
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

189 | P a g e

www.ijacsa.thesai.org

CryptoROS: A Secure Communication Architecture

for ROS-Based Applications

Roham Amini
1*

, Rossilawati Sulaiman
2
, Abdul Hadi Abd Rahman Kurais

3**

Faculty of Information Science & Technology

Universiti Kebangsaan Malaysia

Bangi Selangor, MALAYSIA

Abstract—Cyber-attacks are a growing threat to future

robots. The shift towards automatization has increased relevance

and reliance on robots. Securing robots has been secondary or

ternary priority and thus robots are vulnerable to cyber-attacks.

Securing robots must become an essential (built-in) part of the

design rather than being considered as a subsequent (later) add-

on. ROS is a widely used and popular open source framework

and robots using ROS are increasing in popularity. However,

ROS is vulnerable to cyber-attacks. ROS needs to be secured

before robots using ROS reach mass market. This study aims at

proposing an architecture to secure ROS, using cryptography

mechanism, which addresses the most common ROS safety

issues. The advantages of our proposed secure architecture,

CryptoROS, is that no changes to ROS software libraries and

tools is required, it works with all ROS client libraries (e.g.

rospy, roscpp) and rebuilding nodes is not necessary.

Keywords—Robotics; ROS; cyber security; cryptography;

access control

I. INTRODUCTION

Autonomous robots are expanding not only in science-
fiction movies, but in our regular, everyday tangible world. For
example, applications of robots are used in education [1], [2],
accounting [3], target searching and detection [4], [5], and
many more. With robots becoming further ubiquitous in
society, cyber-attacks are rapidly growing into a cogent issue.
Home service robots, autonomous vehicles, industrial
automation, along with many other robotics domains offer a
route for the spread of cyber threats into real-world risks.
Personal robots with the potential to integrate with the Internet
of Things (IoT) may very well be targeted, in the same fashion
as PCs and smartphones, and lead to violations of privacy and
breaches of confidentiality. For robot software development,
ROS, a group of open source software libraries and tools, is
used. Programmable robots are becoming increasingly popular,
and as robots appear more within the society, the safety of
ROS is becoming an important concern and should be
considered vital because it may become a target for breaches of
confidentiality and / or violation of integrity [6]-[8].

In ROS, every node running has a XML-RPC URI. XML-
RPC is a remote procedure call, encoding complex data
structures using XML and transmitting / transporting them
using HTTP [9]. As depicted in figure 1, the publisher
advertises, via the master’s XML-RPC, its intent to publish to
topic chatter. Then the subscriber subscribes to topic chatter via

the master’s XML-RPC. In response the master returns the
publisher’s XML-RPC URI to the subscriber. The subscriber
then requests and negotiates a topic connection via the
publisher’s XML-RPC. In response the publisher returns the
proper setting for the selected topic transport to the subscriber.
Using the provided setting, the subscriber then establishes a
new connection to the publisher [10].

The remainder of this paper has been structured as follows:
next section explores the related work. Section three introduces
the proposed architecture used to secure ROS. Finally, section
four discusses the ROS issues fixed.

Fig. 1. ROS Architecture.

* 1st corresponding author, ** 2nd corresponding author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

190 | P a g e

www.ijacsa.thesai.org

II. BACKGROUND STUDY

The development of ROS is influenced by features and
properties most valued by robotics researchers and therefore
fails to provide any protection against cyber-attacks. For
example, a newly created node replaces an existing node with
the same name, because nodes need to be named uniquely.
Therefore, an attacker can shut down / kill a node and replace
it, simply by running a node with the same name as the target
node [6], [11]. A node can freely publish messages to a random
/ chosen topic without prior authorization. An unauthorized
node publishing malicious messages to a topic can cause an
unforeseen motion by a robot that damages its surroundings
and / or harms nearby humans. A node can freely and without
prior authorization subscribe to a random / chosen topic and
receive all messages published to this topic. These messages
might contain confidential information. A node can freely
publish large number of messages to a random / chosen topic,
preventing the subscriber of this topic from carrying out
meaningful information processing and causing a denial of
service. The topic transport channel is not secure. It reveals
messages to unauthorized persons (breach of confidentiality),
cannot detect unauthorized intentional or unintentional
alteration of messages (violation of integrity), cannot prove
that the involved parties (e.g. publishers, subscribers) are who
they say they are [7], [12].

An attacker with expertise in ROS can execute a man-in-
the-middle attack by acting as a publisher to a subscriber and
as a subscriber to a publisher. An attacker with adequate
knowledge and background in cyber security can find the
XML-RPC URI of the master and armed with this information
[12]:

1) The attacker calls the remote procedure

“getSystemState” at the master and retrieves a list representing

the names of current publishers, subscribers and service

providers.

2) The attacker calls the remote procedure “lookupNode”

at the master, provides the name associated with the targeted

publisher / subscriber as parameter and retrieves the XML-

RPC URI of that publisher / subscriber.

3) The attacker calls the remote procedure

“publisherUpdate” at the subscriber and provides, among other

parameters, the XML-RPC URI of the publisher under his / her

control.

4) The attacker executes a man-in-the-middle attack and

intercepts, monitors (passive attack), if desired alters / changes

(active attack) and reroutes the conversation as shown in figure

2.

During DEF CON 20 conference [13], a car-like robot
equipped with two cameras, a compass and a single board
computer running Linux and ROS was deployed to emulate
and experience the cyber-physical issues related to mobile
robots built using ROS. Attendees interacted (e.g. drive the
robot) with the physical robot via a webpage and were asked to
exploit the vulnerable mobile robot. During the conference, an
attendee with knowledge and background in ROS injected /

published malicious messages and operated the robot without
interacting with the webpage.

There are many researches that have been done to address
ROS safety issues. ROSRV was introduced in [11], which has
been designed in such a way that no changes to ROS software
libraries and tools is required. ROSRV intercepts all requests to
master and monitors and if required alters the messages, thus
enforcing access control policies and monitoring safety
properties. However, ROSRV transmits unencrypted traffic,
disclosing private data and failing to prevent unauthorized
alteration of data. ROSRV also relies and enforces access
control policies based on the source IP address of the request.
This exposes the architecture to IP spoofing. ROSRV could
encounter scaling problems because all the monitors reside in
the same multithreaded process.

Transport Layer Security (TLS) was used in SROS [6].
SROS encrypts all network traffic using TLS by changing the
ROS client library, or more specifically rospy client library.
Each node is supplied a X.509 certificate, with the access
control policies embedded within the X.509 certificate
extensions. One drawback is that at the time of writing this
paper SROS only supported rospy client library with TCPROS.
Another drawback is that because the access control policies
are embedded within the X.509 certificate extensions, 1)
mutating a node’s permissions requires revocation of the
current X.509 certificate and issuance of a new one, 2) the
access control policies are made public.

In [7] the authors described a concept similar to SROS but
implemented by changing the roscpp client library. However, it
fails to secure the master and the request / response sent /
received via XML-RPC.

A scheme was introduced by [8] where by a node publishes
messages in clear to a topic (/sensor/messages). An encrypting
node subscribes to this topic (/sensor/messages), performs
message encryption and publishes it to another topic
(/sensor/encrypt/messages). A decrypting node subscribes to
this topic (/sensor/encrypt/messages) and performs message
decryption. The symmetric key is stored within the master and
is only known by authorized entities. However, this testbed
fails to prevent nodes from subscribing to /sensor/messages
topic, which results in exposure of messages to unauthorized
entities, a clear breach of confidentiality. It also fails to detect
intentional or accidental alteration of messages, a clear
violation of integrity. The testbed does not also check that the
involved entities are who they say they are (no authenticity)
[12].

In [14] the authors introduced an architecture in which prior
to publishing and / or subscribing to a topic, nodes send their
login credentials to an authorization node with the help of a set
of overloaded / overridden functions. The authorization node
generates a special key and returns it to the node to be included
in all future conversations. however, the authors have
mentioned that ROS uses SSH to secure all conversations. This
is not true and will allow attackers to easily break / bypass their
scheme. They also require changes to be made to ROS client
libraries.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

191 | P a g e

www.ijacsa.thesai.org

Fig. 2. Man-in-the-Middle Attack.

III. PROPOSED ARCHITECTURE

A. Security Requirements

In our proposed architecture, we focus on the peer-to-peer
conversations between nodes, which have to be confidential
and checked for integrity violation. The Computation Graph
[15] must be available and functional at all times. This involves
decreasing the attack surface for denial of service attacks. The
involved entities must also be scrutinized to ensure they are
who they say they are. Nodes should not be allowed to publish
/ subscribe to a topic or advertise / call a service without prior
authorization.

B. Proposed Secure ROS Architecture: CryptoROS

CryptoROS has been designed to fix some of the safety
issues related to ROS. Manager as the name implies manages
all nodes running on a computer. The Authorization Server
checks the Manager’s credentials and creates an Access Token
representing the predefined set of actions the Manager has been
authorized to perform as shown in figure 3. The Manager and
the Authorization Server, each has been issued a X.509
certificate by a CA and supplied / configured with all the
intermediate CA certificates to chain to the root CA certificate.

The entire conversation is secured using TLS 1.2, therefore
the Access Token is never made public. The Access Token is
made up of three parts: header, payload, and signature. The
payload contains, among other claims, an expiry date claim.
Involved parties perform a signature check to ensure the
information contained in the Access Token has not been altered
/ changed (integrity check) and the Access Token has been
created by a trusted entity (authenticity check). Therefore, the
Authorization Server has been configured to use the private
key associated with one of the intermediate CA certificates to
create the signature.

As shown in figure 4, unbeknown to the Publisher /
Subscriber, Publisher / Subscriber calls a remote procedure at
the Manager and announces its intention to publish / subscribe
to topic chatter (step 1 and 4). The Manager generates an
Interceptor (step 2 and 5). The Interceptor announces, via the
ROS Master’s XML-RPC, its intent to publish / subscribe to
topic chatter (step 3 and 6). In response to step 6, the ROS
Master returns the Interceptor_P’s XML-RPC URI to the
Interceptor_S (step 7). Henceforth, the Interceptor acts as a
publisher to a subscriber (step 8) or as a subscriber to a
publisher, transparently intercepting, monitoring and if
required altering / changing the conversations between
Publisher and Subscriber.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

192 | P a g e

www.ijacsa.thesai.org

Fig. 3. Requesting an Access Token.

Fig. 4. CryptoROS Architecture. Orange Arrow Means the Conversation has been Secured using TLS 1.2.

In summary, the Publisher and the Subscriber have been
configured to contact the Manager instead of the ROS Master
by setting the ROS_MASTER_URI environment variable to
the IP address and port number of the Manager. The Manager
generates an Interceptor for each node. An Interceptor
intercepts, monitors and if required alters all network traffic to

/ from the node and decrypts / encrypts them accordingly. The
Interceptors act as publishers to subscribers and as subscribers
to publishers. All conversations (network traffic) between the
Interceptors are secured using TLS 1.2 except the XML-RPC
request / response sent / received.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

193 | P a g e

www.ijacsa.thesai.org

Fig. 5. Sequence Diagram. During the TLS Handshake, an Interceptor uses the X.509 Certificate Belonging to the Manager that Generated it. Orange Arrow Means

the Conversation has been Secured using TLS 1.2.

As depicted in figure 5, upon receiving an Access Token,
the Interceptor performs a signature check and then inspects
the access control policies embedded within the Access Token
to ensure the node is allowed to publish / subscribe to a topic or
advertise / call a service. The expiry date of the Access Token
is also checked. The same process applies to services and
service clients.

The manager and the nodes (e.g. Publisher, Subscriber)
have been bound to 127.0.0.1. This is done to prevent remote
machine connections.

C. Access Token

As mentioned above the Access Token is made up of three
parts: header, payload, and signature. The header contains the
algorithm claim which denotes the cryptographic / signing
algorithm used (e.g. RSASSA PKCS1 v1.5 using SHA-256).
The payload contains, along with the access control policies, an

issuer, a subject, and an expiry date claim. The issuer holds the
unique / distinguished name of the entity that issued the Access
Token. The subject contains the unique / distinguished name of
the party that this Access Token bears claims about. The expiry
date holds the date and time after which this Access Token is
no longer considered usable. Figure 6 shows the Access Token
structure.

6. Access Token.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

194 | P a g e

www.ijacsa.thesai.org

TABLE I. COMPARISON BETWEEN ARCHITECTURES

Scheme Advantage Disadvantage

CryptoROS

- secures / encrypts peer-to-

peer conversations between
nodes.

- stops unauthorized

publishers, subscribers,
services and service clients.

- reduces the attack surface
for DoS attacks.

- no changes to ROS

software libraries and tools.
- supports all ROS client

libraries.

- unsecured / unencrypted

XML-RPC requests /
responses sent / received.

- does not protect ROS

Master.

ROSRV
- no changes to ROS

software libraries and tools.

- unsecured / unencrypted
network traffic and reliance

on IP addresses when

enforcing access control
policies exposes the

architecture to a wide

variety of attacks.

SROS

- secures / encrypts all
network traffic.

- stops unauthorized

publishers, subscribers,
services and service clients.

- notably reduces the attack

surface for DoS attacks.

- changes ROS software

libraries and tools.
- supports rospy only.

Table I compares CryptoROS with some of the solutions
discussed previously and list some of their advantages and
disadvantages.

IV. CONCLUSIONS AND FUTURE WORK

CryptoROS has been designed in such a way that no
changes to ROS software libraries and tools is required.
Additionally, rebuilding nodes is not required in order to
benefit from the secure conversation channel. CryptoROS also
works with all ROS client libraries regardless of the
programming language they have been implemented / written
in.

With our approach we managed to prevent unauthorized
publishing and subscribing because the TLS handshake for the
inbound and the outbound peer-to-peer connection will fail,
prohibiting / preventing malicious nodes which are not
supposed to be part of a specific conversation from injecting
and / or eavesdropping data. The attack surface for denial of
service in ROS has also been decreased. The Interceptors could
be configured to drop XML-RPC shutdown requests,
preventing attackers from shutting down / killing nodes.

With this approach we also made sure the messages and the
service requests / responses will not be disclosed to
unauthorized persons (confidentiality), any unauthorized
intentional or accidental alteration of them will be detected
(integrity) and we also made sure the involved entities are who
they say they are (authenticity).

Some deployed robots might have inadequate
computational power. Therefore, as a future work we will
implement the proposed secure architecture and measure the
performance impact on both the CPU and network traffic. In
addition, we will attempt to secure master and XML-RPC
requests / responses sent / received.

ACKNOWLEDGMENT

This research was supported by Universiti Kebangsaan
Malaysia internal grant (Reference code: GGPM-2017-040).

REFERENCES

[1] N. F. A. Zainal, R. Din, M. F. Nasrudin, S. Abdullah, A. H. A. Rahman,
S. N. H. S. Abdullah, K. A. Z. Ariffin, S. M. Jaafar, and N. A. A. Majid,
“Robotic prototype and module specification for increasing the interest
of Malaysian students in STEM education,” International Journal of
Engineering and Technology, vol. 7, no. 3.25, pp. 286-290, Jan, 2018.

[2] L. P. E. Toh, A. Causo, P. W. Tzuo, I. M. Chen, and S. H. Yeo, “A
Review on the Use of Robots in Education and Young Children,”
Educational Technology and Society, vol. 19, no. 2, pp. 148-163, 2016.

[3] D. Fernandez and A. Aman, “Impacts of Robotic Process Automation on
Global Accounting Services,” Asian Journal of Accounting and
Governance, vol. 9, pp. 141-150, 2018.

[4] B. Nakisa, M. N. Rastgoo, M. Z. A. Nazri, and M. J. Nordin, “Target
searching in unknown environment of multi-robot system using a hybrid
particle swarm optimization,” Journal of Theoretical and Applied
Information Technology, vol. 96, no.13, pp. 4055-4065, July, 2018.

[5] A. H. A. Rahman, K. A. Z. Ariffin, N. S. Sani, and H. Zamzuri,
“Pedestrian Detection using Triple Laser Range Finders,” International
Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 6,
pp. 3037-3045, Dec, 2017.

[6] R. White, H. I. Christensen, and M. Quigley, “SROS: Securing ROS
over the wire, in the graph, and through the kernel,” IEEE-RAS
International Conference on Humanoid Robots (HUMANOIDS), 2016.

[7] B. Breiling, B. Dieber and P. Schartner, "Secure communication for the
robot operating system," 2017 Annual IEEE International Systems
Conference (SysCon), Montreal, QC, 2017, pp. 1-6.

[8] F. J. R. Lera, J. Balsa, F. Casado, C. Fernandez, F. M. Rico, and V.
Matellan, “Cybersecurity in Autonomous Systems: Evaluating the
performance of hardening ROS,” Proc. XVII Workshop of Physical
Agents, Spain, Málaga, 2016, pp. 47-53.

[9] XML-RPC.Com. (1999, June 14). Retrieved September 9, 2018, from
http://xmlrpc.scripting.com/

[10] Vilches, V. M. (Ed.). (2014, June 15). ROS Technical Overview.
Retrieved September 9, 2018, from http://wiki.ros.org/ROS/Technical
Overview

[11] J. Huang, C. Erdogan, Y. Zhang, B. Moore, Q. Luo, A. Sundaresan, and
G. Rosu, “ROSRV: Runtime Verification for Robots,” International
Conference on Runtime Verification, 2014, pp. 247-254.

[12] B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass, and P. Schartner,
“Security for the Robot Operating System,” Robotics and Autonomous
Systems, vol. 98, no. C, pp. 192-203, Dec, 2017. doi:
https://doi.org/10.1016/j.robot.2017.09.017

[13] J. McClean, C. Stull, C. Farrar, and D. Mascarenas, “A preliminary
cyber-physical security assessment of the Robot Operating System
(ROS),” SPIE Defense Security and Sensing, Baltimore, Maryland,
United States, 2013.

[14] R. Dóczi et al., "Increasing ROS 1.x communication security for
medical surgery robot," 2016 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), Budapest, 2016, pp. 004444-
004449.

[15] Romero, A. M. (Ed.). (2014, June 21). ROS Concepts. Retrieved
September 9, 2018, from http://wiki.ros.org/ROS/Concepts

