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Abstract—A new method to detect human health-related 

actions (HHRA) from a video sequence using an Android 

camera. The Android platform works not only to capture video 

images through its camera, but also to detect emergency actions. 

An application for HHRA is to help monitor unattended 

children, individuals with special needs or the elderly. The 

application has been investigating based on TensorFlow Object 

Detection Application Program Interface (API) technique with 

Android studio. This paper fundamentally focuses on the 

comparison, in terms of improving speed and detection accuracy. 

In this work, two promising new approaches for HHRA detection 

has been proposed: SSD Mobilenet and Faster RCNN Resnet 

models. The proposed approaches are evaluated on the NTU 

RGB+D dataset, which it knows as the present greatest publicly 

accessible 3D action recognition dataset. The dataset has been 

split into training and testing dataset. The total confidence scores 

detection quality (total mAP) for all the actions classes are  

95.8% based on the SSD-Mobilenet model and 93.8% based on 

Faster-R-CNN-Resnet model. The detection process is achieved 

using two methods to evaluate the detection performance using 

Android camera (Galaxy S6) and using TensorFlow Object 

Detection Notebook in terms of accuracy and detection speed. 

Experimental results have demonstrated valuable improvements 

in terms of detection accuracy and efficiency for human health-

related actions identification. The experiments have executed on 

Ubuntu 16.04LTS GTX1070 @ 2.80GHZ x8 system. 

Keywords—Android camera; TensorFlow object detection API; 

emergency actions; detection accuracy 

I. INTRODUCTION 

Generally, the elderly, children and the people with special 
needs are considered to be in need of care and supervision of 
their behavior all the time. Safety is a priority especially when 
their caregivers are not available to prevent accidents like 
falling, passing out or nausea due to an existing medical 
conditions or unforeseen dangers to prevent such accidents as 
in falling, nausea This led us to build an application to detect 
the abnormal actions through the Android platform and in the 
future, it can be manipulated to send a alerting message to the 
observer to provide the necessary assistance as soon as 
possible. The Object detection is a common concept for 
computer vision methods for definition and labeling objects. 
Human action detection is one of the top massively studied 
topics that can be used for surveillance camera. Most of the 
techniques include substantial limitations when it comes to the 
specific form of computational resources, the dependence of 

the motion of the objects, disability to differentiate one object 
from another, the absence of proper data analysis of the 
measured trained data, and a major interest is over the speed of 
the movement and illumination. Therefore, drafting, applying 
and recognizing new methods of detection that manage the 
present limitations, are much needed. The techniques of object 
detection can be applied both to still images or video images. 
The objective of human action detection is to detect each 
appearance of a specific action in a video and to localize every 
detection identified together in space and time. Recently, the 
video action recognition performance has improved based on 
Deep Learning (DL) approaches. Human action detection task 
is challenging compared to the human action recognition 
because of the change in size of the human and in addition to 
the spatio-temporal location. Generally, deep learning has been 
connected with data centers and large clusters of great-powered 
GPU machines. Nonetheless, it can be highly expensive and 
time-consuming to transfer all of the data in the device and 
deliver it across a network connection. Implementation on a 
mobile makes it possible to deliver real interacting applications 
using a method that is not possible when you should wait for a 
network round trip. The smartphone is being added to video 
surveillance systems almost everywhere at any time. In other 
words, the video surveillance system for mobile has spread and 
expanded significantly in recent times so you can monitor your 
home or business when you are away. Smartphone devices 
with a camera are a massive part of our daily lives. However, 
there is a growing interest in the interaction between the users 
and their devices. The interaction between the user, the phone, 
and real-world objects [1] represents the many variations of 
smart device applications. 

Objects detection utilizing a mobile camera has many 
functions like video surveillance, object stability, and collision 
revocation.Most techniques have been used to detect tracking 
objects from a non-stable platform. Whereas these techniques 
require the movement parameters of the camera to be 
recognized, that is frequently not easily obtainable or are 
incapable of object detection if the tracking object’s size is 
small. In this paper, we aim to present a new detection 
application for video images of human health-related actions 
using Android phone’s camera. The software is based on Deep 
learning system running on TensorFlow’s Object Detection 
API using Android platform. A robust tool gives it straight to 
construct, train, and use object detection models. In most of the 
cases, training a complete convolutional network from scratch 
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is time-consuming and needs massive datasets. Accordingly, 
this problem can be resolved by utilizing the power of transfer 
learning with a pre-trained model [2] using the TensorFlow 
API. 

An Android platform has been used toward the object 
recognition applications [1], which works on images taken 
through a built-in camera. Android is gradually growing to be 
the commonly utilized platform amongst the smartphone 
technologies as a monitor. The user can have access to the 
correct human action from the object by which the required 
action is marked upon the detected object. The recognition of 
the object detection in a video frames on an android is 
completely developed. Once the object is appropriately 
detected, it could be saved and accessible for future 
applications. 

The contributions of this study are as follows. 

 Videos of  human actions are selected based on  health 
needs and it defined emergency actions that must be 
taken consideration because it is important to detect 
them quickly and with high accuracy. 

 Most advanced methods have been utilized for training 
the various human action classes in order to guarantee 
that it learns all the samples of the entire video frames.  

 Model performance has been evaluation through detec-
tion accuracy by measuring the confidence source mAP 
for each action class and total mAP for all the classes.  

 The number of steps of the training and evaluation pro-
cesses can be controlled to get the least error 
(classification loss) to make the classification of the 
action class correct and also make the location of the 
human action as the lowest error (localization loss) to 
bounding detection box on the right place. 

 By using the Android camera, the efficiency and power 
of the model detector can be enhanced. That is because; 
the Android detection results were compared to the 
detection process using TensorFlow Object Detection 
Notebook technique. 

The paper is organized as follows. Section II discusses the 
related works. Details of object detection technique is 
presented in Section III. Section IV explains TensorFlow 
object detection API technique. The Feature extraction 
algorithm defined with details in Section V. Section VII 
presents the proposed technique that includes the experimental 
settings, training and evaluation processes and detection 
approach with experimental results. Discussion of the 
significance of this work is discussed in Section IX. Finally, 
Section X concludes this work. 

II. RELATED WORKS 

Human action detection using image-processing methods 
on smartphones as Android device is a developed conception. 
Wherefore only, a meager published literature was usable. 
Most of the obtainable literature focuses on the desktop 
applications. The topic studied in [3] showcases a collection of 
critically trained elements in a star model that is called Pictorial 
Structure. It can be said that this paper could be viewed as a 2-

layer model, consisting of the first layer and the second layer 
will include the star model. The research in [4] utilizes the 
common field information which was related to [5] which was 
based on the manually designed Histogram of Gradients 
(HOG) descriptors. [6] represents the objectness measure by 
simply utilizing 8 × 8 binarized normed gradients (BING) 
features. This process is easy and quick and it is done by 
calculating the objectness of each image boundary box at any 
scale by using a few atomic operations. The paper [7] presents 
a design for bidirectional retrieval of images and sentences by 
using a deep, multi-modal embedding of visual and natural 
language data. In addition, they also display a structured max-
margin objective, which enables their model to incorporate 
these parts over modalities. A design that creates natural 
language descriptions of images and their regions is shown in 
research [8] while approaching supported datasets that include 
images and their sentence information in order to learn about 
the inter-modal correlation between language and visual 
images. Their model is set up on an aggregate of Convolutional 
Neural Networks over image regions and bidirectional 
Recurrent Neural Networks over sentences. The work in [9] 
examines the conclusion of disfiguring part models from 2D 
images to 3D spatio-temporal volumes in order to study their 
efficiency for action detection in video. 

Action detection model presented in [10] , first decomposes 
human actions towards temporal key poses and then to spatial 
action parts. Precisely, they began by clustering cuboids 
around every human joint to dynamic-pose lets by using a new 
descriptor. The structure of paper  [11] merges strong computer 
vision techniques for forming bottom-up region with modern 
improvements in learning high performance of convolutional 
neural networks. The resulting system based on R-CNN is 
called: Regions with CNN features. 

III. OBJECT DETECTION TECHNIQUE 

Generally speaking, the object detection methods apply an 
image classifier to an object detection function which is 
becoming efficient methods; it involves changing the size and a 
position of the object in the test image and then utilizing the 
classifier to recognize the object. The multi- bounding box 
method [12] is a familiar model that has been reported in. Over 
the past few years, a method covering the extraction of several 
filter regions of objects utilizing region proposals as performed 
by R-CNN. Thereafter, the process of making classification 
decision [13] with filter regions utilizing classifiers has been 
described. However, the R-CNN method could be time 
consuming because it needs a larger amount of crops, which 
will result to duplicate the calculation from overlapping crops. 
Such calculation verbosity was resolved by the use of a Fast R-
CNN [14] that inserts the completed image once within a 
feature extractor so the crops would end up sharing the 
calculation amount of feature extraction. 

In this work has used the developed software tool for the 
Android camera; it focuses on two recent TensorFlow object 
detection API models: SSD_Mobilenet framework, and the 
Faster R-CNN-Resent framework. The algorithm proposed for 
HHRA detection model is important to understand how 
efficient the framework performs. 
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IV. TENSORFLOW OBJECT DETECTION API 

TensorFlow Object Detection API’s package is a process to 
resolve object detection problems. This is a technique of 
detecting real-time objects in an image. In agreement with the 
documentation and the paper [2] that shows the library, what 
makes it exclusive is that it is capable to trading accuracy for 
speed and memory application (vice-versa). Therefore, you can 
modify the model to satisfy your requirements and your 
platform, like a smartphone. The Tensorflow Object Detection 
API library contains multiple out-of-the-boxes object detection 
structures like SSD (Single Shot Detector), Faster R-CNN 
(Faster Region-based Convolutional Neural Network), and R-
FCN (Region-based Fully Convolutional Networks). 

In addition to different feature extractors such as 
MobileNet, Inception, and Resnet; those extractors are actually 
important since they represent a major part in the 
speed/achievement trade-off of the framework. In fact, training 
from scratch to cover an entire convolutional network is time 
consuming and requires hugs datasets. To avoid this problem, 
transfer learning is applied with a pre-trained model relating 
the TensorFlow API. The transfer learning [15] is a machine 
learning approach where a model advanced for a function is 
reused as the outset point for a model on a second function. It 
is a common strategy in deep learning where pre-trained 
models are adopted as the starting point on computer vision 
processing function given the large calculation and time 
resources wanted to develop neural network models. The 
benefit of utilizing a pre-trained model is that alternatively of 
creating the model from scratch, a model trained for a similar 
problem can be applied as a starting point for training the 
system. In this work, the experiments have used the pre-trained 
model/checkpoints SSD MobileNet and Faster R-CNN- Resent 
[16] from the TensorFlow Zoo. 

A. Faster R-CNN 

A Faster R-CNN network [12] uses as input a whole image 
and a group of object proposals. Accordingly, the first 
processes the whole image including some convolutional 
(conv.) and max pooling layers to generate a conv. feature 
map. Next, for every object proposal, a region of interest (RoI) 
extracts a fixed-length feature vector of the feature map. Every 
feature vector is supplied to a concatenation of fully connected 
(fc) layers, which eventually branch for two relationship output 
layers: one that creates softmax probability rating through N 
object categories and addition to taking all “background” 
category plus adding a layer that produces outputs four real-
valued numbers for each of the N object categories. Each 
collection of 4 values encodes filtered bounding-box positions 
for one of the N categories. The RoI pooling layer utilizes max 
pooling to change the features under each actual region of 
interest in a slight feature map by a fixed spatial range of H × 
W, where H and W denote a layer hyper-parameters. A RoI in  
[12] is a rectangular window in a conv. feature map. Every RoI 
is determined over a four-variable (r, c, h, w) where it defines 
its top-left corner (r, c) and its height and width (h, w). The RoI 
max-pooling operates through dividing the h × w RoI window 
into an H × W grid of sub-windows of estimated size (h/H × 
w/W). Thereafter the max-pooling values in every sub-window 
within the corresponding output grid cell. Faster R-CNN has 
two processes for object detection. First process, images are 

processed utilizing a feature extractor model (e.g., MobileNet, 
VGG,) named the Region Proposal Network (RPN), and at the 
same time several medium-level layers are applied to expect 
the category bounding box proposals. Second process, the box 
proposals are utilized to crop features from the same medium 
feature map, which are then inputted to the rest of the feature 
extractor model with a view for predicting a category label and 
its bounding box will improve for every proposal. Lastly, the 
Faster R-CNN does not crop proposals straight from the image; 
instead, it runs the crops again over the feature extractor, which 
will drive to more replicated computations. 

B. SSD 

A Single Shot Multibox Detector (SSD) [17] was presented 
in 2016 by researchers from Google. The SSD is a rapid single-
shot object detector for multiple classes. It utilizes a one feed-
forward convolutional network to assume classes 
straightforward and anchor stabilizer without needing another 
step for each proposal classification process. The important 
feature of SSD is the employ of multi-scale convolutional 
bounding box outputs connected to various feature maps at the 
highest of the network. The VGG-16 was applied as the core 
network because of its effective performance in high-quality 
image classification functions and transfer-learning training in 
order to enhance the results. The bounding box technique of 
SSD is driven by Szegedy’s project [18] on MultiBox, and an 
Inception mode convolutional network is used. The MultiBox's 
loss task mixed two significant parts that performed their path 
to SSD. The first part is confidence loss that measures how 
confident the system is of the objects of the calculated 
bounding box. However, the second part is location loss, which 
measures the distance of the network’s predicted bounding 
boxes from the ground truth ones through the training process. 

The SSD applies smooth L1-Norm [19] to determine the 
location loss. Regarding classification process, the SSD 
performs object classification. Therefore, for every predicted 
bounding box, collections of N categories predictions are 
calculated for each likely category in the dataset. Furthermore, 
feature maps are a description of the interest features of the 
image at various scales, hence working MultiBox on multiple 
feature maps rises the likelihood of any object whether large or 
small which to be eventually detected, localized and properly 
classified. 

V. FEATURE EXTRACTION 

The aim of feature extraction is to decrease a variably sized 
image to a packed set of visual features. Typically, image 
classification models are built by applying strong visual feature 
extraction techniques. While they depend on either 
conventional computer vision approaches, (e.g. filter based 
methods, histogram techniques, etc.) or on deep learning 
approaches, they all have the same goal: extract features from 
the input of image which are appropriate for the task, and apply 
these features in a classification process to define the class of 
the image. In object detection systems, a convolutional feature 
extractor is a base network that is implemented in the input 
data to obtain advanced features. The collection of the feature 
extractor is supposed to be highly significant, which is because 
of the number and types of layers, the number of parameters 
and other characteristics, which immediately influence the 
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execution of the detector. In this paper, two feature extractors 
which have been selected are the most used in the area of 
computer vision. 

A. Resnet 

Deep learning networks have been developed and moved to 
a high level of sophistication in detection applications when a 
Microsoft Research released for a Deep residual networks 
(Resnets) [20]. The Resnets that are above 100-layer deep have 
demonstrated state-of-the-art accuracy for challenging 
recognition functions on ImageNet [21] and MS COCO [22] 
competitions that included object detection, image 
classification, and semantic segmentation. The validity of 
Resnets has been confirmed by multiple visual recognition 
applications and by non-visual applications including speech 
and language. Deep Network is of significant interest in neural 
network architectures, however, deeper networks are further 
challenging to train. The residual learning structure helps the 
training of these networks and allows them to be deeper  
activate performance in both visual and non-visual functions. 
In the deeper network, the additional layers much better 
approximate the mapping than its conventional counterpart and 
decrease the error. 

The residual function utilize that can be 
reorganized into , where and x 
performs the accumulated non-linear layers and the identity 
function (input=output) respectively. Moreover, the main 
concept of Resnet is to inserting a termed “identity shortcut 
connection” that jumps one or more layers. Generally, Resnets  
involves several stacked “Residual Units”, where each unit can 
be represented in a common form: 

),             (1) 

              (2) 

Where and are input and output of the l-th unit, 

and F represents a residual function. In [20] h(x_l) = x_l 
represents an identity mapping and f is a ReLU [23] function. 
The basic concept of Resnets is to learn the collective residual 

function  with regard to ), with an important option of 

applying an identity mapping ) =  this is achieved by 

linking an identity overstep connection (“shortcut”). 

B. Mobilenet 

Mobilenet [24] was created for active inference in different 
mobile vision functions. The network structure of Mobilenet 
depends on depthwise separable convolution. It is an advanced 
state of the inception module, wherever parted spatial 
convolution for each channel is used which indicated as 
depthwise convolutions [25]. The 1x1 convolution with all the 
channels to combines the output indicated as pointwise 
convolutions are applied. As a result, the division in depthwise 
and pointwise convolution increase the efficiency performance 
furthermore, it enhances the accuracy, while a cross-channel 
and spatial correlations mapping is learned independently. The 
MobileNet has been displaying to reach an accuracy identical 
to VGG-16 on ImageNet with exclusive 1/30th of the 
calculation cost and model magnitude. Its structuring blocks set 
are depthwise separable convolutions which factorize a 

standard convolution for a depthwise convolution and a 1 × 1 
convolution as shown in Fig.1ultimately, decrease the pair of 
the calculation cost and a number of hyper-parameters. 

VI. TENSORFLOW IN ANDRIOD 

The Android model of the TensorFlow library [26] is a 
single project that builds and installs four sample applications 
(TF Detect, TF Classify, TF Stylize, and TF Speech) [27], 
which all use the same underlying code. The sample 
applications all take input video from a phone's camera. The 
TF Detect app is going to be used in this work. The base of the 
TensorFlow is written in C++ to begin towards building the 
process for the Android. In order to establish for Android, JNI 
(Java Native Interface) has to be applied to call the C++ 
functions such as loadModel, obtain predictions, etc. A shared 
object (.so) file will be built, that is a C++ compiled file and a 
jar file that will involve JAVA API, which calls for the native 
C++, and the JAVA API will be called to make things achieved 
simply. There are software, dependencies, and packages 
required: Android Studio, Android SDK and Android NDK.  
Android Studio import a new project using the directory from 
the TensorFlow repo called “Android”. 

Essentially, NDK (Native Development Kit) [28] is a great 
tool in the evolution of mobile applications. Particularly if you 
need to improve a multiplatform application, the NDK is 
excelled in this field. Since the same code written in C++ for 
Android can be ported and run the same way on the iOS, 
Windows or any other platform without changing the original 
code. This really keep a lot of time in the development of 
applications, which are advanced for doing run on multiple 
platforms; as games and other traditional applications. 

SDK (software development kit) [29] is a tool with more 
tool applications, data files, and model code. The SDK 
supports you in developing code, which uses a special system 
such as extension code for utilizing features of an operating 
system (Windows SDK), drawing 3D graphics by a specific 
system (DirectX SDK), or writing a code to make a device like 
a mobile phone perform what you need. 

VII. PROPOSED TECHNIQUE 

In this paper, the proposed model aim to detect human 
health-related actions from videos of N frames by using 
Android camera. The dataset splits into training and testing 
dataset. First step is to label the dataset by drawing a bounding 
box (ground truth) around each video frame of human health-
related action. Then, save them as XML file. The XML file 
converts to a CSV file and thereafter, TensorFlow that is called 
“TFRecords” converts the CSV file into a format that is 
readable. The proposed HHRA model uses two per-trained 
models of TensorFlow object detection API that are Faster R-
CNN-Resnet and SSD-Mobilenet for training the dataset. 
Model evaluation will be done during and after training. Lastly, 
it will demonstrate how to export the model to Android for 
detect the action type using Android camera. Under the object 
detection algorithm utilizing deep learning, there are many 
parameters that are learned from the data. Fig.1 describes the 
basic block diagram for proposed the HHRA model in this 
paper. The setting of TensorFlow object detection API of the 
models that used in this work as following as 
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Fig. 1. Basic Block Diagram for Proposed the HHRA Model. 

A. Faster R-CNN-Resnet 

The methodology mentioned in the [12] [20] is used in this 
work. It has been using the weights by an abbreviate normal 
distribution with a standard deviation of 0.01. The 
intial_learning_ rate is 0.003 and a momentum _optimizer 
value is 0.9 with batch size equals 1. A loss function 
procedures the softmax function for classification loss and the 
smooth L1 function for localization loss. A function is used as 
the activation function. The input for each video frame was 
resized to 606 × 1024 pixels. 

B. SSD-Mobilenet 

Following the methodology mentioned in the papers [17] 
[24] it has been initializing the weights by an abbreviate 
normal distribution with a standard deviation of 0.03. The 
intial_learning_ rate is 0.003 with a learning_ rate_ decay of 
0.9997 and a momentum _optimizer_value is 0.9 with batch 
size equals 32. A loss function uses the sigmoid function for 
classification loss and the smooth L1 function for localization 
loss. A ReLU function is used as the activation function. The 
input for each video frame was resized in this framework to 
300 × 300 pixels. 

VIII. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Dataset and Preprocessing 

The proposed detection method are evaluated on the NTU 
RGB+D dataset [30], which is defined as the present biggest 
widely obtainable 3D action recognition dataset. The dataset 
includes more than 56k action videos and contents 4 million 

frames. In this paper, seven different human health-related 
actions of video sequences were selected from NTU RGB+D 
dataset (Falling, Nausea, Headache, Neck pain, Sneezing, 
Staggering, and Stomachache) presented as frames sequences 
for training using TensorFolw object detection models and 
testing using Android’s camera. The training dataset was 
created by manually tagging the human action in the video 
frames using LabelImg software [31] because it is needed to 
have a ground truth of what exactly the object is. In other 
words, it is important to draw a bounding box around the 
person with his action as shown in Fig.2, so the system knows 
that this “action” inside the box is the actual human action. 
Each person with his action was tagged as a name of the 
human activities related to the type of action (a health-related 

action). LabelImg saves the annotations as XML-files in 
PASCAL VOC format is prepared for creating TFRcords ( Te-
nsor Flow record format). Each dataset requires a label map 
connected with it, which represents a mapping from string 
class names to integer class IDs. Label maps should always 
start from ID1. In this work, there are seven IDs related to 
seven human health-related actions. The 1920x1080 sized 
video frame (and the corresponding annotation files) were later 
resized to improve the model training efficiency. Once all the 
frames were labelled, the next step was to split the dataset into 
a train and test the dataset. 

B. Training and Evaluation 

In this work, the pre-trained with one of the models 
(SSD_Mobilenet or Faster R-CNN-Resnet ) was fine-tuned for 
NTU RGB+D dataset using manually labeled video frames of 
HHRA saved this tagged data as an XML file and adapted this 
XML file to a CSV file. Next, the CSV file is converted to 
TFRecord file by satisfying the similar specifications as shown 
in Fig.1. The entire training process is addressed by a 
configuration file recognized as the “pipeline”. The pipeline is 
split into several essential structures that are responsible for 
determining the model, the training and evaluation process 
parameters, and both the training and evaluation dataset inputs. 
Actually, the TensorFlow advises that the training should apply 
one of their own and already trained models as an outset point. 
The idea behind this is that training a completely new model 
from scratch might need an excessive amount of time. 
Therefore, the TensorFlow gives various configuration files, 
which only needs a number of changes that correspond to a 
new training environment. The results of the training and the 
evaluation stages can be observed by applying TensorFlow’s 
visualization platform, TensorBoard [32]. This tool can 
observe various metrics such as the training time, total loss, 
number of steps and much more. The TensorBoard also runs 
while the model is being trained, making this an excellent tool 
to confirm that the training is going in the right direction. The 
given checkpoint file for the models is applied as a beginning 
point for the fine-tuning process. 

 
Fig. 2. Sample of Stomachache Action Frame Surrounded by a Bounding 

Box. 
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The changes are made so that the variable num_classes, 
num_steps to pause the training earlier, fine_tune_checkpoint 
to point to the location of the model downloaded, and the 
input_path and label_map_path variables of the 
train_input_reader and eval_input_reader to point to the 
training and testing dataset, as well as the labels map. 
Primarily, training data as well as evaluation data are needed 
during the training process. The training data is necessary to 
learn the model on these data, while the evaluation data is 
required to evaluate the accuracy of the trained model if the 
model has learned all the video frames for each class. Region 
proposals are clustering-based method, which tries to group 
pixels and produce proposals based on the created clusters. 

In the evaluation stage, the mAP measures the trained 
model percentage of correct predictions for all seven actions 
labels. The IoU is particular to object detection models and a 
case for Intersection-over-Union. This measurement represents 
the overlap between the bounding box generated by HHRA 
model and the ground truth-bounding box, described as a 
percentage. The mAP graph is averaging the percentage of 
correct bounding boxes and labels of the HHRA model 
resumed with “correct” in this case relating to bounding boxes 
that had 50% or more overlap with their corresponding ground 
truth boxes. 

The HHAR model is improved for loss functions which 
combining two functions (classification and localization): 

𝑢: True class label, 𝑢 𝝐 0,1,. . . ., 𝐾; by convention, , the 
catch all background class has 𝑢=0. 

Discrete probability distribution (per RoI) over k+1 
classes: 

computed by a softmax over the k+1 
outputs of a fully connected layer. 

𝑣: True bounding box 𝑣 = ( ,  ). 

: Predicated bounding box correction, = ( , , ,  

). 

The loss function sums up the rate of classification and 

bounding box prediction:  For “background” 

RoI,  is avoided by the indicator function , 

describe as: 

                   (3) 

The overall loss function is: 

        (4) 

            (5) 

           (6) 

The bounding box loss  measure the difference 

between  and  applying a robust loss function. The smooth 

 loss[8] is implemented here and it is supposed to be less 
sensitive to outliers. 

          (7) 

C. Evaluation the Model 

To evaluate the model during the training and after it, each 
time the training produces a new checkpoint, the evaluation 
tool will perform predictions using the video frames available 
in a given directory. 

Evaluation metrics: the greatest significant evaluation 
metrics for such implementation are precision, recall, F1-score 
and mAP. Precision represents how applicable detection results 
are (Eq.8): 

                     (8) 

Where TP = true positive, FP = false positive. 

Recall: represents the percentage of objects, which are 
detected including the detector. (Eq. 9): 

            (9) 

Where FN = false negative. 

It is important to mention that which the there is an 
opposite correlation between precision and recall and which 
these metrics are dependent on the model score threshold [33]. 

In the light of this, the model detector has the power to 
detect a big percentage of objects in an image; however, it as 
well produces a large number of false positives. While the 
model detector by a big threshold for detection only generates 
a small false positive, but, it likewise quits a greater percentage 
of objects, which remain undetected. The best equivalence 
between these two depends on the applicability. 

D. Localization and Intersection over Union 

Intersection over Union (IoU) is an evaluation metric 
applied to estimate the accuracy of an object detector on a 
relevant database as shown in Fig.3. Concerning to evaluate 
database as shown in Fig.3. Concerning to evaluate the model 
on the function of object localization, it must determine how 
strong the model predicted the location of the object as shown 
Fig.4. Ordinarily, this is accomplished including drawing a 
bounding box around the object of interest. The localization 
function is normally evaluated on the Intersection over Union 
threshold (IoU). 

 
Fig. 3. Calculate IoU between Ground-Truth and Predicted Bounding 

Boxes. 
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Fig. 4. An Instance of Calculating IoU for Different Bounding Boxes. 

The TensorFlow Object Detection API usages “PASCAL 
VOC 2007 metrics” [34] location an estimated instance is 
described as a TP while Intersection over Union (IoU) is above 
50% [33] (Eq.10): 

(10) 

One object can be associated with only one bounding box; 
however, if some bounding boxes are predicted for an object, 
one is regarded as TP and the others FP. However, if an object 
is without a predicted bounding box, which is associated with 
it, then it is recognized as an FN. 

E. Mean Average Precision (mAP) 

The mAP is the result of precision and recall “precision-
recall” on detecting bounding boxes. It is a satisfactory way for 
a measuring of how the network to understands the objects of 
importance and how it evades invalid information. The greater 
the score of the mAP, the more accurate is the network. 
Generally, the mAP enhance the information in “precision-
recall” curve a single number. Thereafter, for each prediction, a 
recall rate and a precision rate is estimated. The average 
precision (AP) is the average of class predictions measured 
over various thresholds, in PASCAL metrics, the thresholds are 
from scale [0, 0.1, . . ., 1], i.e., its average of precision values 
for various recall levels. It is an effort to achieve characteristics 
of the detector in a single number. The AP is defined as the 
region under the precision-recall curve. In this work, the AP 
curves for each human health-related action class based on  
both the per-trained models (Faster R-CNN-Resnet and SSD-
Mobilenet) (see Figs.5-6)). A vertical axis represents the AP 
values while a horizontal axis represents the steps (epochs). 
Table1 lists the results for maximum AP values at 0.5IoU with 
last number of steps being each human health-related action. 

TABLE I. MAXIMUM AP VALUES AT 0.5IOU WITH THE NUMBER OF STEPS 

(K=1000) FOR EACH HUMAN HEALTH-RELATED ACTION BASED ON FASTER R-
CNN-RESNET AND SSD-MOBILENET MODELS 

 

 
Faster-R-CNN-Resnet SSD-Mobilenet 

 AP@ 0.5 IoU Steps(k) AP@ 0.5 IoU Steps(k) 

falling 0.930 8.67 0.975 47.66 

headache 0.934 9.13 0.917 50.65 

nausea 0.942 10.84 0.979 55.68 

neck pain 0.934 10.30 0.967 58.34 

sneeze 0.938 10.20 0.973 44.74 

staggering 0.934 11.04 0.959 52.31 

stomachache 0.953 15.07 0.965 41.09 

 
(1) Falling Action. 

 
(2) Headache Action. 

 
(3) Nausea Action. 

 
(4) Neck Pain Action. 
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(5) Sneeze Action. 

 
(6) Staggering Action. 

 
(7) Stomachache Action 

Fig. 5. AP Curves for Each Human Health-Related Action. Maximum AP 

Values at 0.5IoU with Last Number of Steps (k=1000) are based on Faster R-
CNN-Resnet Model. 

F. The Results 

As the training process progresses, the expectation is to 
reduce total loss (errors) to its possible minimum (about a 
value of 1 or less). By observing the tensorboard graphs for 
total loss for Faster R-CNN-Resent and SSD-Mobilenet 
models (see Fig.6), it should be possible to get an idea of when 
the training process is complete (total loss decrease with 
further iterations/steps(epochs)). The parameter num_steps 
defines how many training steps they will run before stopping. 
This number actually depends on the size of the dataset along 
with how long the user wants to perform the training of the 
model. The utilized metric for achievement is a mean average 
precision (mAP) which is a single number used to summarize 
the area under the precision-recall curve. The mAP is a 
measure of how well the model generates a bounding box that 
has at least a 50% overlap with the ground truth bounding box 
in the test dataset. The mAP value reached to higher 
confidence at 0.5IoU (see Fig.7) for each action class of both 
pre-trained models. The higher the mAP values the higher the 
detection accuracy (the higher the better). However, the SSD-
Mobilenet takes a long time to reach the high mAP value 
compared to mAP’s Faster-R-CNN-Resnet time. The 
classification loss curve in Fig.8 indicates the validation of 
human action class which is classified and matched with the 
previous trained class. As the values of the classification loss 
decrease to zero, it shows that the classification accuracy is 
high and the efficiency of the detector performance becomes 
more advanced. The Fig.9 (a,b) displays the results for both 
models where there are seven classification loss curves 
corresponding to each human action health-related class. 
Generally, all actions have consistent decreasing classification 
loss values, which give the power of the model performance in 
the classification of each video frame of the similar class type. 
As for the localization loss curve in Fig.10, it describes the 
predicate bounding box that matches with the ground-truth 
bounding box. As the loss value is reduced, less error will be 
present in the action detection and the Intersection over Union 
will be high, which all indicates that the detection of the action 
is in the right direction. The smoothed L1 loss is used for 
localization and is weighted. 

 
(1) Falling Action.      (2) Headache Action. 
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(3) Nausea Action.      (4) Neck Pain Action. 

 
(5) Sneeze Action.       (6) Staggering Action. 

 
(7) Stomachache Action 

Fig. 6. AP Curves for each Human Health-Related Action. Maximum AP Values at 0.5IoU with Last Number of Steps (k=1000) are based on SSD-Mobilenet 

Model. 

 
Fig. 7. Maximum mAPs @0.5IoU for Seven Human Heath Related Actions Classes are based on Two Per-Trained Models (the left (Faster R-CNN-Resnet),the 

Right (SSD-Mobilenet)) respectively. 
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Fig. 8. Minim Total Losses for Seven Human Heath Related Actions Classes are based on Two Per-Trained Models (the left (Faster R-CNN-Resnet), the Right 

(SSD-Mobilenet)) respectively. 

 
Fig. 9. Minim Classification Losses for Seven Human Heath Related Actions Classes are based on Two Per-Trained Models (the Left (Faster R-CNN-Resnet), 

the Right (SSD-Mobilenet)) respectively. 

 
Fig. 10. Minim Localization Losses for Seven Human Heath Related Actions Classes are based on Two Per-Trained Models (the Left (Faster R-CNN-Resnet), the 

Right (SSD-Mobilenet)) respectively. 

TABLE II. THE RESULTS FOR EACH ACTION OF THE PRE-TRAINED MODEL (FASTER R-CNN-RESNET). STEPS (K=1000), TIME (H=HOUR, M=MINUTES, S=SECOND) 

Actions mAP@ 0.5 IoU Total loss Classification loss Localization loss Steps(k) Time(h-m-s) 

falling 0.9300 0.0312 0.0156 6.0513e-4 8.44 2-13-58 

headache 0.9347 0.0479 0.0206 1.0070e-3 9.47 2-25-57 

nausea 0.9425 0.0429 0.0237 6.9610e-4 11.34 2-47-57 

neck pain 0.9437 0.0451 0.0201 8.3558e-4 11.12 2-31-57 

sneeze 0.9389 0.0493 0.0261 5.8604e-4 10.37 2-37-57 

staggering 0.9347 0.0455 0.0210 9.7959e-4 11.32 2-23-57 

stomachache 0.9539 0.0480 0.0283 7.8347e-4 15.32 3-23-57 
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TABLE III. THE RESULTS FOR EACH ACTION OF THE PRE-TRAINED MODEL (SSD-MOBILENET). STEPS (K=1000), TIME (D=DAY, H=HOUR, M=MINUTES, S=SECOND) 

Actions mAP@ 0.5 IoU Total loss Classification loss Localization loss Steps(k) Time(d-h-m-s) 

falling 0.9758 0.9872 0.6332 0.03147 48.19 1d-2h-13m-45s 

headache 0.9178 0.8323 0.4829 0.03056 51.04     18h-19m-34s 

nausea 0.9793 0.7855 0.4448 0.02550 56.11     20h-11m-44s 

neck pain 0.9670 0.8548 0.5094 0.02826 58.75 1d-0h-29m-45s 

sneeze 0.9737 0.7144 0.3718 0.02514 45.26       16h-3m-45s 

staggering 0.9590 0.8949 0.5391 0.03517 52.38 1d-0h-11m-45s 

stomachache 0.9657 0.8515 0.4973 0.03313 43.22     19h-49m-46s 

TABLE IV. TOTAL MAP FOR ALL ACTIONS BASED ON TWO PRE-TRAINED 

MODELS 

Total mAP 

Faster R-CNN-Resnet SSD-Mobilenet 

93.8% 95.8% 

Tables 2 and 3 summarize all the parameters (mAP, Total 
loss, Classification loss, Localization loss) of the training and 
evaluation processes in addition to the number of the steps with 
the time that they consumed to achieve these requirements. 
Table 4 labels the mean average precision (total mAP) for all 
the actions classes of the both per-trained models. The total 
mAP that belongs to the SSD-Mobilenet model is somewhat 
higher than the total mAP of the Faster-R-CNN-Resnet model. 

G. Testing (Detection) and Results 

To validate the HHRA model’s performance for action 
detection in videos, comprehensive examinations have been 
achieved on a special type of human action that has related on 
the health from the NTU RGB+D datasets. In order to 
accomplish the greatest predictable detection accuracy, sets of 
human actions frames with different health-related actions and 
various environments are tested. In this work, the detection 
process for testing the video frames of seven different human 
health-related actions is implemented in two ways to the 
evaluation of the detection performance using the TensorFlow 
Object Detection Notebook and the Android camera in terms of 
accuracy and detection speed. The first way is by trying out the 
TensorFlow Object Detection Notebook with couple pre-
trained models (Faster R-CNN-Resnet and SSD-Mobilenet). 
While the detection using Android camera only uses the SSD-
Mobilenet model because the TensorFlow in Android does not 
support the Faster-R-CNN-Resnet model yet. To perform the 
detection process in both ways, must export the model as a 
static inference graph trained on the human health-related 
dataset, as well as the corresponding label map. The 
TensorFlow object detection API library provides the script, 
named export_inference_graph with using the latest checkpoint 
number at the last step that stopped the training process. It has 
used the 16.04LTS GTX1070@2.80GHZ x8 system to run the 
object detector on each frame from seven different human 
health-related actions of the NTU RGB+D dataset to detect the 

action type. The detection process has been applied on 50 
frames of each video action for seven different actions. 

1) TensorFlow’s object Detection Notebook: As 

mentioned above after the requirements is completed, the 

detection process is accomplished by using TensorFlow’s 

Object Detection Notebook. In pre-trained Faster R-CNN-

Resnet model, the bounding detection boxes for each frame 

from seven different human health-related actions consumed 

around 120 seconds over all the 50 frames of the testing 

dataset. While, the bounding detection boxes for each frame in 

pre-trained SSD-Mobilenet model are finalized within a 95 

seconds time span. The detection results in two pre-trained 

Faster R-CNN-Resnet and SSD-Mobilenet models for samples 

of frames of each human health-related action are shown in 

Fig.11. The results displayed a high detection accuracy for all 

the actions. According to the SSD-Mobilenet model, the 

results include diverse detection values ranging from 

intermediate to high values of different action 

frames.However, there are misdetections in the headache 

action where SSD-Moblienet failed to demonstrate the 

bounding detection box in some frames and misdetection that 

shows the bounding detection boxes in a wrong action 

placement as shown in Fig.12. 

2) TensorFlow in andriod: Once the requirements are 

completed, as mentioned in sections (VI and VIII-G), the 

model will be imported to an Android phone (Galaxy S6). 

This is the time for testing the video frames based on pre-

trained SSD-Mobilenet model by capturing them from the 

phone’s camera also bounding detection boxes have been 

visualize for each frame with the name of the action class and 

detection percentage accuracy as described in Fig.13. In order 

to evaluate the impact of the TensorFlow in Android for the 

detection results, the detection accuracy is improved up to 
high values and it speed up the detection time. 

The action detection from the phone’s camera consumes 
roughly 25 seconds for all 50 video frames. In the headache 
action, there are two misdetections, however, when the 
detection using the Android camera, these two problems have 
been solved. The action detection for all frames come to be all 
properly visible and the bounding detection boxes have 
become in the correct action location. 
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Fig. 11. Samples of The Detection Results that used TensorFlow Object Detection Notebook Technique are based on Two Pre-Trained Models (the First Three 
Images from the Left are based on Faster R-CNN-Resnet Model, while the Last Three Images from the Right are based on SSD-Mobilenet)) respectively. The 

Results Include the Bounding Detection Box for Every of the Seven Human Health-Related Actions Including (Name of the Action Class & Detection Percentage 

Accuracy). 

 
Fig. 12. Misdetections for Some Frames of the Headache Action are based on the Pre-Trained SSD-Mobilenet (the left (Bounding Detection Box Showed in the 

Wrong Location), the Right (No Bounding Detection Box in the Frame). 

IX. DISCUSSION 

In this paper, human health related action videos have been 
detected by using the implemented TensorFlow object 
detection API technique. The two new pre-trained (Faster R-
CNN-Resnet and SSD-Mobilenet) models have been applied 
for training human actions dataset. The average precision (AP) 
is the average of class predictions estimated over several 
thresholds. The detection accuracy (mAP) at 0.5IoU is a high 
value with different num_steps. This is due to the fact that the 
network deals with the video images, therefore it takes a long 
time to train the entire samples of each frame for every action 
and depend on the type of the model’s architecture. The 
parameter num_steps determines how many training steps they 
will run before stopping. This number certainly depends on the 
size of the dataset along with how long the user wants to train 
the model. Localization loss represents the predicted bounding 

box which matches with the ground-truth bounding box. 
However, the loss value is decreased and the Intersection over 
Union is high, which means that the detection of the action is 
in the correct location. The classification loss shows the 
effectiveness of human action class which is classified and 
matched with the previous trained class. When the 
classification loss values decrease and are near zero that means 
that the classification accuracy is outstanding and the 
performance of the detector becomes more high-level. The 
Android detection results were compared to the detection 
process TensorFlow Object Detection Notebook technique. 
These two distinct processes were used to examine which one 
does a better job in measuring the detection speed and how 
accurate the detection is. In the end, utilizing the Android 
smartphone’s camera revealed that the seven types of human 
health-related actions were precisely detected with high 
accuracy and reasonable detection speed rate. 

Staggering 

Stomachache 
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Fig. 13. Samples of The Detection Results that used Android Camera are based on the Pre-Trained SSD-Mobilenet Model. The Results Include the Bounding 

Detection Box for Seven Human Health- Related Actions Classes Including (Name of the Action Class & Detection Percentage Accuracy). 

X. CONCLUSION 

In Conclusion, the health-related actions can be detected 
with high-speed detection and its great accuracy. It can figure 
out the correct action required to deal with the appropriate 
situation using the smartphone camera. A new detector model 
was built for seven different human health-related video 
actions using two techniques of TensorFlow object detection 
API, which are TesnsorFlow object detection notebook and 
TensoFlow in Android, using the phone's camera. In addition, 
the HHRA detection model was trained and evaluated using 
NTU RGB+D dataset based on two pre-trained models (Faster-
R-CNN-Resnet and SSD-Mobilenet). According to the results, 
in the best-detectable category, the mAP total achieved 93.8% 
for the Faster R-CNN-Resnet and 95.8% for SSD-Mobilenet. 
In addition, the lowest error was calculated through both losses 
of classification and localization and the results were 
satisfactory. Furthermore, the detection speed and the high-
performance efficiency have been improved by the use of the 
smartphone. In the future, we plan to the opportunity to train 
using Google Cloud to decrease the training and evaluation 

time. Moreover, new methods can be developed to detect the 
further human actions classes. 
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