is necessary to
learn the model on these data, while the evaluation data is
required to evaluate the accuracy of the trained model if the
model has learned all the video frames for each class. Region
proposals are clustering-based method, which tries to group
pixels and produce proposals based on the created clusters.

In the evaluation stage, the mAP measures the trained
model percentage of correct predictions for all seven actions
labels. The IoU is particular to object detection models and a
case for Intersection-over-Union. This measurement represents
the overlap between the bounding box generated by HHRA
model and the ground truth-bounding box, described as a
percentage. The mAP graph is averaging the percentage of
correct bounding boxes and labels of the HHRA model
resumed with “correct” in this case relating to bounding boxes
that had 50% or more overlap with their corresponding ground
truth boxes.

The HHAR model is improved for loss functions which
combining two functions (classification and localization):

𝑢: True class label, 𝑢 𝝐 0,1,. . . ., 𝐾; by convention, , the
catch all background class has 𝑢=0.

Discrete probability distribution (per RoI) over k+1
classes:

computed by a softmax over the k+1
outputs of a fully connected layer.

𝑣: True bounding box 𝑣 = (,).

: Predicated bounding box correction, = (, , ,

).

The loss function sums up the rate of classification and

bounding box prediction: For “background”

RoI, is avoided by the indicator function ,

describe as:

 (3)

The overall loss function is:

 (4)

 (5)

 (6)

The bounding box loss measure the difference

between and applying a robust loss function. The smooth

 loss[8] is implemented here and it is supposed to be less
sensitive to outliers.

 (7)

C. Evaluation the Model

To evaluate the model during the training and after it, each
time the training produces a new checkpoint, the evaluation
tool will perform predictions using the video frames available
in a given directory.

Evaluation metrics: the greatest significant evaluation
metrics for such implementation are precision, recall, F1-score
and mAP. Precision represents how applicable detection results
are (Eq.8):

 (8)

Where TP = true positive, FP = false positive.

Recall: represents the percentage of objects, which are
detected including the detector. (Eq. 9):

 (9)

Where FN = false negative.

It is important to mention that which the there is an
opposite correlation between precision and recall and which
these metrics are dependent on the model score threshold [33].

In the light of this, the model detector has the power to
detect a big percentage of objects in an image; however, it as
well produces a large number of false positives. While the
model detector by a big threshold for detection only generates
a small false positive, but, it likewise quits a greater percentage
of objects, which remain undetected. The best equivalence
between these two depends on the applicability.

D. Localization and Intersection over Union

Intersection over Union (IoU) is an evaluation metric
applied to estimate the accuracy of an object detector on a
relevant database as shown in Fig.3. Concerning to evaluate
database as shown in Fig.3. Concerning to evaluate the model
on the function of object localization, it must determine how
strong the model predicted the location of the object as shown
Fig.4. Ordinarily, this is accomplished including drawing a
bounding box around the object of interest. The localization
function is normally evaluated on the Intersection over Union
threshold (IoU).

Fig. 3. Calculate IoU between Ground-Truth and Predicted Bounding

Boxes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

15 | P a g e

www.ijacsa.thesai.org

Fig. 4. An Instance of Calculating IoU for Different Bounding Boxes.

The TensorFlow Object Detection API usages “PASCAL
VOC 2007 metrics” [34] location an estimated instance is
described as a TP while Intersection over Union (IoU) is above
50% [33] (Eq.10):

(10)

One object can be associated with only one bounding box;
however, if some bounding boxes are predicted for an object,
one is regarded as TP and the others FP. However, if an object
is without a predicted bounding box, which is associated with
it, then it is recognized as an FN.

E. Mean Average Precision (mAP)

The mAP is the result of precision and recall “precision-
recall” on detecting bounding boxes. It is a satisfactory way for
a measuring of how the network to understands the objects of
importance and how it evades invalid information. The greater
the score of the mAP, the more accurate is the network.
Generally, the mAP enhance the information in “precision-
recall” curve a single number. Thereafter, for each prediction, a
recall rate and a precision rate is estimated. The average
precision (AP) is the average of class predictions measured
over various thresholds, in PASCAL metrics, the thresholds are
from scale [0, 0.1, . . ., 1], i.e., its average of precision values
for various recall levels. It is an effort to achieve characteristics
of the detector in a single number. The AP is defined as the
region under the precision-recall curve. In this work, the AP
curves for each human health-related action class based on
both the per-trained models (Faster R-CNN-Resnet and SSD-
Mobilenet) (see Figs.5-6)). A vertical axis represents the AP
values while a horizontal axis represents the steps (epochs).
Table1 lists the results for maximum AP values at 0.5IoU with
last number of steps being each human health-related action.

TABLE I. MAXIMUM AP VALUES AT 0.5IOU WITH THE NUMBER OF STEPS

(K=1000) FOR EACH HUMAN HEALTH-RELATED ACTION BASED ON FASTER R-
CNN-RESNET AND SSD-MOBILENET MODELS

Faster-R-CNN-Resnet SSD-Mobilenet

 AP@ 0.5 IoU Steps(k) AP@ 0.5 IoU Steps(k)

falling 0.930 8.67 0.975 47.66

headache 0.934 9.13 0.917 50.65

nausea 0.942 10.84 0.979 55.68

neck pain 0.934 10.30 0.967 58.34

sneeze 0.938 10.20 0.973 44.74

staggering 0.934 11.04 0.959 52.31

stomachache 0.953 15.07 0.965 41.09

(1) Falling Action.

(2) Headache Action.

(3) Nausea Action.

(4) Neck Pain Action.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

16 | P a g e

www.ijacsa.thesai.org

(5) Sneeze Action.

(6) Staggering Action.

(7) Stomachache Action

Fig. 5. AP Curves for Each Human Health-Related Action. Maximum AP

Values at 0.5IoU with Last Number of Steps (k=1000) are based on Faster R-
CNN-Resnet Model.

F. The Results

As the training process progresses, the expectation is to
reduce total loss (errors) to its possible minimum (about a
value of 1 or less). By observing the tensorboard graphs for
total loss for Faster R-CNN-Resent and SSD-Mobilenet
models (see Fig.6), it should be possible to get an idea of when
the training process is complete (total loss decrease with
further iterations/steps(epochs)). The parameter num_steps
defines how many training steps they will run before stopping.
This number actually depends on the size of the dataset along
with how long the user wants to perform the training of the
model. The utilized metric for achievement is a mean average
precision (mAP) which is a single number used to summarize
the area under the precision-recall curve. The mAP is a
measure of how well the model generates a bounding box that
has at least a 50% overlap with the ground truth bounding box
in the test dataset. The mAP value reached to higher
confidence at 0.5IoU (see Fig.7) for each action class of both
pre-trained models. The higher the mAP values the higher the
detection accuracy (the higher the better). However, the SSD-
Mobilenet takes a long time to reach the high mAP value
compared to mAP’s Faster-R-CNN-Resnet time. The
classification loss curve in Fig.8 indicates the validation of
human action class which is classified and matched with the
previous trained class. As the values of the classification loss
decrease to zero, it shows that the classification accuracy is
high and the efficiency of the detector performance becomes
more advanced. The Fig.9 (a,b) displays the results for both
models where there are seven classification loss curves
corresponding to each human action health-related class.
Generally, all actions have consistent decreasing classification
loss values, which give the power of the model performance in
the classification of each video frame of the similar class type.
As for the localization loss curve in Fig.10, it describes the
predicate bounding box that matches with the ground-truth
bounding box. As the loss value is reduced, less error will be
present in the action detection and the Intersection over Union
will be high, which all indicates that the detection of the action
is in the right direction. The smoothed L1 loss is used for
localization and is weighted.

(1) Falling Action. (2) Headache Action.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

17 | P a g e

www.ijacsa.thesai.org

(3) Nausea Action. (4) Neck Pain Action.

(5) Sneeze Action. (6) Staggering Action.

(7) Stomachache Action

Fig. 6. AP Curves for each Human Health-Related Action. Maximum AP Values at 0.5IoU with Last Number of Steps (k=1000) are based on SSD-Mobilenet

Model.

Fig. 7. Maximum mAPs @0.5IoU for Seven Human Heath Related Actions Classes are based on Two Per-Trained Models (the left (Faster R-CNN-Resnet),the

Right (SSD-Mobilenet)) respectively.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

18 | P a g e

www.ijacsa.thesai.org

Fig. 8. Minim Total Losses for Seven Human Heath Related Actions Classes are based on Two Per-Trained Models (the left (Faster R-CNN-Resnet), the Right

(SSD-Mobilenet)) respectively.

Fig. 9. Minim Classification Losses for Seven Human Heath Related Actions Classes are based on Two Per-Trained Models (the Left (Faster R-CNN-Resnet),

the Right (SSD-Mobilenet)) respectively.

Fig. 10. Minim Localization Losses for Seven Human Heath Related Actions Classes are based on Two Per-Trained Models (the Left (Faster R-CNN-Resnet), the

Right (SSD-Mobilenet)) respectively.

TABLE II. THE RESULTS FOR EACH ACTION OF THE PRE-TRAINED MODEL (FASTER R-CNN-RESNET). STEPS (K=1000), TIME (H=HOUR, M=MINUTES, S=SECOND)

Actions mAP@ 0.5 IoU Total loss Classification loss Localization loss Steps(k) Time(h-m-s)

falling 0.9300 0.0312 0.0156 6.0513e-4 8.44 2-13-58

headache 0.9347 0.0479 0.0206 1.0070e-3 9.47 2-25-57

nausea 0.9425 0.0429 0.0237 6.9610e-4 11.34 2-47-57

neck pain 0.9437 0.0451 0.0201 8.3558e-4 11.12 2-31-57

sneeze 0.9389 0.0493 0.0261 5.8604e-4 10.37 2-37-57

staggering 0.9347 0.0455 0.0210 9.7959e-4 11.32 2-23-57

stomachache 0.9539 0.0480 0.0283 7.8347e-4 15.32 3-23-57

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

19 | P a g e

www.ijacsa.thesai.org

TABLE III. THE RESULTS FOR EACH ACTION OF THE PRE-TRAINED MODEL (SSD-MOBILENET). STEPS (K=1000), TIME (D=DAY, H=HOUR, M=MINUTES, S=SECOND)

Actions mAP@ 0.5 IoU Total loss Classification loss Localization loss Steps(k) Time(d-h-m-s)

falling 0.9758 0.9872 0.6332 0.03147 48.19 1d-2h-13m-45s

headache 0.9178 0.8323 0.4829 0.03056 51.04 18h-19m-34s

nausea 0.9793 0.7855 0.4448 0.02550 56.11 20h-11m-44s

neck pain 0.9670 0.8548 0.5094 0.02826 58.75 1d-0h-29m-45s

sneeze 0.9737 0.7144 0.3718 0.02514 45.26 16h-3m-45s

staggering 0.9590 0.8949 0.5391 0.03517 52.38 1d-0h-11m-45s

stomachache 0.9657 0.8515 0.4973 0.03313 43.22 19h-49m-46s

TABLE IV. TOTAL MAP FOR ALL ACTIONS BASED ON TWO PRE-TRAINED

MODELS

Total mAP

Faster R-CNN-Resnet SSD-Mobilenet

93.8% 95.8%

Tables 2 and 3 summarize all the parameters (mAP, Total
loss, Classification loss, Localization loss) of the training and
evaluation processes in addition to the number of the steps with
the time that they consumed to achieve these requirements.
Table 4 labels the mean average precision (total mAP) for all
the actions classes of the both per-trained models. The total
mAP that belongs to the SSD-Mobilenet model is somewhat
higher than the total mAP of the Faster-R-CNN-Resnet model.

G. Testing (Detection) and Results

To validate the HHRA model’s performance for action
detection in videos, comprehensive examinations have been
achieved on a special type of human action that has related on
the health from the NTU RGB+D datasets. In order to
accomplish the greatest predictable detection accuracy, sets of
human actions frames with different health-related actions and
various environments are tested. In this work, the detection
process for testing the video frames of seven different human
health-related actions is implemented in two ways to the
evaluation of the detection performance using the TensorFlow
Object Detection Notebook and the Android camera in terms of
accuracy and detection speed. The first way is by trying out the
TensorFlow Object Detection Notebook with couple pre-
trained models (Faster R-CNN-Resnet and SSD-Mobilenet).
While the detection using Android camera only uses the SSD-
Mobilenet model because the TensorFlow in Android does not
support the Faster-R-CNN-Resnet model yet. To perform the
detection process in both ways, must export the model as a
static inference graph trained on the human health-related
dataset, as well as the corresponding label map. The
TensorFlow object detection API library provides the script,
named export_inference_graph with using the latest checkpoint
number at the last step that stopped the training process. It has
used the 16.04LTS GTX1070@2.80GHZ x8 system to run the
object detector on each frame from seven different human
health-related actions of the NTU RGB+D dataset to detect the

action type. The detection process has been applied on 50
frames of each video action for seven different actions.

1) TensorFlow’s object Detection Notebook: As

mentioned above after the requirements is completed, the

detection process is accomplished by using TensorFlow’s

Object Detection Notebook. In pre-trained Faster R-CNN-

Resnet model, the bounding detection boxes for each frame

from seven different human health-related actions consumed

around 120 seconds over all the 50 frames of the testing

dataset. While, the bounding detection boxes for each frame in

pre-trained SSD-Mobilenet model are finalized within a 95

seconds time span. The detection results in two pre-trained

Faster R-CNN-Resnet and SSD-Mobilenet models for samples

of frames of each human health-related action are shown in

Fig.11. The results displayed a high detection accuracy for all

the actions. According to the SSD-Mobilenet model, the

results include diverse detection values ranging from

intermediate to high values of different action

frames.However, there are misdetections in the headache

action where SSD-Moblienet failed to demonstrate the

bounding detection box in some frames and misdetection that

shows the bounding detection boxes in a wrong action

placement as shown in Fig.12.

2) TensorFlow in andriod: Once the requirements are

completed, as mentioned in sections (VI and VIII-G), the

model will be imported to an Android phone (Galaxy S6).

This is the time for testing the video frames based on pre-

trained SSD-Mobilenet model by capturing them from the

phone’s camera also bounding detection boxes have been

visualize for each frame with the name of the action class and

detection percentage accuracy as described in Fig.13. In order

to evaluate the impact of the TensorFlow in Android for the

detection results, the detection accuracy is improved up to
high values and it speed up the detection time.

The action detection from the phone’s camera consumes
roughly 25 seconds for all 50 video frames. In the headache
action, there are two misdetections, however, when the
detection using the Android camera, these two problems have
been solved. The action detection for all frames come to be all
properly visible and the bounding detection boxes have
become in the correct action location.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

20 | P a g e

www.ijacsa.thesai.org

 Sneeze

Nausea

Falling

Headache

Neck pain

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

21 | P a g e

www.ijacsa.thesai.org

Fig. 11. Samples of The Detection Results that used TensorFlow Object Detection Notebook Technique are based on Two Pre-Trained Models (the First Three
Images from the Left are based on Faster R-CNN-Resnet Model, while the Last Three Images from the Right are based on SSD-Mobilenet)) respectively. The

Results Include the Bounding Detection Box for Every of the Seven Human Health-Related Actions Including (Name of the Action Class & Detection Percentage

Accuracy).

Fig. 12. Misdetections for Some Frames of the Headache Action are based on the Pre-Trained SSD-Mobilenet (the left (Bounding Detection Box Showed in the

Wrong Location), the Right (No Bounding Detection Box in the Frame).

IX. DISCUSSION

In this paper, human health related action videos have been
detected by using the implemented TensorFlow object
detection API technique. The two new pre-trained (Faster R-
CNN-Resnet and SSD-Mobilenet) models have been applied
for training human actions dataset. The average precision (AP)
is the average of class predictions estimated over several
thresholds. The detection accuracy (mAP) at 0.5IoU is a high
value with different num_steps. This is due to the fact that the
network deals with the video images, therefore it takes a long
time to train the entire samples of each frame for every action
and depend on the type of the model’s architecture. The
parameter num_steps determines how many training steps they
will run before stopping. This number certainly depends on the
size of the dataset along with how long the user wants to train
the model. Localization loss represents the predicted bounding

box which matches with the ground-truth bounding box.
However, the loss value is decreased and the Intersection over
Union is high, which means that the detection of the action is
in the correct location. The classification loss shows the
effectiveness of human action class which is classified and
matched with the previous trained class. When the
classification loss values decrease and are near zero that means
that the classification accuracy is outstanding and the
performance of the detector becomes more high-level. The
Android detection results were compared to the detection
process TensorFlow Object Detection Notebook technique.
These two distinct processes were used to examine which one
does a better job in measuring the detection speed and how
accurate the detection is. In the end, utilizing the Android
smartphone’s camera revealed that the seven types of human
health-related actions were precisely detected with high
accuracy and reasonable detection speed rate.

Staggering

Stomachache

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

22 | P a g e

www.ijacsa.thesai.org

Fig. 13. Samples of The Detection Results that used Android Camera are based on the Pre-Trained SSD-Mobilenet Model. The Results Include the Bounding

Detection Box for Seven Human Health- Related Actions Classes Including (Name of the Action Class & Detection Percentage Accuracy).

X. CONCLUSION

In Conclusion, the health-related actions can be detected
with high-speed detection and its great accuracy. It can figure
out the correct action required to deal with the appropriate
situation using the smartphone camera. A new detector model
was built for seven different human health-related video
actions using two techniques of TensorFlow object detection
API, which are TesnsorFlow object detection notebook and
TensoFlow in Android, using the phone's camera. In addition,
the HHRA detection model was trained and evaluated using
NTU RGB+D dataset based on two pre-trained models (Faster-
R-CNN-Resnet and SSD-Mobilenet). According to the results,
in the best-detectable category, the mAP total achieved 93.8%
for the Faster R-CNN-Resnet and 95.8% for SSD-Mobilenet.
In addition, the lowest error was calculated through both losses
of classification and localization and the results were
satisfactory. Furthermore, the detection speed and the high-
performance efficiency have been improved by the use of the
smartphone. In the future, we plan to the opportunity to train
using Google Cloud to decrease the training and evaluation

time. Moreover, new methods can be developed to detect the
further human actions classes.

REFERENCES

[1] K. Matusiak, P. Skulimowski, and P. Strumillo, “Object recognition in a
mobile phone application for visually impaired users,” IEEE 6th Int.
Conf. Hum. Syst. Interact., pp. 479–484, 2013

[2] pkulzc, “TensorFlow Object Detection API repository,”github.com,
2018. [Online].
https://github.com/tensorflow/models/tree/master/research/object_detect
ion. [Accessed: 16-Jul-2018].

[3] P. F. Felzenszwalb and D. P. Huttenlocher, “Pictorial structures for
object recognition,” Int. J. Comput. Vis.,vol. 61, no. 1, pp. 55–79, 2005.

[4] P. F. Felzenszwalb, R. B. Girshick, D. Mcallester, and D.Ramanan,
“Object Detection with Discriminatively Trained Part Based Models,”
IEEE Trans. Pattern Anal. Mach.Intell., vol. 32, no. 9, pp. 1–20, 2009.

[5] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” Proc. - 2005 IEEE Comput. Soc.Conf. Comput. Vis. Pattern
Recognition, CVPR 2005, vol.I, pp. 886–893, 2005.

[6] M. M. Cheng, Z. Zhang, W. Y. Lin, and P. Torr, “BING: Binarized
normed gradients for objectness estimation at 300fps,” Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 3286–3293,
2014.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

23 | P a g e

www.ijacsa.thesai.org

[7] A. Karpathy, A. Joulin, and L. Fei-Fei, “Deep Fragment Embeddings for
Bidirectional Image Sentence Mapping,” pp. 1–9, 2014.

[8] A. Karpathy and L. Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 39, no. 4, pp. 664–676, 2017.

[9] Y. Tian, R. Sukthankar, and M. Shah, “Spatiotemporal deformable part
models for action detection,” Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit., pp. 2642–2649, 2013.

[10] L. Wang, Y. Qiao, and X. Tang, “Video Action Detection with
Relational Dynamic Poselets,” Eccv, 2014.

[11] S. Ren et al., “Rich feature hierarchies for accurate object detection and
semantic segmentation,” Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., vol. 794, pp. 1–15, 2015.

[12] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Nips, pp. 91–99, 2015.

[13] C. Sun and K. Murphy, “Speed/accuracy trade-offs for modern
convolutional object detectors,” vol. 3, 2017.

[14] pkulzc, “TensorFlow Object Detection API repository,” github.com,
2018.[Online].Available:
https://github.com/tensorflow/models/tree/master/research/object_detect
ion. [Accessed: 16-Jul-2018].

[15] L. Torrey and J. Shavlik, “Transfer Learning,” Mach. Learn., pp. 1–22,
2009.

[16] V. Rathod and N. Wu, “Tensorflow detection model zoo,” 2017.
[Online].Available:
https://github.com/tensorflow/models/blob/master/research/object_detec
tion/g3doc/detection_model_zoo.md.[Accessed: 25-Jun-2018].

[17] W. L. B et al., “SSD : Single Shot MultiBox Detector,” vol. 1, pp. 21–
37, 2016.

[18] C. Szegedy, S. Reed, D. Erhan, D. Anguelov, and S. Ioffe, “Scalable,
High-Quality Object Detection,” 2014.

[19] Karpathy, “Smooth L1 Loss,” mohitjainweb.files.wordpress.com, 2015.
[Online].Available:
https://mohitjainweb.files.wordpress.com/2018/03/smoothl1loss.pdf.
[Accessed: 15-Jul-2018].

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” 2016 IEEE Conf. Comput. Vis. Pattern Recognit.,
pp. 770–778, 2016.

[21] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition
Challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[22] T. Y. Lin et al., “Microsoft COCO: Common objects in context,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), vol. 8693 LNCS, no. PART 5, pp. 740–755,
2014.

[23] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted
Boltzmann Machines,” Proc. 27th Int. Conf. Mach. Learn., no. 3, pp.
807–814, 2010.

[24] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” 2017.

[25] M. Siam, M. Gamal, M. Abdel-Razek, S. Yogamani, and M. Jagersand,
“RTSeg: Real-time Semantic Segmentation Comparative Study,” no. 1,
2018.

[26] Tensorflow, “https://github.com/tensorflow,” 2016. [Online]. Available:
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/exampl
es/[Accessed: 20-Jun-2018].

[27] B. Readme, A. Inception, L. Repre, and R. Third, “TensorFlow Android
Camera Demo Prebuilt Components : Building in Android Studio using
the TensorFlow AAR from JCenter,” pp. 2–5, 2018.

[28] F. Liu, Android Native Development Kit Cookbook. Birmimgham B3
2PB, UK, 2013.

[29] Campbell Scientific, “CSI Software Development Kit Beginner’s
Guide,” s.campbellsci.com,2006.[Online].Available:
https://s.campbellsci.com/documents/de/manuals/sdkbeginnersguide.pdf.
[Accessed: 20-Jul-2018].

[30] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “NTU RGB+D: A Large
Scale Dataset for 3D Human Activity Analysis,” 2016.

[31] S. Nadella, L. Manifest, M. Readme, O. S. H. Sierra, and M. Os,
“LabelImg,”github.com, [Online].Available:
https://github.com/tzutalin/labelImg. [Accessed: 05-Jun-2018].

[32] V. Toolkit, “TensorBoard Key Concepts Summary Ops : How
TensorBoard gets data from TensorFlow,” github.com, 2018. [Online].
Available: https://github.com/tensorflow/tensorboard. [Accessed: 24-
Jul-2018].

[33] P. Mustamo, “Object detection in sports: TensorFlow Object Detection
API case study,” no. January, 2018.

[34] M. Everingham, L. Van Gool, C. K. I. Williams, and J. Winn, “The P
ASCAL Visual Object Classes (VOC) Challenge,” Int. J., pp. 303–338,
2010.

