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Abstract—The race for Exascale Computing has naturally led 

computer architecture to transit from the multicore era and into 

the heterogeneous era. Many systems are shipped with integrated 

CPUs and graphics processing units (GPUs). Moreover, various 

applications need to utilize both CPUs and GPUs executive 

resources, as many of their unique features prove the significant 

importance and strengths of using each one of the process units 

PUs. Several research studies consider partitioning the 

applications, scheduling their execution and allocating them onto 

the PUs resources. They investigate the important role of 

optimization and tackle intelligently scheduled tasks on the 

combination of CPU/GPU architecture CPUs and GPUs cores in 

achieving the peace of performance and power consumption of 

Exascale Computing. In this paper, the evolution of 

heterogeneous computing architectures, the approaches, and 

challenges toward achieving Exascale Computing, and the 

various algorithms and techniques used to partition and 

scheduling tasks are all reviewed. The existing frameworks and 

runtime systems utilized to optimize performance and improve 

energy efficiency in desecrates and fused chips in order to attain 

the objectives of Exascale Computing will also be reviewed. 

Keywords—Exascale computing; heterogenous computing; task 

scheduler framework 

I. INTRODUCTION 

High-performance computing is the pillar for modern 
science. Researchers with great computing powers can make 
an amazing scientific discovery from climate science to 
combustion science, business analytics for making a good 
decision, big data analytics, and many others. Therefore, 
researchers are looking forward to the next generation of high-
performance computing, i.e. "Exascale Computing‖. Exascale 
Computing achieves 10

18
 flops on real applications constraints 

to be within the power of 20 megawatts. Therefore, in 
designing both the hardware and software architecture systems, 
the challenge is managing the tradeoff between the 
performance speed-up and energy consumption. One of the 
most critical aspects in this management between the software 
and hardware is related to mapping software application to the 
best-fit hardware resources. Mapping refers to partitioning the 
application under execution into tasks, prioritizing these tasks, 
or scheduling them in lists to be allocated on the processors, 
reducing the execution results after which the user receives the 
computation results. Arranging this mapping using an efficient 
optimum algorithm that decreases the limit range of energy 
consumed and raises performance is considered an NP- 
problem. There have been a significant number of research 
studies that look into achieving the optimum solution to the 

scheduling problem. In this survey, the scheduling approaches 
and the research existing in the heterogeneous processors are 
reviewed. 

A. Survey Scope and Limitations 

The survey is focused on the scheduling framework that 
plans the tasks on the combination of CPU and general 
purpose graphical processing unit GPU in both types of 
desecrate system and on-chip system. As it is impractical to 
review all the aspects of the published work that are related to 
the task scheduling frameworks, we consider here some 
limitations in order to highlight the paper's scope. We focus on 
the CPUs/GPUs heterogenous architecture. We don't review 
the heterogenous architecture that are built based on other 
types of processors or accelerators, as heterogeneous 
computing may consist of for instance Field Programming 
Array FPGA cores and CPUs cores. Also, we didn't discuss 
the scheduler frameworks that consider only multi GPUs nor 
single GPU. The paper focuses on the task scheduler 
framework, language libraries, and framework level 
techniques. The paper considers the software level techniques, 
therefore, no circuit/ device/ microarchitectural level 
techniques are reviewed. Our paper aim is to highlight the key 
research ideas and the main concepts that provide researchers 
with the insight required to inspire future improvement in the 
next generation of the high-performance computing "Exascale 
Computing". 

The remainder of the paper is organized as follows; in the 
next section, some principles regarding the roadmap for 
exascale capabilities are highlighted. This section also argues 
if heterogeneous computing is able to achieve an exascale 
capability. The following section explains the heterogeneous 
computing principles, where first heterogeneous computing 
and its types are defined extensively. Then the parallel 
computing with different types are defined and how it can 
achieve optimum heterogeneous computing is discussed. 
Afterward, the evolution of several components of processors 
hardware, such as the increase in transistor numbers, core 
numbers, registers file, new memory types, and new speed 
interconnections bus is described. The study also highlights 
the challenges that may limit software improvement of 
Exascale Computing. Furthermore, the single chip and 
multiple chips accompanied with accelerator GPUs as well as 
the algorithms used in task scheduling frameworks and the 
research of task scheduling framework in two aspects; 
performance improvement and energy efficiency all are also 
reviewed. 
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II. THE ROADMAP FOR EXASCALE 

Figure 1 illustrates the roadmap for Exascale Computing. 
In 2013, the biggest supercomputers such as Titan in the USA 
or Tsubame KFC Tokyo Tech were 2.5GFlops/W and 
4.5GFlops/W, respectively [1,2,3] where heterogeneous 
computing is used. Both also use K20 GPU, but Tsubame 
KFC does several improvements as opposed to Titan, one of 
which is changing the ratio CPU/ GPU, as energy 
consumption mostly goes more to the GPU and less to the 
CPU. Thus, one way of thinking to reach exascale is to 
improve 20PFlops, 10Wand 10

7
threads so as by 2023, it will 

have been duplicated 50times to get 1000GFlops besides only 
duplicating twice the power consumption. Hence, power 
efficiency must go up to 25 times of the 2013 range. This 
efficiency is derived from process technology, better h/w, and 
s/w architecture and circuits, in addition to utilizing, 
parallelize and improving the thread from 10

7
 to 10

10
.[1]. 

 
Fig. 1. The Roadmap for Exascale. 

The matter that motivates researchers to leverage the 
heterogeneous Pus (multi CPU cores combined with any 
many-core accelerator such as GPUs or GFPA) collaboration 
to achieve high-performance computing. This way, we can 
benefit from the advantages of each and leverage the 
intelligent combination of both so as to achieve exascale 
performance and power consumption. 

III. THE HETEROGENEOUS COMPUTING, PRINCIPALS, AND 

TYPES 

Nowadays, instead of CPU versus GPU debates, 
researchers, programmers, and computer architects are 
exploring PUs paradigm to find different approaches for 
computing and programming on efficient algorithms. This 
paradigm, which is known as Heterogeneous Computing (HC), 
refers to the utilization of the strength of diverse processing 
cores to maximize performance. The combinations vary from 
the CPUs with graphics processing units (GPUs), (see Fig4) to 
field programmable gate arrays (FPGAs) or both or Cell 
Broadband Engine Architecture (CBEA), Heterogeneous 
Computing (HC). Strengthening the combination architectures 
and accomplishing load balancing are the main targets to tone 
with the needs of each application, by refraining from idle 
time for both Processing Units (PUs). Some processors 
achieved more heterogeneous integration by fabricating them 

on the same chip as a system on chip (SoC), Such as AMD 
Llano [3], Intel Sandy Bridge, and Ivy Bridge [4]. One 
example of heterogeneous Multi-Processor System-on-Chip 
(MPSOC) is the Samsung Exynos[5]. The Samsung Exynos 
architecture consists of 4Arm Cortex-A7 (little), 4Arm 
Cortex-A15 (big) and ArmMali-T628GPU cores. As modern 
embedded systems become gradually based on MPSoC, 
developers are motivated to adapt algorithms and techniques 
that convey this hardware evolution. 

A. From Parallel to Heterogeneous Computing Principles 

and Challenges 

One of the key techniques in the HC is tuning the work 
scheduler to leverage the parallelism efficiently. The modern 
hardware of single node architecture has several parallelism 
layers by which the performance of our program can be 
optimized. Here, the different types of parallelism in a single 
node equipped with an accelerator such as GPU are mentioned. 
The type of the parallelism varies based on the type of 
connection between the unit processing and its types.( Figure  
2 and 3 illustrates the types of parallelism. At the highest level 
is the Multi-chip parallelism, when there is more than one 
physical processor chip connected by a bus in the same 
computer. In this type, the resources and components, 
specifically the system memory, are shared. The 
communication between the cores is by the Peripheral 
Component Interconnect Express (PCIe) bus. The second level 
of parallelism is Multi-core on-chip parallelism, which is 
similar to the multi-chip parallelism, except that there is a 
single chip that combines the processor cores. In this type, the 
processor units share the resources that are a single chip, thus 
the communication is much better as when using the on-chip 
cache. This makes communications even less costly. When an 
accelerator such as GPU is connected To CPU cores on-chip, 
we refer to it as an Accelerated Processing Unit (APU) or 
heterogeneous Multi-Processor Systems-on-Chips (MPSoCs). 
This type is also called an integrated/fused system in contrast 
to the first type that is a conventional discrete system. The 
third type is Multi-context (thread) parallelism, where a single 
core is able to initialize multiple execution contexts and 
switch between them with reasonable or no overhead. In a 
multi-context system, a task can be executed on each context 
and in this case, there would be a separate hardware program 
counter for each execution context. When the processor unit is 
able to perform the order for one or more instructions per 
cycle, it then achieves the Instruction Parallelism level (ILP), 
which requires using multiple instruction units. HCS leverages 
several types of parallelisms and combines between these 
techniques in order to decrease the cycle per instruction and 
increase the efficiency of the utilization of resources.[6] 

Following are several techniques used for HPC and 
examples for these approaches: we will start by mention the 
ILP techniques. 

Hardware pipelining, this technique is applied when the 
processor unit gives one instruction order or more per cycle 
simultaneously in the pipeline. Next, the Vector parallelism, 
when there is an array of arithmetic units over which an order 
is duplicated. Also, Very long instruction words (VLIWs) 
technique used in particular architectures. [6] 

CORAL 
150-300PF (5-10x) 
11MW (1.1x) 
14-27 GFLOPs/W (7-14x) 

      20PF   
18,000 GPUs  
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Fig. 2. Levels of Parallelism. 

There are also some other techniques that can solve 
memory latency such as: 

Hardware multi-threading :when the execution units are 
shared by set of execution contexts. If memory demands stall 
occur the CPU instantaneously switches between these 
contexts , declining the effect of latencies. This ought not to 
be confused with software threads, as the different execution 
contexts normally are stored in main memory.[6] 

 
Fig. 3. Types of Parallelism. 

Out-of-order execution: in some cases, latencies caused by 
data dependencies are minimized by reordering the 
instructions stream execution statically by the compiler. 
Otherwise, the penalty of this latency in that the conventional 
systems cause processor stalls.[6] 

Such techniques are frequently combined, making program 
execution complex and tough to predict. 

Data and task parallelism are different sorts of parallelism. 
Task-parallel methodology approximately views the problem 
as a set of tasks with clearly characterized communication 
patterns and dependencies. Pipelining could be a 
representative model. On the other hand, data-parallel 
methodology roughly views the problem as a set of operations 
carried out on clusters of data in a generally uniform fashion. 
The focus of this paper is on the combination of CPU/GPU 
architecture, CPUs and GPUs. The extremely diverse 
architectures and programming models of every type of the 
heterogeneous architecture present quite a few challenges in 
accomplishing such collaborative computing. Due to the 
interaction amid CPUs and GPUs in a heterogeneous system, 
performance optimization and energy efficiency depend on 
considering the characteristics of both the Pus. For this cause, 
usual techniques of CPU-only or GPU-only optimization 
might not work efficiently in a heterogeneous system. Hence, 
novel techniques are obligatory so as to realize the potential 
and opportunities of heterogeneous computing and shift 
towards the objectives of exascale performance. 

IV. PROSPECTS AND DIFFICULTIES OF HETEROGENEOUS 

COMPUTING TOWARDS EXASCALE COMPUTING 

A. Evolution of Hardware Architecture of PUs 

Table 1 reviews the hardware architecture development 
during the last few years. Some of the main parameters 
affecting the performance and the energy consumption are 
considered. We also take into account the transistor counts, 
number of cores, hardware or software manage caches,  types 
of memory and  bandwidth. 

TABLE I. HARDWARE EVOLUTION RECENT 10 YEARS 

 parameter Before  Now  

Transistor 
Count 

CPUs:1B transistors 
Oracle SPARC M8 CPU >10Bon a 
chip[7 ]. 

  Stratix(FPGA)30B transistors.[7,8] 

 
GT200 GPU 1.4B 
transistors 

GTX TITAN X GPU contains8B 
transistors [9]. 

Number Of 

Cores 

GTX 280has 240 

core 

GTX TITAN=3072 cores 

Oracle Cranks up the Cores to 32 
with Sparc M8 Chip.[10] 

Managed 

Caches, 

GPUs only 
software- managed 

caches, GT200 no 

L2 

Large hardware -managed caches. 

Fermi GPU only had768KB LLC, 

the Kepler GPU had1536KB LLC, 
and the Maxwell GPU had2048KB 

LLC.[11] 

3D Stacking No 
NVIDIA’s Pascal GPU [11] 

Intel’s Knights Landing [12]. 

Interconnect 

Bandwidth 

The bottle neck in 

performance of 

CPUs and GPUs 

[13 and 14]. 

NVLink, offer 5to 12× 

bandwidth[11] 
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 GPUs cores  Single thread  

parallelism 
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SIMT 

SIMP 

SIMD 
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based on 

number of 
task 

Multi task  

Single task  
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Multi -core   
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Many- cores  
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1) Examples of heterogeneous architecture computers: 

Here are examples of well-known heterogeneous computing 

architectures: 

Xeon Phi:.[14] Knights Landing 

The second-generation Phi.[14] 

CBEA [15,16] 

Nvidia  GPU[11] 

FPGA[8]  

Finally, it can be said that there had been several 
approaches for achieving exascale capabilities through 
heterogeneous computing such as [17] it is evident —via these 
trends— that the never-ending evolution process of hardware 
architecture of both CPUs and GPUs is still ongoing. 

2) Motivations for heterogeneous computing: Although 

utilizing GPU and FPGA as stand-alone devices appears 

promising, there is a number of compelling reasons for 

shifting towards a heterogeneous computing approach: 

Each one of the AUs has a unique strength along its 
weakness aspects, (See fig.4). By combining AUs with 
different architecture, we aim to leverage the pros of each AU 
and overcome the cons. A modern multi-core CPUs usually 
own several tens of cores. These cores are caricaturized by 
multi-instruction and out of order issue cores. They also 
operate at high frequency. In addition, caches' size has 
increased in a way that eliminates most of the single thread 
execution latency caused by memory and cache miss late 
penalty. 

Therefore, we consider CPUs suitable for latency-critical 
applications and memory intensive instructions. Contrast to 
GPU architecture, which is characterized by using a huge 
number of in-order cores, these cores use shared control, 
shared memory, and smaller cache size for each Stream multi-
processor with lower frequency. Consequently, GPUs are 
appropriate for throughput-critical applications [18]. Therefore, 
it is reasonable to use  a heterogeneous  architectural  system 
that consists of two or more types of cores, and schedule the 
application tasks between those cores; each task to the best fit 
or suitable type of execution unit. This way, we optimize the 
performance more than if we only use traditional CPU or GPU 
alone [19]. 

 
Fig. 4. Heterogenous Computing Advantages. 

Mapping algorithm to best fit Pu's characteristic. When a 
user needs to schedule data transfers intensive applications, in 
some cases the branch difference or the time, uninterrupted 
execution are not allowed for GPU cores. On the other hand, 
performance is improved if CPUs are used. This does not only 
happen for diverse applications, but CPUs are also superior for 
diverse phases in single application. The matter that motivates 
to look at both sides in equality, both CPUs and GPUs. 
[20,21,22]. For example, it is eligible for developers to 
consider CPUs efficiency for processing short list queries 
contrast to GPUs that are efficient to process queries of long 
list. [23] 

Exascale Computing is characterized by 10
18

 flops/s on 
real applications within the power of 20 megawatts. It assess 
requires using best fit scheduling and resource utilization 
improvement. Using GPUs alone or CPUs alone is considered 
a waste of resource as the average of utilization is low. For 
example, when allocating the task to GPU, the CPU starts 
initializing the kernel and keeps waiting idle for GPU 
computing results. [19]. Furthermore, when GPU is used for 
memory intensive tasks, memory bandwidth is considered the 
bottleneck which led to energy consumption and the 
utilization is even low [24,25]. Scheduling tasks intelligently 
on heterogeneous architecture enables the elimination of  this 
problem [26,27]. Therefore, the June 2017 Green500 states the 
most energy efficient supercomputers, and CPU-GPU 
heterogeneous systems achieve the top 13 systems in the 
whole list [2]. 

CPUs have usually been used as a host for GPU in systems 
equipped with GPU to administer I/O and scheduling; 
nevertheless, due to the continuing innovations improvements 
of CPU performance even further, using its computation 
capabilities also has happened to be more appealing. 
Additionally, while numerous initial works report that GPUs 
supply up to 100× to 1000× speedup, other researchers claim 
that on applying careful optimizations on both CPUs and 
GPUs, CPUs may even outperform the performance of GPUs 
[28,29]. Due to this, different sums of load divisions to CPUs 
and GPUs can lead to very much dissimilar performance. 
These findings highlight the significance of utilizing the 
computational capabilities of CPUs as well. 

V. CHALLENGES TOWARD ACHIEVING EXASCALE 

PERFORMANCE AND ENERGY THROUGH HETEROGENEOUS 

COMPUTING 

There is a wide gap between the CPUs and the accelerators 
GPUs in different aspects such as performance, energy 
consumption, and efficiency. That gap is related to difference 
in architecture and programming model. Therefore, there are 
many considerations and challenge faces when scheduling 
tasks on such combination. Here, some issues are mentioned 
briefly: 

HCS architecture that may achieve exascale features. 

Achieving load balance on both CPU and GPU.  

Memory bottleneck, memory bandwidth and size and 
memory contentions.  
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There is another concern related to scheduling algorithms 
such as:  

Data partitioning and job partitioning in addition to 
accounting the data dependencies.  

Static verses dynamic algorithms for scheduling and 
allocating task on heterogeneous cores  

Overlapping data transfer and computation algorithms.  

Underutilization of GPU multiprocessor and related 
resources. 

Partitioning kernels contrast to partitioning devices.  

Calculation systems power affectionately. 

In the next section, some of these challenges are discussed 
and some of the research studies addressing them are 
mentioned.  

VI. TECHNIQUES OF WORKLOAD SCHEDULING 

Tables 2 categorizes the techniques projected for dividing 
the workload among a CPUs and a GPUs at the stage of an 
algorithm or through program execution. Scheduling 
algorithms may classify based on when the scheduling is done, 
at the compile time or runtime, see Table 2. In the dynamic 
algorithm, the verdict about operating the subtasks or program 
phases or code portions on a particular PU is made at runtime. 
The subtasks that are implemented on a particular PU are 
already decided before program execution in the static 
algorithm, the mapping of subtasks to PUs is fixed. Here we 
review some of the researches that are based on each of the 
static and the dynamic techniques beside other schedulers  that 
combine the both strategies. 

TABLE II. SCHEDULER TYPE BASED ON WHEN OCCUR THE SCHEDULING 

Type of 

scheduling  
Examples of The researches 

Static 
scheduling  

30,31,32,50,67,69,70,.. 

Dynamic 

scheduling  
34,35,36,77,76,51,49,52,53,68,… 

Combine 

static and 
dynamic  

37,38,39,40,41,42,43,44,45,46,47,48,54,55,56,57,58 

,59,60,61,62,63,64,65,66,67,69,71,72,73,74,75 

A. Static Strategy 

Many Static algorithms have been used for partitioning the 
tasks to available cores [30]. Qilin scheduler framework uses 
static algorithm [31]. An adaptive mapping method on 
heterogeneous parallel processing platforms (HPPPs) is 
proposed; comprising of one CPU and one GPU. The reason 
behind Qilin is to make load adjusting on HPPPs, so it maps 
the divided workload to all processors concurring to their 
capabilities. First in the offline phase, Qilin tests execution 
times of a task with different problem (data) sizes, and then it 
formulates linear regression as the prediction model. Then, in 
the online phase with the new coming problem dimension, the 
ideal splitting proportion of workload of task on CPU and 
GPU is gotten by the model. Then a database recording all of 

the tasks sampled is created. Qilin investigates the database 
for the division proportion while dispersing workload on 
HPPPs. Luke et al. [31] suggest an effective method for 
workload partition. Although, the approach deals with one 
CPU and one GPU only, what possesses a limitation of 
computational workload distribution (CWD) especially on 
HPPPs consisting of multiple CPUs and GPUs is the number 
of heterogeneous processors. One more work related to CWD 
proposes a "waterfall energy consumption model" [32] for 
power concern. The authors implement a task mapping 
method, β-migration, on GPU. Tasks could be divided into 
CPU sub-task and GPU sub-task. In this method, CPU sub-
task does not move parts to GPU since CPU sub-task is not 
proper for GPU. Whereas CPU sub-task and GPU sub-task do 
not work in a balanced style, the β proportion of GPU sub-task 
is relocated to CPU. 

B. The Dynamic Strategy 

The dynamic strategy in  [33,34,35] shows a mechanism 
that disperses the workload to processors evenly in the initial 
state (e.g., the first iteration of a for-loop in a program), and 
after that collects the execution periods of all processors and 
re-distribute the workload based on the achieved respective 
performance measured by minimum code intrusion run-time. 
Such a strategy can be regarded as a light runtime profiling, so 
the most important matter of this strategy is how to measure 
each processor's performance with minimum overhead. 

The dynamic strategy, if compared to the static one, cannot 
reach a precise extent of workload distribution at first for 
efficient load balancing. Furthermore, the dynamic approach 
requires data migrations among processors, thus causing 
communication overhead than a static approach. Therefore, 
there is a tradeoff between the dynamic and static strategies. 
However, each one of them is suitable for different 
circumstances, as will be explained in other cases. 

There are many heterogeneous scheduling frameworks that 
are based on a combination of dynamic and static scheduling 
algorithms. 

Some examples are as follows: 

STAR PU 

StarPU, is a runtime system capable of performing tasks 
scheduling over multicore machines qualified with GPU 
accelerators. StarPU employs a software virtual shared 
memory (VSM), which achieves a high-level programming 
interface, and data transfers between processing units is then 
automated. To enable tasks to be dynamically scheduled, it 
uses static and dynamic scheduling strategies such as 
heterogeneous early finish task HEFT in addition to work 
stealing algorithm in order to get considerable speedups and 
elevated efficiency over multicore machines with multiple 
accelerators. In addition, it evaluates the performance of these 
applications over clusters featuring multiple GPUs per node 
and MPI could be combined with it. StarPU is a C library that 
gives an API to explain the application data, capable of 
submitting tasks that are dispatched and executed 
transparently over the whole machine in an efficient way and 
asynchronously.[36,37,38]The main drawbacks regarding 
StarPU that it does not support independent loops and also  
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recursive parallel algorithms as it does not allow create tasks 
recursively. 

Several researchers built scheduler frameworks on top of 
StarPU as to extend or improve it such as [ 39]. They 
investigate the applicability of throughput enhancement by the 
co-scheduling of poorly-scaling tasks on sub-partitions of the 
GPU. This is being done to elevate utilization efficiency. 
Scalability of GPUs was studied, and the incorporation of this 
insight to use the CUDA API to partition the GPU. 

Sequential task-based programming model was studied by 
Emmanuel, et al. [40 ] to achieve efficiencies in multiple 
nodes scale similar to its successfully efficient on the 
environment scale of a single node that combined with 
accelerators supported with OpenMP standard. They extend 
StaPU with an inner-node data management layer to post 
communication automatically. They achieve a performance 
competing with both pure Message Passing Interface (MPI)-
based ScaLAPACK Cholesky reference execution and the 
DPLASMA Cholesky code, which executes a different (non-
sequential) task-based programming paradigm. 

Common runtime of IBM OpenCL 

It enhances the OpenCL programming encounter as it 
covers up the low details of data movement from the 
programmer synchronization and automatically runs multiple 
OpenCL platforms and duplicated components, such as 
contexts and memory objects. Moreover, it also controls event 
dependencies cross-queue scheduling.[41] 

The GPU And Multi-core Aware (GAMA) 

It is a framework to aid computational scientists in the 
development or porting of data-parallel applications to 
heterogeneous computing platforms CPU/GPU cores. GAMA 
is specially designed to efficiently execute irregular 
applications where it is hard to make the needed estimation to 
compute the input data sets.[42].  In addition to many others 
such as QUARK [43], PaRSEC[44], SuperMatrix[45], 
StarSs[46] and Kaapi[47]. 

VII. WORKLOAD SCHEDULING PURPOSES 

Answering why a particular scheduling of tasks to PUs is 
carried out, the following works are classified based on two 
main criteria -see table3- : 

Improving performance. 

Improving energy consumption. 

First, we survey the research that addresses improving 
performance. 

C. Improving Performance 

Scheduling tasks on processors could be induced by the 
PU characteristic/capability itself and/or the subtasks. In case 
subtasks are similar, the scheduling then is based on achieving 
best performance or efficient power consumption or avoiding 
memory contention or achieving load balance. On the other 
hand, if the subtasks are different, deciding if a subtask ought 
to be mapped is based on the computation of an intensive task 
mapped to GPUs and memory intensive task to CPU. 

TABLE III. CLASSIFY THE RESEARCHS BASED ON THE SCHEDULING 

PURPOSES 

Type of scheduler based on the 

purpose of scheduling  
Examples of the researches  

 Improve Performance  by leverage 
memory utilization  

48,49 

Improve performance by  improve 
load balance and resource 

underutilization  

30,31,35,37,40,45,52,53. 

Improve performance or in 
heterogenous SoC embedded  

54,5,56,57,58,59,60,61 

Improve performance and energy 
consumption  in heterogenous SoC 

on desktop 

62,64,65,63 

Improve energy efficiency  70,71.72.73,74,75,76,77 

1) Scheduling to concern memory limitations: Some cases 

exhibit the following: a subtask cannot be mapped on a 

particular PU; when the memory footprint of a subtask 

exceeds the memory size of the GPU. For example, the 

GPGPUs huge data demands costly memory modules, such as 

GDDR, to sustain high data bandwidth. The high cost poses 

limitations on the total memory capacity on hand to GPGPUs, 

and the data needs to be transferred among the host CPUs and 

GPGPUs. However, the data transfer long latency has resulted 

in considerable performance overhead. To ease this matter, 

modern GPGPUs have actualized the non-blocking data 

transfer, which enables a GPGPU to carry out computing 

while the data is under transmission. In [48], it is proposed 

that a capacity aware scheduling algorithm exploits the non-

blocking data transfer in modern GPGPUs. By effectively 

benefitting from the non-blocking transfers, experiments show 

an average of 24.01% performance improvement when 

compared to other approaches existing, which only consider 

memory capacity. 

One of the most critical problems in HC is scheduling in 
the presence of memory contention. This occurs when 
processors have used concurrency multi CPU cores and many 
cores as GPU are competing on the available resources such as 
register files memory and interconnected network that cause 
the contention. In the presence of memory contention, entirely 
static scheduling is hard coding and likely fails to solve it [49]. 
Given that the environment of multiprogramming is changing 
dramatically, the resources availability and the workload 
programs behaviors are indeterministic. This has an effect on 
the right mapping and scheduling of the required tasks. An 
approach that can adjust the mapping decision concurring to 
the dynamic computing environment is what is needed, by 
taking into account the target program behavior. To resolve 
the memory contention, Luk et al in [31] incorporate offline 
profiling to decide the best partitioning between the CPU and 
GPU as Grewe and O'Boyle [50] apply machine learning 
techniques to forecast the ideal partitioning. Both approaches 
arrived at promising results but only under the assumption that 
no other programs are operating on the system. Ravi et al. [51] 
use a dynamic "task farm" method for task mapping where the 
task is partitioned into chunks of a fixed number, and one 
chunk is sent to each device. When a device is done 
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processing, it calls for a new chunk. However, this dynamic 
approach achieves poor performance in the presence of GPU 
contention. Another approach was used in [49] where they use 
runtime information and the code features of the program 
under execution to make the task partitioning prediction to 
achieve the best dynamic task scheduling. The good point in 
this dynamic scheduler is the low overhead and it avoids the 
penalty of long online searching. 

2) Scheduling to prevent resource underutilization: In 

reality, the majority of GPU applications do not utilize all of 

the available components in a system efficiently, either 

entirely failing in using a component or using it to a limited 

fragment of its full potential. This underutilization can harm 

both energy efficiency and performance. Some research 

related the underutilization of GPU to the penalty of 

CPU/GPU communication and coordinate. Consequently, they 

reduce the CPU/GPU interaction and synchronization aiming 

to improve the performance improves the energy consumption. 

Boyer [52] studied the iterative algorithms that are 

implemented and found that it causes the underutilization of 

the GPU resources, since they produce a high overhead of 

CPU/GPU arrangements. Thus, he presented several strategies 

to be applied when implementing such algorithms. Applying 

these strategies would improve the performance and reduce 

the communication overhead. He also applied dynamic 

algorithms for allocation parallel kernels and efficiently 

utilized the available resources and achieved the load balance 

between the cores. Moreover in allocation kernels on GPU 

stream multi processors the kernels are usually executed 

sequentially, one kernel a time even in systems with multiple 

powerful devices. 

Some other framework schedulers harnessing kernel 
partitioning to achieve the load balance on GPUs and improve 
the performance. One of the heterogeneous systems that used 
kernel partitioning is done by Ghose et al[53]. They present an 
in-depth analysis of control flow divergence of OpenCL 
kernels. Since branches have a significant impact on OperCL 
kernel performance, the author uses divergence as a guide to 
partition a kernel across CPU and GPU. A machine learning 
model is trained by using the amount of divergence in a 
program; then this model is used to predict unseen program’s 
optimal partition. Splitting a kernel into parts and spreading 
these parts into distinct devices can be done statically or 
dynamically. But most of these research studies are not 
heterogeneous computing systems, and thus they are out of 
our scope. 

3) Scheduling for achieving load balance: The load 

balancing across the resources in the system is the most 

important goal of the scheduler’s framework which considers 

performance improvement. As load balancing enhances the 

overall system performance, there are various approaches for 

achieving this. Some approaches focus on the static algorithms 

and arrange the balancing plan during the compile time such 

as heterogeneous early finish time HEFT [30,31]. Other 

research studies use dynamic strategies such as work stealing 

or work share algorithms[35,37,40,45]. On the other hand, 

some research studies relate the solution for imbalance load to 

resource underutilization. Therefore, they consider improving 

resource utilization as mentioned in a previous point. 

In the next section, the research studies that consider 
scheduling tasks on heterogeneous multiprocessor system-on-
chip (MPSoC), aiming to improve the performance or energy 
consumption or both, are discussed. 

D. Scheduling Tasks on Heterogeneous Multiprocessor 

System-on-chip (MPSoC) 

Nowadays, MPSOC is considered a hot topic, where there 
have been many pieces of research introducing different 
approaches. [54,55, 56, 57, 58, 59, 60, 61]. The work mostly 
considered Samsung Exynos 5422 SoC which utilizes 4 big 
and/or 4 little cores that possess the same instruction set 
architecture ISAs [55, 57, 60]. Nonetheless, the majority of 
the effort was applied to the identical type of cores [58, 59, 60, 
61]. In spite of that, there were a number of endeavors to 
parallelize both big and LITTLE cores [55], exploit cores are 
inapplicable with this approach having diverse ISAs such as 
CPU and GPU for the reason that they handle instructions in 
many ways. A number of studies were conducted to develop 
the MPSOC on desktop platforms [62, 63, 64,65]. Task 
scheduling and harmonization between CPU/GPU cores using 
such platforms cores require additional consideration. In [63], 
an algorithm to improve the throughput was proposed. The 
algorithm divides both the power budget and the workload 
between the CPU/GPU cores of an AMD Trinity single chip 
heterogeneous platform, using the same AMD platform by 
[64], but memory dispute occurs due to access of the same 
bank in different patterns by the CPU and GPU. In addition,  
in [62], partition considered the work and mapped them to 
threads between the CPU/GPU cores but that did not revolve 
around the energy  FreeOCL [66]; a similar open source 
framework is used for the Arm CPU that acts as both the host 
processor and an OpenCL device. This provides concurrent 
use of CPU and GPU to carry out the application threads, but 
in [67,69], a static dividing is performed by using all the CPU 
and GPU cores. Researchers of [68] established that the 
influence of temperature-induced variability on circuit lifetime 
can be elevated due to stress and exceed over the value 
estimated bearing in mind the circuit average temperature. The 
researcher presents a simulation framework for the BTI 
degradation analysis of DVFS designs that considers thermal 
profiles under the Dynamic Thermal Management (DTM) 
system influence. 

In [54] they divide the workload on CPU/GPU savings of 
the average temperature of the chip while keeping 
performance needs. A lower thermal behavior exhibits an 
enhanced long-term reliability (lifetime) of the SoC. Grasso 
et.al.[69] focus on analyzing the embedded GPU ARM Mali-
T604 GPU. They used an OpenCL Full Profile support and 
investigated the utilization and optimization techniques that 
efficiently leverage the hardware resources. They 
implemented and evaluated the frame work and concluded that 
ARM Mali GPU Compute Architecture was able to achieve 
the performance and energy consumption that allows them to 
be a good candidate for future HPC systems. 

E. Energy-Aware Scheduling Frameworks 
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There have been several types of research that optimize 
scheduling algorithms aiming to reduce the energy 
consumption [70,71,72,73,74,75,76,77,78]. Some use a static 
algorithm such as a generic algorithm. In [76 ] they introduce 
new chromosome structure to implement a generic algorithm 
that adapts to schedule scalable and various tasks in efficient 
energy consumption. Instead of individual tasks and machines, 
it is based upon groups of alike tasks and machines. This fresh 
arrangement is highly scalable and divided into three phases. 
The first two phases of the algorithm exhibit near-constant 
execution time notwithstanding of the number of tasks to be 
listed or the figures of machines in the system. Only the final 
phase of the algorithm is dependent upon the number of tasks 
and machines; this could be relieved by executing the phase 
for only a subset of the solutions from the last population. 

Some others use algorithms that schedule the tasks in a 
way that controls the system energy consumption at a certain 
point of time. Other research studies aim to schedule tasks 
while keeping the system energy at a limit given range and 
prevent the system energy overloaded. This point of keeping a 
system in a limit range of energy is critical to achieving the 
exascale systems constraints. One of those uprising techniques 
is "Power capping", which is used to control power 
consumption in a data center in a certain period of time. In 
[77] the researchers study the impact of power variation of 
scheduling multi programming concurrently. They present an 
efficient algorithm for power capping. 

VIII. CONCLUSION 

Recently, the use of different processors simultaneously, 
such as CPU cores combined with different accelerators GPUs 
cores, for achieving efficiency in performance and energy 
control of Exascale Computing, has been intensively 
researched. Heterogeneous computing emerges as a promise 
paradigm. Different approaches were proposed to leverage 
heterogeneous computing toward Exascale Computing. 
Several of these approaches have been reviewed in this paper. 
Also, the evolution of hardware and the various approaches 
proposed for partitioning, scheduling and allocating the 
workload on the heterogeneous architecture, desecrate systems 
and fused systems or heterogeneous SoC were discussed as 
well. These research studies are done with two main goals: 
performance improvement and energy efficiency. In 
conclusion, we confirm the need for accommodating software 
development along with the quick evolution of the hardware. 
In our review, a huge gap has been found between the 
algorithms improvements to utilize the available hardware 
resources and the evolution in hardware. Tuning the 
scheduling techniques and the combining of algorithms by 
exploring other software techniques to reduce the 
underutilization of the accelerators resources -specifically 
GPUs resources is bound to decrease this gap. 
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