
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

234 | P a g e

www.ijacsa.thesai.org

Task Scheduling Frameworks for Heterogeneous

Computing Toward Exascale

Suhelah Sandokji
1
, Fathy Eassa

2

Faculty of Computing and Information Technology, KAU

Jeddah ,Saudi Arabia

Abstract—The race for Exascale Computing has naturally led

computer architecture to transit from the multicore era and into

the heterogeneous era. Many systems are shipped with integrated

CPUs and graphics processing units (GPUs). Moreover, various

applications need to utilize both CPUs and GPUs executive

resources, as many of their unique features prove the significant

importance and strengths of using each one of the process units

PUs. Several research studies consider partitioning the

applications, scheduling their execution and allocating them onto

the PUs resources. They investigate the important role of

optimization and tackle intelligently scheduled tasks on the

combination of CPU/GPU architecture CPUs and GPUs cores in

achieving the peace of performance and power consumption of

Exascale Computing. In this paper, the evolution of

heterogeneous computing architectures, the approaches, and

challenges toward achieving Exascale Computing, and the

various algorithms and techniques used to partition and

scheduling tasks are all reviewed. The existing frameworks and

runtime systems utilized to optimize performance and improve

energy efficiency in desecrates and fused chips in order to attain

the objectives of Exascale Computing will also be reviewed.

Keywords—Exascale computing; heterogenous computing; task

scheduler framework

I. INTRODUCTION

High-performance computing is the pillar for modern
science. Researchers with great computing powers can make
an amazing scientific discovery from climate science to
combustion science, business analytics for making a good
decision, big data analytics, and many others. Therefore,
researchers are looking forward to the next generation of high-
performance computing, i.e. "Exascale Computing‖. Exascale
Computing achieves 10

18
 flops on real applications constraints

to be within the power of 20 megawatts. Therefore, in
designing both the hardware and software architecture systems,
the challenge is managing the tradeoff between the
performance speed-up and energy consumption. One of the
most critical aspects in this management between the software
and hardware is related to mapping software application to the
best-fit hardware resources. Mapping refers to partitioning the
application under execution into tasks, prioritizing these tasks,
or scheduling them in lists to be allocated on the processors,
reducing the execution results after which the user receives the
computation results. Arranging this mapping using an efficient
optimum algorithm that decreases the limit range of energy
consumed and raises performance is considered an NP-
problem. There have been a significant number of research
studies that look into achieving the optimum solution to the

scheduling problem. In this survey, the scheduling approaches
and the research existing in the heterogeneous processors are
reviewed.

A. Survey Scope and Limitations

The survey is focused on the scheduling framework that
plans the tasks on the combination of CPU and general
purpose graphical processing unit GPU in both types of
desecrate system and on-chip system. As it is impractical to
review all the aspects of the published work that are related to
the task scheduling frameworks, we consider here some
limitations in order to highlight the paper's scope. We focus on
the CPUs/GPUs heterogenous architecture. We don't review
the heterogenous architecture that are built based on other
types of processors or accelerators, as heterogeneous
computing may consist of for instance Field Programming
Array FPGA cores and CPUs cores. Also, we didn't discuss
the scheduler frameworks that consider only multi GPUs nor
single GPU. The paper focuses on the task scheduler
framework, language libraries, and framework level
techniques. The paper considers the software level techniques,
therefore, no circuit/ device/ microarchitectural level
techniques are reviewed. Our paper aim is to highlight the key
research ideas and the main concepts that provide researchers
with the insight required to inspire future improvement in the
next generation of the high-performance computing "Exascale
Computing".

The remainder of the paper is organized as follows; in the
next section, some principles regarding the roadmap for
exascale capabilities are highlighted. This section also argues
if heterogeneous computing is able to achieve an exascale
capability. The following section explains the heterogeneous
computing principles, where first heterogeneous computing
and its types are defined extensively. Then the parallel
computing with different types are defined and how it can
achieve optimum heterogeneous computing is discussed.
Afterward, the evolution of several components of processors
hardware, such as the increase in transistor numbers, core
numbers, registers file, new memory types, and new speed
interconnections bus is described. The study also highlights
the challenges that may limit software improvement of
Exascale Computing. Furthermore, the single chip and
multiple chips accompanied with accelerator GPUs as well as
the algorithms used in task scheduling frameworks and the
research of task scheduling framework in two aspects;
performance improvement and energy efficiency all are also
reviewed.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

235 | P a g e

www.ijacsa.thesai.org

II. THE ROADMAP FOR EXASCALE

Figure 1 illustrates the roadmap for Exascale Computing.
In 2013, the biggest supercomputers such as Titan in the USA
or Tsubame KFC Tokyo Tech were 2.5GFlops/W and
4.5GFlops/W, respectively [1,2,3] where heterogeneous
computing is used. Both also use K20 GPU, but Tsubame
KFC does several improvements as opposed to Titan, one of
which is changing the ratio CPU/ GPU, as energy
consumption mostly goes more to the GPU and less to the
CPU. Thus, one way of thinking to reach exascale is to
improve 20PFlops, 10Wand 10

7
threads so as by 2023, it will

have been duplicated 50times to get 1000GFlops besides only
duplicating twice the power consumption. Hence, power
efficiency must go up to 25 times of the 2013 range. This
efficiency is derived from process technology, better h/w, and
s/w architecture and circuits, in addition to utilizing,
parallelize and improving the thread from 10

7
 to 10

10
.[1].

Fig. 1. The Roadmap for Exascale.

The matter that motivates researchers to leverage the
heterogeneous Pus (multi CPU cores combined with any
many-core accelerator such as GPUs or GFPA) collaboration
to achieve high-performance computing. This way, we can
benefit from the advantages of each and leverage the
intelligent combination of both so as to achieve exascale
performance and power consumption.

III. THE HETEROGENEOUS COMPUTING, PRINCIPALS, AND

TYPES

Nowadays, instead of CPU versus GPU debates,
researchers, programmers, and computer architects are
exploring PUs paradigm to find different approaches for
computing and programming on efficient algorithms. This
paradigm, which is known as Heterogeneous Computing (HC),
refers to the utilization of the strength of diverse processing
cores to maximize performance. The combinations vary from
the CPUs with graphics processing units (GPUs), (see Fig4) to
field programmable gate arrays (FPGAs) or both or Cell
Broadband Engine Architecture (CBEA), Heterogeneous
Computing (HC). Strengthening the combination architectures
and accomplishing load balancing are the main targets to tone
with the needs of each application, by refraining from idle
time for both Processing Units (PUs). Some processors
achieved more heterogeneous integration by fabricating them

on the same chip as a system on chip (SoC), Such as AMD
Llano [3], Intel Sandy Bridge, and Ivy Bridge [4]. One
example of heterogeneous Multi-Processor System-on-Chip
(MPSOC) is the Samsung Exynos[5]. The Samsung Exynos
architecture consists of 4Arm Cortex-A7 (little), 4Arm
Cortex-A15 (big) and ArmMali-T628GPU cores. As modern
embedded systems become gradually based on MPSoC,
developers are motivated to adapt algorithms and techniques
that convey this hardware evolution.

A. From Parallel to Heterogeneous Computing Principles

and Challenges

One of the key techniques in the HC is tuning the work
scheduler to leverage the parallelism efficiently. The modern
hardware of single node architecture has several parallelism
layers by which the performance of our program can be
optimized. Here, the different types of parallelism in a single
node equipped with an accelerator such as GPU are mentioned.
The type of the parallelism varies based on the type of
connection between the unit processing and its types.(Figure
2 and 3 illustrates the types of parallelism. At the highest level
is the Multi-chip parallelism, when there is more than one
physical processor chip connected by a bus in the same
computer. In this type, the resources and components,
specifically the system memory, are shared. The
communication between the cores is by the Peripheral
Component Interconnect Express (PCIe) bus. The second level
of parallelism is Multi-core on-chip parallelism, which is
similar to the multi-chip parallelism, except that there is a
single chip that combines the processor cores. In this type, the
processor units share the resources that are a single chip, thus
the communication is much better as when using the on-chip
cache. This makes communications even less costly. When an
accelerator such as GPU is connected To CPU cores on-chip,
we refer to it as an Accelerated Processing Unit (APU) or
heterogeneous Multi-Processor Systems-on-Chips (MPSoCs).
This type is also called an integrated/fused system in contrast
to the first type that is a conventional discrete system. The
third type is Multi-context (thread) parallelism, where a single
core is able to initialize multiple execution contexts and
switch between them with reasonable or no overhead. In a
multi-context system, a task can be executed on each context
and in this case, there would be a separate hardware program
counter for each execution context. When the processor unit is
able to perform the order for one or more instructions per
cycle, it then achieves the Instruction Parallelism level (ILP),
which requires using multiple instruction units. HCS leverages
several types of parallelisms and combines between these
techniques in order to decrease the cycle per instruction and
increase the efficiency of the utilization of resources.[6]

Following are several techniques used for HPC and
examples for these approaches: we will start by mention the
ILP techniques.

Hardware pipelining, this technique is applied when the
processor unit gives one instruction order or more per cycle
simultaneously in the pipeline. Next, the Vector parallelism,
when there is an array of arithmetic units over which an order
is duplicated. Also, Very long instruction words (VLIWs)
technique used in particular architectures. [6]

CORAL
150-300PF (5-10x)
11MW (1.1x)
14-27 GFLOPs/W (7-14x)

 20PF
18,000 GPUs
10MW 2
GFLOPs/W
~107 Threads

Exascale

1,000PF (50x)
72,000HCNs(4x)
20MW (2x)50
GFLOPs/W (25x)~1010
Threads (1000x)

2018 2013

2023

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

236 | P a g e

www.ijacsa.thesai.org

Fig. 2. Levels of Parallelism.

There are also some other techniques that can solve
memory latency such as:

Hardware multi-threading :when the execution units are
shared by set of execution contexts. If memory demands stall
occur the CPU instantaneously switches between these
contexts , declining the effect of latencies. This ought not to
be confused with software threads, as the different execution
contexts normally are stored in main memory.[6]

Fig. 3. Types of Parallelism.

Out-of-order execution: in some cases, latencies caused by
data dependencies are minimized by reordering the
instructions stream execution statically by the compiler.
Otherwise, the penalty of this latency in that the conventional
systems cause processor stalls.[6]

Such techniques are frequently combined, making program
execution complex and tough to predict.

Data and task parallelism are different sorts of parallelism.
Task-parallel methodology approximately views the problem
as a set of tasks with clearly characterized communication
patterns and dependencies. Pipelining could be a
representative model. On the other hand, data-parallel
methodology roughly views the problem as a set of operations
carried out on clusters of data in a generally uniform fashion.
The focus of this paper is on the combination of CPU/GPU
architecture, CPUs and GPUs. The extremely diverse
architectures and programming models of every type of the
heterogeneous architecture present quite a few challenges in
accomplishing such collaborative computing. Due to the
interaction amid CPUs and GPUs in a heterogeneous system,
performance optimization and energy efficiency depend on
considering the characteristics of both the Pus. For this cause,
usual techniques of CPU-only or GPU-only optimization
might not work efficiently in a heterogeneous system. Hence,
novel techniques are obligatory so as to realize the potential
and opportunities of heterogeneous computing and shift
towards the objectives of exascale performance.

IV. PROSPECTS AND DIFFICULTIES OF HETEROGENEOUS

COMPUTING TOWARDS EXASCALE COMPUTING

A. Evolution of Hardware Architecture of PUs

Table 1 reviews the hardware architecture development
during the last few years. Some of the main parameters
affecting the performance and the energy consumption are
considered. We also take into account the transistor counts,
number of cores, hardware or software manage caches, types
of memory and bandwidth.

TABLE I. HARDWARE EVOLUTION RECENT 10 YEARS

 parameter Before Now

Transistor
Count

CPUs:1B transistors
Oracle SPARC M8 CPU >10Bon a
chip[7].

 Stratix(FPGA)30B transistors.[7,8]

GT200 GPU 1.4B
transistors

GTX TITAN X GPU contains8B
transistors [9].

Number Of

Cores

GTX 280has 240

core

GTX TITAN=3072 cores

Oracle Cranks up the Cores to 32
with Sparc M8 Chip.[10]

Managed

Caches,

GPUs only
software- managed

caches, GT200 no

L2

Large hardware -managed caches.

Fermi GPU only had768KB LLC,

the Kepler GPU had1536KB LLC,
and the Maxwell GPU had2048KB

LLC.[11]

3D Stacking No
NVIDIA’s Pascal GPU [11]

Intel’s Knights Landing [12].

Interconnect

Bandwidth

The bottle neck in

performance of

CPUs and GPUs

[13 and 14].

NVLink, offer 5to 12×

bandwidth[11]

types of
parallelisi

m
hemogenous
Processors

heterogenous
processors

in single node

on chip

SoC

multi chip

many cores

GPUs
cores

SIMD

MIMD

pipe line

multi-cores

CPUs
cores

multi
threaded

sftware
threads

hardware
theread

Single
thread

 multi-node

destrbuted

T
y
p

es
 of

 p
ar

al
le

li
sm

parallelism based
on heterogenity of

cores

hetetogenoues

hemogenoues

parallelism based
onnumber
ofnodes

single node

distributed system

parallelism
based on num

chips

single chip SoC

multi chip

parallelism based
on context

muti thread

software thread

Hardware thread

 GPUs cores Single thread

parallelism
based on

instruction

SIMT

SIMP

SIMD

MIMD

parallelism
based on

number of
task

Multi task

Single task

parallelism
based on cores

Multi -core

CPUs cores

Many- cores

GPUs cores

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

237 | P a g e

www.ijacsa.thesai.org

1) Examples of heterogeneous architecture computers:

Here are examples of well-known heterogeneous computing

architectures:

Xeon Phi:.[14] Knights Landing

The second-generation Phi.[14]

CBEA [15,16]

Nvidia GPU[11]

FPGA[8]

Finally, it can be said that there had been several
approaches for achieving exascale capabilities through
heterogeneous computing such as [17] it is evident —via these
trends— that the never-ending evolution process of hardware
architecture of both CPUs and GPUs is still ongoing.

2) Motivations for heterogeneous computing: Although

utilizing GPU and FPGA as stand-alone devices appears

promising, there is a number of compelling reasons for

shifting towards a heterogeneous computing approach:

Each one of the AUs has a unique strength along its
weakness aspects, (See fig.4). By combining AUs with
different architecture, we aim to leverage the pros of each AU
and overcome the cons. A modern multi-core CPUs usually
own several tens of cores. These cores are caricaturized by
multi-instruction and out of order issue cores. They also
operate at high frequency. In addition, caches' size has
increased in a way that eliminates most of the single thread
execution latency caused by memory and cache miss late
penalty.

Therefore, we consider CPUs suitable for latency-critical
applications and memory intensive instructions. Contrast to
GPU architecture, which is characterized by using a huge
number of in-order cores, these cores use shared control,
shared memory, and smaller cache size for each Stream multi-
processor with lower frequency. Consequently, GPUs are
appropriate for throughput-critical applications [18]. Therefore,
it is reasonable to use a heterogeneous architectural system
that consists of two or more types of cores, and schedule the
application tasks between those cores; each task to the best fit
or suitable type of execution unit. This way, we optimize the
performance more than if we only use traditional CPU or GPU
alone [19].

Fig. 4. Heterogenous Computing Advantages.

Mapping algorithm to best fit Pu's characteristic. When a
user needs to schedule data transfers intensive applications, in
some cases the branch difference or the time, uninterrupted
execution are not allowed for GPU cores. On the other hand,
performance is improved if CPUs are used. This does not only
happen for diverse applications, but CPUs are also superior for
diverse phases in single application. The matter that motivates
to look at both sides in equality, both CPUs and GPUs.
[20,21,22]. For example, it is eligible for developers to
consider CPUs efficiency for processing short list queries
contrast to GPUs that are efficient to process queries of long
list. [23]

Exascale Computing is characterized by 10
18

 flops/s on
real applications within the power of 20 megawatts. It assess
requires using best fit scheduling and resource utilization
improvement. Using GPUs alone or CPUs alone is considered
a waste of resource as the average of utilization is low. For
example, when allocating the task to GPU, the CPU starts
initializing the kernel and keeps waiting idle for GPU
computing results. [19]. Furthermore, when GPU is used for
memory intensive tasks, memory bandwidth is considered the
bottleneck which led to energy consumption and the
utilization is even low [24,25]. Scheduling tasks intelligently
on heterogeneous architecture enables the elimination of this
problem [26,27]. Therefore, the June 2017 Green500 states the
most energy efficient supercomputers, and CPU-GPU
heterogeneous systems achieve the top 13 systems in the
whole list [2].

CPUs have usually been used as a host for GPU in systems
equipped with GPU to administer I/O and scheduling;
nevertheless, due to the continuing innovations improvements
of CPU performance even further, using its computation
capabilities also has happened to be more appealing.
Additionally, while numerous initial works report that GPUs
supply up to 100× to 1000× speedup, other researchers claim
that on applying careful optimizations on both CPUs and
GPUs, CPUs may even outperform the performance of GPUs
[28,29]. Due to this, different sums of load divisions to CPUs
and GPUs can lead to very much dissimilar performance.
These findings highlight the significance of utilizing the
computational capabilities of CPUs as well.

V. CHALLENGES TOWARD ACHIEVING EXASCALE

PERFORMANCE AND ENERGY THROUGH HETEROGENEOUS

COMPUTING

There is a wide gap between the CPUs and the accelerators
GPUs in different aspects such as performance, energy
consumption, and efficiency. That gap is related to difference
in architecture and programming model. Therefore, there are
many considerations and challenge faces when scheduling
tasks on such combination. Here, some issues are mentioned
briefly:

HCS architecture that may achieve exascale features.

Achieving load balance on both CPU and GPU.

Memory bottleneck, memory bandwidth and size and
memory contentions.

Heterogenous

computing

Computing intensive

application

 +

Memory intensive

application

+

Less power

consumption

GPUs Cores

Huge number of

cores

Low frequency

Small cache

Computing intensive

application

CPUs cores

Big Cache size

Few number of

cores

Memory

intensive

application

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

238 | P a g e

www.ijacsa.thesai.org

There is another concern related to scheduling algorithms
such as:

Data partitioning and job partitioning in addition to
accounting the data dependencies.

Static verses dynamic algorithms for scheduling and
allocating task on heterogeneous cores

Overlapping data transfer and computation algorithms.

Underutilization of GPU multiprocessor and related
resources.

Partitioning kernels contrast to partitioning devices.

Calculation systems power affectionately.

In the next section, some of these challenges are discussed
and some of the research studies addressing them are
mentioned.

VI. TECHNIQUES OF WORKLOAD SCHEDULING

Tables 2 categorizes the techniques projected for dividing
the workload among a CPUs and a GPUs at the stage of an
algorithm or through program execution. Scheduling
algorithms may classify based on when the scheduling is done,
at the compile time or runtime, see Table 2. In the dynamic
algorithm, the verdict about operating the subtasks or program
phases or code portions on a particular PU is made at runtime.
The subtasks that are implemented on a particular PU are
already decided before program execution in the static
algorithm, the mapping of subtasks to PUs is fixed. Here we
review some of the researches that are based on each of the
static and the dynamic techniques beside other schedulers that
combine the both strategies.

TABLE II. SCHEDULER TYPE BASED ON WHEN OCCUR THE SCHEDULING

Type of

scheduling
Examples of The researches

Static
scheduling

30,31,32,50,67,69,70,..

Dynamic

scheduling
34,35,36,77,76,51,49,52,53,68,…

Combine

static and
dynamic

37,38,39,40,41,42,43,44,45,46,47,48,54,55,56,57,58

,59,60,61,62,63,64,65,66,67,69,71,72,73,74,75

A. Static Strategy

Many Static algorithms have been used for partitioning the
tasks to available cores [30]. Qilin scheduler framework uses
static algorithm [31]. An adaptive mapping method on
heterogeneous parallel processing platforms (HPPPs) is
proposed; comprising of one CPU and one GPU. The reason
behind Qilin is to make load adjusting on HPPPs, so it maps
the divided workload to all processors concurring to their
capabilities. First in the offline phase, Qilin tests execution
times of a task with different problem (data) sizes, and then it
formulates linear regression as the prediction model. Then, in
the online phase with the new coming problem dimension, the
ideal splitting proportion of workload of task on CPU and
GPU is gotten by the model. Then a database recording all of

the tasks sampled is created. Qilin investigates the database
for the division proportion while dispersing workload on
HPPPs. Luke et al. [31] suggest an effective method for
workload partition. Although, the approach deals with one
CPU and one GPU only, what possesses a limitation of
computational workload distribution (CWD) especially on
HPPPs consisting of multiple CPUs and GPUs is the number
of heterogeneous processors. One more work related to CWD
proposes a "waterfall energy consumption model" [32] for
power concern. The authors implement a task mapping
method, β-migration, on GPU. Tasks could be divided into
CPU sub-task and GPU sub-task. In this method, CPU sub-
task does not move parts to GPU since CPU sub-task is not
proper for GPU. Whereas CPU sub-task and GPU sub-task do
not work in a balanced style, the β proportion of GPU sub-task
is relocated to CPU.

B. The Dynamic Strategy

The dynamic strategy in [33,34,35] shows a mechanism
that disperses the workload to processors evenly in the initial
state (e.g., the first iteration of a for-loop in a program), and
after that collects the execution periods of all processors and
re-distribute the workload based on the achieved respective
performance measured by minimum code intrusion run-time.
Such a strategy can be regarded as a light runtime profiling, so
the most important matter of this strategy is how to measure
each processor's performance with minimum overhead.

The dynamic strategy, if compared to the static one, cannot
reach a precise extent of workload distribution at first for
efficient load balancing. Furthermore, the dynamic approach
requires data migrations among processors, thus causing
communication overhead than a static approach. Therefore,
there is a tradeoff between the dynamic and static strategies.
However, each one of them is suitable for different
circumstances, as will be explained in other cases.

There are many heterogeneous scheduling frameworks that
are based on a combination of dynamic and static scheduling
algorithms.

Some examples are as follows:

STAR PU

StarPU, is a runtime system capable of performing tasks
scheduling over multicore machines qualified with GPU
accelerators. StarPU employs a software virtual shared
memory (VSM), which achieves a high-level programming
interface, and data transfers between processing units is then
automated. To enable tasks to be dynamically scheduled, it
uses static and dynamic scheduling strategies such as
heterogeneous early finish task HEFT in addition to work
stealing algorithm in order to get considerable speedups and
elevated efficiency over multicore machines with multiple
accelerators. In addition, it evaluates the performance of these
applications over clusters featuring multiple GPUs per node
and MPI could be combined with it. StarPU is a C library that
gives an API to explain the application data, capable of
submitting tasks that are dispatched and executed
transparently over the whole machine in an efficient way and
asynchronously.[36,37,38]The main drawbacks regarding
StarPU that it does not support independent loops and also

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

239 | P a g e

www.ijacsa.thesai.org

recursive parallel algorithms as it does not allow create tasks
recursively.

Several researchers built scheduler frameworks on top of
StarPU as to extend or improve it such as [39]. They
investigate the applicability of throughput enhancement by the
co-scheduling of poorly-scaling tasks on sub-partitions of the
GPU. This is being done to elevate utilization efficiency.
Scalability of GPUs was studied, and the incorporation of this
insight to use the CUDA API to partition the GPU.

Sequential task-based programming model was studied by
Emmanuel, et al. [40] to achieve efficiencies in multiple
nodes scale similar to its successfully efficient on the
environment scale of a single node that combined with
accelerators supported with OpenMP standard. They extend
StaPU with an inner-node data management layer to post
communication automatically. They achieve a performance
competing with both pure Message Passing Interface (MPI)-
based ScaLAPACK Cholesky reference execution and the
DPLASMA Cholesky code, which executes a different (non-
sequential) task-based programming paradigm.

Common runtime of IBM OpenCL

It enhances the OpenCL programming encounter as it
covers up the low details of data movement from the
programmer synchronization and automatically runs multiple
OpenCL platforms and duplicated components, such as
contexts and memory objects. Moreover, it also controls event
dependencies cross-queue scheduling.[41]

The GPU And Multi-core Aware (GAMA)

It is a framework to aid computational scientists in the
development or porting of data-parallel applications to
heterogeneous computing platforms CPU/GPU cores. GAMA
is specially designed to efficiently execute irregular
applications where it is hard to make the needed estimation to
compute the input data sets.[42]. In addition to many others
such as QUARK [43], PaRSEC[44], SuperMatrix[45],
StarSs[46] and Kaapi[47].

VII. WORKLOAD SCHEDULING PURPOSES

Answering why a particular scheduling of tasks to PUs is
carried out, the following works are classified based on two
main criteria -see table3- :

Improving performance.

Improving energy consumption.

First, we survey the research that addresses improving
performance.

C. Improving Performance

Scheduling tasks on processors could be induced by the
PU characteristic/capability itself and/or the subtasks. In case
subtasks are similar, the scheduling then is based on achieving
best performance or efficient power consumption or avoiding
memory contention or achieving load balance. On the other
hand, if the subtasks are different, deciding if a subtask ought
to be mapped is based on the computation of an intensive task
mapped to GPUs and memory intensive task to CPU.

TABLE III. CLASSIFY THE RESEARCHS BASED ON THE SCHEDULING

PURPOSES

Type of scheduler based on the

purpose of scheduling
Examples of the researches

 Improve Performance by leverage
memory utilization

48,49

Improve performance by improve
load balance and resource

underutilization

30,31,35,37,40,45,52,53.

Improve performance or in
heterogenous SoC embedded

54,5,56,57,58,59,60,61

Improve performance and energy
consumption in heterogenous SoC

on desktop

62,64,65,63

Improve energy efficiency 70,71.72.73,74,75,76,77

1) Scheduling to concern memory limitations: Some cases

exhibit the following: a subtask cannot be mapped on a

particular PU; when the memory footprint of a subtask

exceeds the memory size of the GPU. For example, the

GPGPUs huge data demands costly memory modules, such as

GDDR, to sustain high data bandwidth. The high cost poses

limitations on the total memory capacity on hand to GPGPUs,

and the data needs to be transferred among the host CPUs and

GPGPUs. However, the data transfer long latency has resulted

in considerable performance overhead. To ease this matter,

modern GPGPUs have actualized the non-blocking data

transfer, which enables a GPGPU to carry out computing

while the data is under transmission. In [48], it is proposed

that a capacity aware scheduling algorithm exploits the non-

blocking data transfer in modern GPGPUs. By effectively

benefitting from the non-blocking transfers, experiments show

an average of 24.01% performance improvement when

compared to other approaches existing, which only consider

memory capacity.

One of the most critical problems in HC is scheduling in
the presence of memory contention. This occurs when
processors have used concurrency multi CPU cores and many
cores as GPU are competing on the available resources such as
register files memory and interconnected network that cause
the contention. In the presence of memory contention, entirely
static scheduling is hard coding and likely fails to solve it [49].
Given that the environment of multiprogramming is changing
dramatically, the resources availability and the workload
programs behaviors are indeterministic. This has an effect on
the right mapping and scheduling of the required tasks. An
approach that can adjust the mapping decision concurring to
the dynamic computing environment is what is needed, by
taking into account the target program behavior. To resolve
the memory contention, Luk et al in [31] incorporate offline
profiling to decide the best partitioning between the CPU and
GPU as Grewe and O'Boyle [50] apply machine learning
techniques to forecast the ideal partitioning. Both approaches
arrived at promising results but only under the assumption that
no other programs are operating on the system. Ravi et al. [51]
use a dynamic "task farm" method for task mapping where the
task is partitioned into chunks of a fixed number, and one
chunk is sent to each device. When a device is done

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

240 | P a g e

www.ijacsa.thesai.org

processing, it calls for a new chunk. However, this dynamic
approach achieves poor performance in the presence of GPU
contention. Another approach was used in [49] where they use
runtime information and the code features of the program
under execution to make the task partitioning prediction to
achieve the best dynamic task scheduling. The good point in
this dynamic scheduler is the low overhead and it avoids the
penalty of long online searching.

2) Scheduling to prevent resource underutilization: In

reality, the majority of GPU applications do not utilize all of

the available components in a system efficiently, either

entirely failing in using a component or using it to a limited

fragment of its full potential. This underutilization can harm

both energy efficiency and performance. Some research

related the underutilization of GPU to the penalty of

CPU/GPU communication and coordinate. Consequently, they

reduce the CPU/GPU interaction and synchronization aiming

to improve the performance improves the energy consumption.

Boyer [52] studied the iterative algorithms that are

implemented and found that it causes the underutilization of

the GPU resources, since they produce a high overhead of

CPU/GPU arrangements. Thus, he presented several strategies

to be applied when implementing such algorithms. Applying

these strategies would improve the performance and reduce

the communication overhead. He also applied dynamic

algorithms for allocation parallel kernels and efficiently

utilized the available resources and achieved the load balance

between the cores. Moreover in allocation kernels on GPU

stream multi processors the kernels are usually executed

sequentially, one kernel a time even in systems with multiple

powerful devices.

Some other framework schedulers harnessing kernel
partitioning to achieve the load balance on GPUs and improve
the performance. One of the heterogeneous systems that used
kernel partitioning is done by Ghose et al[53]. They present an
in-depth analysis of control flow divergence of OpenCL
kernels. Since branches have a significant impact on OperCL
kernel performance, the author uses divergence as a guide to
partition a kernel across CPU and GPU. A machine learning
model is trained by using the amount of divergence in a
program; then this model is used to predict unseen program’s
optimal partition. Splitting a kernel into parts and spreading
these parts into distinct devices can be done statically or
dynamically. But most of these research studies are not
heterogeneous computing systems, and thus they are out of
our scope.

3) Scheduling for achieving load balance: The load

balancing across the resources in the system is the most

important goal of the scheduler’s framework which considers

performance improvement. As load balancing enhances the

overall system performance, there are various approaches for

achieving this. Some approaches focus on the static algorithms

and arrange the balancing plan during the compile time such

as heterogeneous early finish time HEFT [30,31]. Other

research studies use dynamic strategies such as work stealing

or work share algorithms[35,37,40,45]. On the other hand,

some research studies relate the solution for imbalance load to

resource underutilization. Therefore, they consider improving

resource utilization as mentioned in a previous point.

In the next section, the research studies that consider
scheduling tasks on heterogeneous multiprocessor system-on-
chip (MPSoC), aiming to improve the performance or energy
consumption or both, are discussed.

D. Scheduling Tasks on Heterogeneous Multiprocessor

System-on-chip (MPSoC)

Nowadays, MPSOC is considered a hot topic, where there
have been many pieces of research introducing different
approaches. [54,55, 56, 57, 58, 59, 60, 61]. The work mostly
considered Samsung Exynos 5422 SoC which utilizes 4 big
and/or 4 little cores that possess the same instruction set
architecture ISAs [55, 57, 60]. Nonetheless, the majority of
the effort was applied to the identical type of cores [58, 59, 60,
61]. In spite of that, there were a number of endeavors to
parallelize both big and LITTLE cores [55], exploit cores are
inapplicable with this approach having diverse ISAs such as
CPU and GPU for the reason that they handle instructions in
many ways. A number of studies were conducted to develop
the MPSOC on desktop platforms [62, 63, 64,65]. Task
scheduling and harmonization between CPU/GPU cores using
such platforms cores require additional consideration. In [63],
an algorithm to improve the throughput was proposed. The
algorithm divides both the power budget and the workload
between the CPU/GPU cores of an AMD Trinity single chip
heterogeneous platform, using the same AMD platform by
[64], but memory dispute occurs due to access of the same
bank in different patterns by the CPU and GPU. In addition,
in [62], partition considered the work and mapped them to
threads between the CPU/GPU cores but that did not revolve
around the energy FreeOCL [66]; a similar open source
framework is used for the Arm CPU that acts as both the host
processor and an OpenCL device. This provides concurrent
use of CPU and GPU to carry out the application threads, but
in [67,69], a static dividing is performed by using all the CPU
and GPU cores. Researchers of [68] established that the
influence of temperature-induced variability on circuit lifetime
can be elevated due to stress and exceed over the value
estimated bearing in mind the circuit average temperature. The
researcher presents a simulation framework for the BTI
degradation analysis of DVFS designs that considers thermal
profiles under the Dynamic Thermal Management (DTM)
system influence.

In [54] they divide the workload on CPU/GPU savings of
the average temperature of the chip while keeping
performance needs. A lower thermal behavior exhibits an
enhanced long-term reliability (lifetime) of the SoC. Grasso
et.al.[69] focus on analyzing the embedded GPU ARM Mali-
T604 GPU. They used an OpenCL Full Profile support and
investigated the utilization and optimization techniques that
efficiently leverage the hardware resources. They
implemented and evaluated the frame work and concluded that
ARM Mali GPU Compute Architecture was able to achieve
the performance and energy consumption that allows them to
be a good candidate for future HPC systems.

E. Energy-Aware Scheduling Frameworks

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

241 | P a g e

www.ijacsa.thesai.org

There have been several types of research that optimize
scheduling algorithms aiming to reduce the energy
consumption [70,71,72,73,74,75,76,77,78]. Some use a static
algorithm such as a generic algorithm. In [76] they introduce
new chromosome structure to implement a generic algorithm
that adapts to schedule scalable and various tasks in efficient
energy consumption. Instead of individual tasks and machines,
it is based upon groups of alike tasks and machines. This fresh
arrangement is highly scalable and divided into three phases.
The first two phases of the algorithm exhibit near-constant
execution time notwithstanding of the number of tasks to be
listed or the figures of machines in the system. Only the final
phase of the algorithm is dependent upon the number of tasks
and machines; this could be relieved by executing the phase
for only a subset of the solutions from the last population.

Some others use algorithms that schedule the tasks in a
way that controls the system energy consumption at a certain
point of time. Other research studies aim to schedule tasks
while keeping the system energy at a limit given range and
prevent the system energy overloaded. This point of keeping a
system in a limit range of energy is critical to achieving the
exascale systems constraints. One of those uprising techniques
is "Power capping", which is used to control power
consumption in a data center in a certain period of time. In
[77] the researchers study the impact of power variation of
scheduling multi programming concurrently. They present an
efficient algorithm for power capping.

VIII. CONCLUSION

Recently, the use of different processors simultaneously,
such as CPU cores combined with different accelerators GPUs
cores, for achieving efficiency in performance and energy
control of Exascale Computing, has been intensively
researched. Heterogeneous computing emerges as a promise
paradigm. Different approaches were proposed to leverage
heterogeneous computing toward Exascale Computing.
Several of these approaches have been reviewed in this paper.
Also, the evolution of hardware and the various approaches
proposed for partitioning, scheduling and allocating the
workload on the heterogeneous architecture, desecrate systems
and fused systems or heterogeneous SoC were discussed as
well. These research studies are done with two main goals:
performance improvement and energy efficiency. In
conclusion, we confirm the need for accommodating software
development along with the quick evolution of the hardware.
In our review, a huge gap has been found between the
algorithms improvements to utilize the available hardware
resources and the evolution in hardware. Tuning the
scheduling techniques and the combining of algorithms by
exploring other software techniques to reduce the
underutilization of the accelerators resources -specifically
GPUs resources is bound to decrease this gap.

REFERENCES

[1] https://youtu.be/IIzjMr4f-8U

[2] https://www.top500.org/green500/lists/2017/11/

[3] A. Branover, D. Foley, M Steinman. AMD fusion APU: Llano. IEEE
Micro, 32, 2(2012), 28–37.

[4] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T.Kurts.. "A fully
integrated multi- CPU, GPU and memory controller 32nm processor". In

Proceedings of the IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC’11). 264–266. Damaraju et al. 2012

[5] Exynos 5 Octa (5422). (2016). www.samsung.com/exynos/

[6] A. R. Brodtkorb, C. Dyken, T.R. Hagen, J. M. Hjelmervik, and O.O.
Storaasli, ―State-of-the-art in Heterogeneous Computing,‖ Scientific
Programming, vol. 18, no. 1, pp. 1-33, 2010. doi:10.3233/SPR-2009-
0296

[7] https://www.nextplatform.com/2017/09/18/m8-last-hurrah-oracle-sparc/

[8] "Altera's 30 billion transistor FPGA". Gazettabyte. 28 June 2015.
Retrieved 24Jan 2017.
http://www.gazettabyte.com/home/2015/6/28/alteras-30-billion-
transistor-fpga.html

[9] http://www.enterprisetech.com/2018/03/13/oracle-cranks-cores-32-
sparc-m8-chip/.

[10] https://www.techpowerup.com/gpudb/2632/geforce-gtx-titan-x

[11] https://www.nvidia.com/en-us/data-center/pascal-gpu-architecture/

[12] https://ark.intel.com/products/codename/48999/Knights-Landing

[13] K. Barker, K. Davis, A. Hoisie, D. Kerbyson, M. Lang,S. Pakin and J.
Sancho, Entering the petaflop era: The architecture and performance of
Roadrunner, in: Supercomputing, November 2008, IEEE Press,
Piscataway, NJ, USA, 2008, pp. 1–11

[14] https://www.intel.com/content/www/us/en/products/processors/xeon-
phi/xeon-phi-processors.html

[15] http://searchdatacenter.techtarget.com/definition/IBM-Roadrunner

[16] https://gizmodo.com/5090737/ibm-roadrunner-tops-cray-as-the-official-
worlds-fastest-supercomputer

[17] Schulte, M.J., Ignatowski, M., Loh, G.H., Beckmann, B.M., Brantley,
W.C., Gurumurthi, S., Jayasena, N., Paul, I., Reinhardt, S.K. and
Rodgers, G., 2015. Achieving exascale capabilities through
heterogeneous computing. IEEE Micro, 35(4), pp.26-36.S.

[18] Mittal. A survey of techniques for managing and leveraging caches in
GPUs. Journal of Circuits, Systems, and Computers (JCSC) 23, 8
(2014).

[19] Mittal S, Vetter JS. A survey of CPU-GPU heterogeneous computing
techniques. ACM Computing Surveys (CSUR). 2015 Jul 21;47(4):69

[20] H. Hong; Z. H.B. Hong. Dynamically tuned push-relabel algorithm for
the maximum flow problem on CPU-GPU-hybrid platforms. In
Proceedings of the 2010 IEEE International Symposium on Parallel &
Distributed Processing (IPDPS’10). 1–10.

[21] A. Nere, S. Franey, A. Hashmi, and M. Lipasti. 2012. Simulating
cortical networks on heterogeneous multi-GPU systems. J. Parallel and
Distrib. Comput. 43, 7 (July 2012), 953–971.

[22] J. Shen, A.Varbanescu, H. Sips, M. Arntzen, and D. G. Simons. Glinda:
A frameworkfor accelerating imbalanced applications on heterogeneous
platforms. In Proceedings of the ACM International Conference on
Computing Frontiers. ACM, New York, NY, Article 14. 2013

[23] S. Ding, J. He, H. Yan, and T. Suel.. Using graphics processors for high
performance IR query processing. In Proceedings of the 18th
International Conference on World Wide Web (WWW’09)P.421–430
,2009

[24] M. Daga, A. M. Aji, and W. Feng. On the efficacy of a fused CPU+
GPU processor (orAPU) for parallel computing. In Symposium on
Application Accelerators inHigh-Performance Computing(SAAHPC).
IEEE, 141–149. 2011.

[25] K. L. Spafford, J. S. Meredith, S. Lee, D. Li, Philip C. Roth, and J. S.
Vetter. The tradeoffs of fused memory hierarchies in heterogeneous
computing architectures. In Proceedings of the 9th Conference on
Computing Frontiers. 103–112. 2012.

[26] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W. W. Hwu.
An asymmetric distributed shared memory model for heterogeneous
parallel systems. In ACM SIGARCH Computer Architecture News, 38 1
(March 2010), 347–358. 2010.

[27] Q. Hu, N. A. Gumerov, and R. Duraiswami. Scalable fast multipole
methods on distributed heterogeneous architectures. In Proceedings of
the 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, New York, NY, Article 36. .
2011

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

242 | P a g e

www.ijacsa.thesai.org

[28] J. Gummaraju, L. Morichetti, M. Houston, B. Sander, B. R. Gaster, and
B. Zheng. 2010. Twin peaks: A software platform for heterogeneous
computing on general-purpose and graphics processors. In Proceedings
of the 19th International Conference on Parallel Architectures and
Compilation Techniques (PACT’10). ACM, New York, NY, 205–216.

[29] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N.
Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey.. Debunking the 100X GPU vs. CPU myth: An evaluation
of throughput computing on CPU and GPU. In Proceedings of the 37th
Annual International Symposium on Computer Architecture (ISCA’10).
ACM, New York, NY,P 451–460. 2010

[30] D. Grewe and Michael F. P. O’Boyle.. A static task partitioning
approach for heterogeneous systems using OpenCL. In Proceedings of
the 20th International Conference on Compiler Construction:Part of the
Joint European Conferences on Theory and Practice of Software.
Springer, Berlin, P 286–305. 2011

[31] C.-K. Luk et al., "Qilin: Exploiting Parallelism on Heterogeneous
Multiprocessors with Adaptive Mapping," in the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture. MICRO-42,
pp. 45–55, 2009.

[32] W. Liu et al., "A Waterfall Model to Achieve Energy Efficient Tasks
Mapping for Large Scale GPU Clusters," in the IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd
Forum, IPDPSW, pp. 82–92, 2011.

[33] A.P.D. Binotto et al., "Towards dynamic reconfigurable load-balancing
for hybrid desktop platforms," in the IEEE International Symposium on
Parallel & Distributed Processing Workshops and Phd Forum, IPDPSW,
pp. 1–4, 2010.

[34] I. Galindo et al., "Dynamic load balancing on dedicated heterogeneous
systems," In Recent Advances in Parallel Virtual Machine and Message
Passing Interface, Springer, pp. 64–74, 2008.

[35] C. Augonnet, J. Clet-Ortega, S. Thibault and R. Namyst, "Data-Aware
Task Scheduling on Multi-accelerator Based Platforms," 2010 IEEE
16th International Conference on Parallel and Distributed Systems,
Shanghai, 2010, pp. 291-298.doi: 10.1109/ICPADS.2010.129

[36] Augonnet Cdric et al., "StarPU: a unified platform for task scheduling
on heterogeneous multicore architectures", Concurrency and
Computation: Practice and Experience, vol. 23.2, pp. 187-198, 2011.

[37] C. Augonnet et al. ―StarPU: a unified platform for task scheduling on
heterogeneous multicore architectures‖. In: Concurrency and
Computation: Practice and Experience 23.2 (2011), pp. 187–198.

[38] Augonnet Cdric et al., "StarPU: a unified platform for task scheduling
on heterogeneous multicore architectures", Concurrency and
Computation: Practice and Experience, vol. 23.2, pp. 187-198, 2011.

[39] Janzén, J., Black-Schaffer, D., & Hugo, A. (2016, October). Partitioning
GPUs for Improved Scalability. In Computer Architecture and High
Performance Computing (SBAC-PAD), 2016 28th International
Symposium on (pp. 42-49). IEEE.

[40] Agullo, Emmanuel, et al. "Achieving high performance on
supercomputers with a sequential task-based programming model."
IEEE Transactions on Parallel and Distributed Systems (2017).

[41] Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A parallel
programming standard for heterogeneous computing systems.
Computing in science & engineering, 12(3), 66-73.

[42] João Barbosa. GAMA framework: Hardware Aware Scheduling in
Heterogeneous Environments. Tech. rep. Computer Science Dept.,
University of Texas at Austin, Sept.2012.7

[43] YarKhan, J. Kurzak, J. Dongarra, "QUARK UsersGuide: QUeueing And
Runtime for Kernels", UTK ICL, 2011.

[44] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hrault, J.
Dongarra, "PaRSEC: A programming paradigm exploiting heterogeneity
for enhancing scalability", Computing in Science and Engineering, vol.
15, no. 6, pp. 3645, Nov. 2013.

[45] E. Chan, F. G. Van Zee, P. Bientinesi, E. S. Quintana-Orti, G. Quintana-
Orti, R. Van de Geijn, "SuperMatrix: a multithreaded runtime
scheduling system for algorithms-byblocks", 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, pp.
123132, 2008.

[46] J. Planas, R. M. Badia, E. Ayguad, J. Labarta, "Hierarchical task-based
programming with StarSs", International Journal of High Performance
Computing Applications, vol. 23, no. 3, pp. 284299, 2009.

[47] T. Gautier, X. Besseron, L. Pigeon, "Kaapi: A thread scheduling runtime
system for data flow computations on cluster of multi-processors", 2007
International Workshop on Parallel Symbolic Computation ser. PASCO
07, pp. 1523, 2007.

[48] H. W. Liu, H. K. Kuo, K. T. Chen and B. C. C. Lai, "Memory capacity
aware non-blocking data transfer on GPGPU," SiPS 2013 Proceedings,
Taipei City, 2013, pp. 395-400.doi: 10.1109/SiPS.2013.6674539

[49] Grewe D., Wang Z., O’Boyle M.F.P. (2014) OpenCL Task Partitioning
in the Presence of GPU Contention. In: Cașcaval C., Montesinos P. (eds)
Languages and Compilers for Parallel Computing. LCPC 2013. Lecture
Notes in Computer Science, vol 8664. Springer, Cham

[50] Dominik Grewe and Michael F.P. O'Boyle. A static task partitioning
approach for heterogeneous systems using opencl. In CC, 2011.

[51] 40]Vignesh T. Ravi, Wenjing Ma, David Chiu, and Gagan Agrawal.
Compiler and runtime support for enabling generalized reduction
computations on heterogeneous parallel configurations. In ICS, 2010.

[52] Boyer, M. (2013). Improving Resource Utilization in Heterogeneous
CPU-GPU Systems (Doctoral dissertation, Ph. D. thesis, University of
Virginia, Virginia).

[53] Ghose, A., Dey, S., Mitra, P., & Chaudhuri, M. (2016, February).
Divergence aware automated partitioning of OpenCL workloads. In
Proceedings of the 9th India Software Engineering Conference (pp. 131-
135). ACM.

[54] Weber Wachter, Eduardo, Merrett, Geoff V., Singh, Amit and Al-
Hashimi, Bashir (2017) Reliable mapping and partitioning of
performance-constrained OpenCL Applications on CPU-GPU MPSoCs
At 15th IEEE/ACM Symposium on Embedded Systems for Real-Time
Multimedia, Seoul, Korea, Republic of. 15 - 20 Oct 2017.

[55] Ali Aalsaud, Rishad Shafik, Ashur Rafiev, Fie Xia, Sheng Yang, and
Alex Yakovlev.2016. Power–Aware Performance Adaptation of
Concurrent Applications inHeterogeneous Many-Core Systems. In
Proceedings of the 2016 International Symposium on Low Power
Electronics and Design (ISLPED ’16). ACM, New York NY, USA,
368–373. https://doi.org/10.1145/2934583.2934612

[56] Karunakar Reddy Basireddy, Amit Singh, Geoff V. Merrett, and Bashir
M. Al-Hashimi. 2017. ITMD: run-time management of concurrent
multi-threadedapplications on heterogeneous multi-cores. In Conference
on Design, Automationand Test in Europe 2017 (DATE’17).
https://eprints.soton.ac.uk/406291/

[57] Kiran Chandramohan and Michael F.P. O’Boyle. 2014. Partitioning
Data-paralle Programs for Heterogeneous MPSoCs: Time and Energy
Design Space Exploration.In Proceedings of the 2014
SIGPLAN/SIGBED Conference on Languages,Compilers and Tools for
Embedded Systems (LCTES ’14). ACM, New York, NY, USA,73–82.
https://doi.org/10.1145/2597809.2597822

[58] B. Donyanavard, T. MAĳck, S. Sarma, and N. Dutt. 2016. SPARTA:
Runtime task allocation for energy efficient heterogeneous manycores.
In 2016 International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS).1–10.

[59] Gangwon Jo, Won Jong Jeon, Wookeun Jung, Gordon Taft, and Jaejin
Lee. 2014.OpenCL Framework for ARM Processors with NEON
Support. In Proceedings of the 2014 Workshop on Programming Models
for SIMD/Vector Processing (WPMVP ’14). ACM, New York, NY,
USA, 33–40. https://doi.org/10.1145/2568058.2568064

[60] J. Ma, G. Yan, Y. Han, and X. Li. 2016. An Analytical Framework for
Estimating Scale-Out and Scale-Up Power Efficiency of Heterogeneous
Manycores. IEEE Trans. Comput. 65, 2 (Feb 2016), 367–381.
https://doi.org/10.1109/TC.2015.2419655

[61] E. Del Sozzo, G. C. Durelli, E. M. G. Trainiti, A. Miele, M. D.
Santambrogio, and C. Bolchini. 2016. Workload-aware power
optimization strategy for asymmetric multiprocessors. In 2016 Design,
Automation Test in Europe Conference Exhibition (DATE). 531–534.

[62] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez,
and Joel Emer. 2012. Scheduling Heterogeneous Multi-cores Through
Performance Impact Estimation (PIE). In Proceedings of the 39th
Annual International Symposium on Computer Architecture (ISCA ’12).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

243 | P a g e

www.ijacsa.thesai.org

IEEE Computer Society, Washington, DC, USA,213–224.
http://dl.acm.org/citation.cfm?id=2337159.2337184

[63] Indrani Paul, Vignesh Ravi, Srilatha Manne, Manish Arora, and
Sudhakar Yalamanchili. 2013. Coordinated Energy Management in
Heterogeneous Processors.In Proceedings of the International
Conference on High Performance Computing,Networking, Storage and
Analysis (SC ’13). ACM, New York, NY, USA, Article 59,12 pages.
https://doi.org/10.1145/2503210.2503227

[64] Hao Wang, Vijay Sathish, Ripudaman Singh, Michael J. Schulte, and
Nam Sung Kim. 2012. Workload and Power Budget Partitioning for
Single-chip Heterogeneous Processors. In Proceedings of the 21st
International Conference on Parallel Architectures and Compilation
Techniques (PACT ’12). ACM, New York, NY, USA,401–410.
https://doi.org/10.1145/2370816.2370873

[65] Hao Wang, Ripudaman Singh, Michael J. Schulte, and Nam Sung Kim.
2014.Memory Scheduling Towards High-throughput Cooperative
Heterogeneous Computing. In Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation (PACT ’14).
ACM, New York, NY, USA, 331–342.
https://doi.org/10.1145/2628071.2628096

[66] FreeOCL: Multi-platform implementation of OpenCL 1.2 targeting
CPUs.(2017). Retrieved 2017 from https://github.com/zuzuf/freeocl

[67] A. Prakash, S. Wang, A. E. Irimiea, and T. Mitra. 2015. Energy-efficient
execution of data-parallel applications on heterogeneous mobile
platforms. In 2015 33rd IEEE International Conference on Computer
Design (ICCD). 208–215. https://doi.org/10.1109/ICCD.2015.7357105

[68] H. Chahal, V. Tenentes, D. Rossi, and B. M. Al-Hashimi. 2016. BTI
aware therma management for reliable DVFS designs. In 2016 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT). 1–6.
https://doi.org/10.1109/DFT.2016.7684059

[69] I. Grasso, P. Radojkovic, N. Rajovic, I. Gelado, and A. Ramirez. 2014.
Energy Efficient HPC on Embedded SoCs: Optimization Techniques for
Mali GPU. In 2014IEEE 28th International Parallel and Distributed
Processing Symposium. 123–132.
https://doi.org/10.1109/IPDPS.2014.24

[70] M. Oxley, S. Pasricha, H. J. Siegel, A. A. Maciejewski, J. Apodaca,D.
Young, L. Briceno, J. Smite, S. Bahirat, B. Khemka, A. Ramirez,and Y.
Zou, ―Makespan and energy robust stochastic static resource allocation
of a bag-of-tasks to a heterogeneous computing system,‖ IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 10,
pp.2791–2805, Oct 2015.

[71] M. Halappanavar, M. Schram, L. de la Torre, K. Barker, N. Tallent, and
D. Kerbyson, ―Towards efficient scheduling of data intensive high
energy physics workflows (works ’15),‖ in 10th workshop on
Workflows in Support of Large-Scale Science, Nov 2015, pp. 1–9.

[72] R. Friese, B. Khemka, A. A. Maciejewski, H. J. Siegel, G. A. Koenig, S.
Powers, M. Hilton, J. Rambharos, G. Okonski, and S. W. Poole,―An
analysis framework for investigating the trade-offs between system
performance and energy consumption in a heterogeneous computing
environments,‖ in 22nd Heterogeneity in Computing Workshop (HCW
2013), in the proceedings of the IPDPS 2013 Workshops & PhD Forum
(IPDPSW), May 2013.

[73] K. M. Tarplee, R. Friese, A. A. Maciejewski, H. J. Siegel, and E.
Chong,―Energy and makespan tradeoffs in heterogeneous computing
systems using efficient linear programming techniques,‖ IEEE
Transactions on Parallel and Distributed Systems, vol. 26, 2015.

[74] K. M. Tarplee, R. Friese, A. A. Maciejewski, and H. J. Siegel, ―Scalable
linear programming based resource allocation for makespan
minimization in heterogeneous computing systems,‖ Journal of Parallel
and Distributed Computing, vol. 84, pp. 76–86, 2015.

[75] Friese, Ryan D. "Efficient genetic algorithm encoding for large-scale
multi-objective resource allocation." In Parallel and Distributed
Processing Symposium Workshops, 2016 IEEE International, pp. 1360-
1369. IEEE, 2016.

[76] Feng, Y., Li, G., & Sethi, S. P. (2018). A three-layer chromosome
genetic algorithm for multi-cell scheduling with flexible routes and
machine sharing. International Journal of Production Economics, 196,
269-283.

[77] Shoukourian H, Wilde T, Auweter A, Bode A. Power variation aware
configuration adviser for scalable hpc schedulers. InHigh Performance
Computing & Simulation (HPCS), 2015 International Conference on
2015 Jul 20 (pp. 71-79). IEEE.

[78] S. Mittal and J. S. Vetter. A survey of methods for analyzing and
improving GPU energy efficiency. ACM Computing Surveys 47, 2,
Article 19 (2015).

