
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

244 | P a g e

www.ijacsa.thesai.org

Heterogeneous HW/SW FPGA-Based Embedded

System for Database Sequencing Applications

Talal Bonny

Department of Electrical and Computer Engineering

University of Sharjah, Sharjah, UAE

Abstract—Database sequencing applications including

sequence comparison, searching, and analysis are considered

among the most computation power and time consumers.

Heuristic algorithms suffer from sensitivity while traditional

sequencing methods, require searching the whole database to

find the most matched sequences, which requires high

computation power and time. This paper introduces a dynamic

programming technique based-on a measure of similarity

between two sequential objects in the database using two

components, namely frequency and mean. Additionally, database

sequences that have the lowest scores in the comparison process

were excluded such that the similarity algorithm between a query

sequence and other database sequences is applied to meaningful

parts of the database. The proposed technique was implemented

and validated using a heterogeneous HW/SW FPGA-based

embedded system platform. The implementation was partitioned

into (1) hardware part (running on logic gates of FPGA) and (2)

software part (running on ARM processor of FPGA). The

validation study showed a significant reduction in computation

time by accelerating the database sequencing processes by 60%

comparing to traditional known methods.

Keywords—Database; sequence comparison; dynamic

programming; FPGA

I. INTRODUCTION

Sequence analysis, comparing, alignment, or any sequence
computing application are common concepts in a variety of
research fields. The rapid analysis of Protein and DNA
sequences, in Biology, is performed on large databases of
sequences in order to search for close matches in specific
sequences, such as a protein that has been discovered recently
[1], [2], [3], [4]. If the sequences were correlated, then new
drugs would be created, and the invention of better techniques
could be possible in order to treat the disease.

"String Editing" [5], which is a form of sequence
comparison, is used, in Computer Science, as error correction
mechanism similar to the one found in spell checkers and file
comparators. The way it works is by comparing and searching
through a large sequence database of words for a particular
one. Sequence comparison is also used to find the Longest
Common Subsequence (MLCS) between two input strings [6].
Using Sequence Comparison in Social Science [7], [8], [9],
[10], involves a broad selection of topics, such as national
histories and daily life careers. In video processing, a video's
temporal and spatial info that is contained in a frame
sequence, are aligned to find the repeated contents in a video's
stream [11]. In the previously mentioned applications, the
time consumption is high, since they rely on the comparison

of a specific sequence with a huge sequences database.
Approximate solutions can be found via the use of Heuristic
algorithms, which are problematic since they are sensitive and
my trim searches which may result in missing some important
homologies, unexpectedly. However, deterministic algorithms
can guarantee that the optimal comparison result is returned
from the two sequences as they are based on dynamic
programming principles. In these algorithms, a query
sequence, which is the sequence under search, is compared
with every sequence in the database. A similarity score will be
computed for every comparison process. The higher the score,
the closer is the database sequence to the query.

Dynamic programming based algorithm breaks down the
large computing problems into a smaller subset of problems,
where each one's result depends dynamically on the other. The
end results are presented in a time which is proportional to the
product of the two lengths of both sequences under
comparison, such as if n represents the query sequence's
length, and m represents that of the database sequence, the
optimal alignment from the previous algorithms will be
provided in n x m steps. Hence, we can conclude that
searching a whole database will grow the computational time
in a linear fashion with respect to the size of the database.

Powerful and efficient techniques have been suggested to
compute these huge amounts of data in a more realistic time
using the FPGAs [12], [13]. The authors of [14] proposed a
Recursive Variable Expansion (RVE) based technique and
implemented it on the FPGA. In [15], the authors partitioned
the database sequences into two sections based on the
sequence length by running the short sequences on the CPU
and the long sequences on the GPU. In [16], the authors
combined a sequence alignment algorithm with linear space
complexity using a GPU. The authors in [17] have suggested a
measurement of similarities across two web pages, as well as a
clustering method of the web sessions via a Fast Optimal
Global Sequence Alignment algorithm (FOGSAA). In [18],
the authors provided a comparative analysis of the various
optimization strategies of the Smith-Waterman algorithm and
contributed to the dynamic programming of sequence
alignment and the implementation in FPGA. [19] presented a
run-time efficient hardware-software partitioning technique
for FPGAs. [20] presented a method to approximate dynamic
programming for direct model predictive control (MPC) of
current reference tracking in power electronics and the FPGA
implementation is validated on a variable speed drive system
with a three-level voltage source converter.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

245 | P a g e

www.ijacsa.thesai.org

Every previous application and submission has used the
similarity measures to find how close the objects are to each
other. This object may be a sequence database, a string file, a
stream of a video, or a webpage. Objects consist of various
frequently reoccurring letters (codes) and are sequences in a
database.

In this research, we suggest new similarity measures
(similarity functions as we refer to them) that are based upon
the mathematical parameters; the mean of the codes in the
sequences on the database, and their frequency. We can
reduce the required time to measure the similarity of two
objects (database sequences) by using our similarity functions.
Also, we will present a new efficient technique that reduces
the computational time required to compute similarities
between the entire database sequences and the query sequence
by the exclusion of the sequences which obtain a low score in
the comparison process. In such cases, we have to apply
dynamic programming algorithm on part of the database and
not on the entire database. We also develop a heterogeneous
HW/SW FPGA-Based Embedded System which exploits the
new features of the Xilinx ZYNQ-7000 series, by partitioning
the implementation into (1) hardware part (running on logic
gates of FPGA) and (2) software part (running on ARM
processor of FPGA). As the sorting part of the technique
requires more computations, we run it on ARM processor of
FPGA, while we leave the part which can be parallelized to be
run on logic gates of the FPGA. Using our technique, we can
size-down the comparison application time by 60% with
respect to the traditional methods. The selling point in this
technique is the ability to use it in conjunction with the
currently available methods to prove their validity.

As a case study, we apply our technique to the dynamic
programming based algorithm the Needleman-Wunsch [21].

Our contributions are as follows:

1) Proposing new similarity functions to measure the

similarity between two objects based on mathematical

parameters.

2) Minimizing the computation time required for database

sequence computing application by proposing a novel

technique.

3) Heterogeneous HW/SW FPGA-Based embedded

system is proposed which executes the hardware part of the

technique on the logic gates of FPGA, and the software part

on the ARM processor of FPGA

The following sections in this paper will be organized as
the following. Section II will demonstrate the sequential
applications via applying the traditional methods. Section III
demonstrates our similarity functions. Section IV will
introduce the time complexity and the reduction of the
computational time of our technique.

The proposed FPGA implementation is presented in
Section V. The experimental results are presented in Section
VI. We conclude this paper in Section VII.

 Database

Each code of the query Q is compared

with all codes of the database sequence D

Fig. 1. The Sequential Alignment, where every Element (Code) of the Query
Sequences has to be Compared to every Element in the Database Sequences.

II. SEQUENCING APPLICATIONS USING TRADITIONAL

METHODS

Traditional methods align two sequences together and
compute an alignment score (AS) that represents the amount
of similarity between them. In order to search for a query
sequence in a database, the query should be aligned with every
sequence in a database. Every alignment process compares
every element (code) of a query sequence with every element
in a database (as mentioned in Figure 1). Based on the results
of the comparison, an alignment score is calculated, where it
can be a match or a mismatch. In the case of a mismatch, any
of the three operations can be performed; insertion, deletion,
or substitution. A gap can be added to the sequences to make
them closer to each other. The scores of these operations are
predefined. The alignment score (AS) of every alignment
process between the database and query is computed using the
following formula:

 () (
) () (1)

Mismatches are usually negative along with the gap
scores, however matches are positive scores. Hence, we can
understand that the matches increase the alignment score,
whereas gaps and mismatches decrease it. The scores of each
are given as input parameters. The optimal number of every
score can be calculated via the use of any dynamic
programming based algorithm, just like the Needleman-
Wunsch algorithm [21]. Then, a matrix containing the scores
is generated. It has the dimensions of m x n (where m is the
query sequence length and n is the database sequence length).
The optimal score in every element of this matrix is calculated
by adding the previous score to the current match score while
subtracting the gap penalties. Every element can be positive,
negative, or 0 value, according to the predefined score.

D 1 : LLFGGTTACCAAAGTT
D 2 LLFTGAAACCCCAGTT :
D 3 TCCGGTTATTAAAGGT :
D 4 AFAGGTTACCNKAGLL :
D 5 TLLKKTTACCCCMGTT :

.

.

.

.

.

.

.
Dn: TTLLLNNCCTTLAGFT

Align Query with each
sequence

Q: TATCGGFFFAAAAAGLT

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

246 | P a g e

www.ijacsa.thesai.org

When the T matrix is full, we use a method called trace
back to determine the optimal sequence alignment score from
the scoring matrix. This method remembers the position in the
scoring matrix the provided the best score so far. This position
can align, or be next to a gap, depending on the traceback
matrix's information. Multiple maximum alignments may
exist. As mentioned earlier, the time required to obtain the
optimal alignment of both sequences (one database sequence
and the query) is proportional to the product of their lengths,
which is n x m steps.

III. OUR PROPOSED SIMILARITY FUNCTIONS

This section shows the new similarity measures we
proposed, or similarity function, as we call them. These
functions rely on the mathematical parameters; the mean of
each database sequence's codes, and their frequency.
Since every sequence contains different reoccurring codes, we
introduce the "Frequency Function", which is our first
similarity function. It relies on the code frequencies for every
sequence. This frequency represents the number of the
repeated codes in a sequence. This indicates the similarity
between both sequences. As an example, when the frequency
of the codes is close one to another, then the two sequences
may be similar.

Most of the time, the sequence may contain multiple
varying codes, and in order to realize the similarities between
the two sequences, we find the frequency difference score
(FDS). This score is the sum of the absolute values of the
differences between the two sequences for each type of code.

Mathematically, the FDS of the database sequence 'D' and
the query sequence 'Q' is defined using the following formula,
considering that both of them have an alphabet of 'n' codes:

 | () ()|
| () ()|
| () ()|

| () ()| (2)

Where "Freq code 1(Q)" is the frequency of code 1 in the
query sequence. "Freq code 1(D)" is the frequency of code 1
in the database sequence, etc.

The first function we proposed does not always yield a
correct output. For example, when two sequences have a close
number of code frequencies, but they are distributed
differently among these two sequences, the frequency score
will not be the correct measurement of similarity.

So, we introduce a 2
nd

 function, dubbed as the "Mean
Function". The mean, or the average, is obtained via the
division of the sum of codes by the number of observations, as
defined in the following formula:

 ̅
∑

 (3)

In our case, it is better to locate a central code
concentration location. This is a good indication of similarities
between two sequences. For example, if the mean is close to
that of another sequence, it is a good indicator of the
possibility of a similarity. When the sequence has varying

codes, we compute the mean difference score (MDS) to find if
a similarity exists among them, as defined in the FDS. This
function, as well, does not always yield the correct output. As
an instance, when two sequences have a close mean to each
other but the number is not the same, the "Mean Score" is not
correct to identify the similarity.

Because of the two problems, we suggest our third
function, which we refer to as the "Frequency+Mean
Function". The new score FMDS is the sum of both, the FDS
and MDS. This is a good indication of a similarity since it
considers both, the number of codes and their concentration.

IV. SEQUENCING APPLICATIONS USING OUR TECHNIQUE

In this section, we are going to propose our new efficient
technique in order to size-down the required computational
time for sequencing applications. Our technique uses the
similarity functions we introduce in section III in order to
compute the similarity between a query sequence with every
database sequence.

The database in a sequencing application has huge
amounts of sequences (as described in Section I). In order to
align the sequence of the query (Q) to everyone in the
database (D), we apply dynamic programming based
algorithms on every pair, as described in section II.

Our technique filters the database where it gets rid of the
sequences that are not close to the query from the searching
process, so the algorithm is applied to the sequences that are
similar to the query.

Our technique identifies the similarity functions and keeps
them close to each related sequence. This procedure may
require huge amount of time since the database may include
huge amount of sequences, which is done off-line
(independent from the comparison process). Hence, the time
does not matter since we perform it only once to prepare our
database for future comparison processes.

Our technique computes the scores of FDS, MDS, and
FMDS when the query sequence has to be compared with the
database sequences. Next, it sorts the sequences in the
database in accordance to the difference score (DS) they
produce, where the lower scores (closer to the query sequence)
are at the top of the database.

Next, it applies dynamic programming-based algorithms
on the sequences that have a low score, which was identified
in the previous step. The sequences resulting in high
difference scores are omitted from the search. This gives us
the best alignment in a reasonable amount of time. The
upcoming section will demonstrate how fast this technique is
with respect to the traditional methods by demonstrating the
time complexity.

A. Complexity of our Technique

As the dynamic programming based algorithm uses
dynamic programming, the complexity that results to align
one sequence is O(m x n). This can be multiplied by the
number of sequences 's' in a database, which will result in O(m
x n x s).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

247 | P a g e

www.ijacsa.thesai.org

In the case of our presented technique, let's assume that we
have c different codes. In order to compute the distribution of
these c codes in the query sequence, we have to scan it along
its length. If its length is assumed to be m, then m steps are
required to perform the scan. Computing the DS between the
query and a sequence on the database requires c steps to
subtract for the c codes, and c-1 steps for the summation
process. If s is the sequences amount, then the steps we need
are ((2c-1) x s) steps to calculate the difference score. Sorting
the s scores via the use of QuickSort requires (s x log s) steps.

If we select 50% of the sequences in the database to apply
the dynamic programming based algorithm on, then
performing this step requires m x n x s/2 steps.

The total number of steps required in our technique is

(()) (

) (4)

i.e., the complexity is O(m × n × s/2).

As an example, assuming a query length m of 500, and s =
10000, each sequence in this database has a length n of 500.
Performing the comparison on the query sequence with all the
sequences in the database using the traditional methods
requires 500 x 500 x 10000 = 2500000000 steps, 2,500
Million. However, via the use of our technique, codding the
data with 4 different codes requires:

500 + (7 x 10000) + (10000 x log 10000) + (500 x 500 x
5000) = ≈ 1250 Million steps.

Our technique saves 50% of the required time to align the
sequences using the traditional methods.

V. FPGA-BASED EMBEDDED SYSTEM DESIGN

The ZedBoard FPGA prototyping board, from Xilinx
1
, is

used to implement our embedded design. The board contains
Zynq-7000 All Programmable SoC FPGA

2
, which is released

by Xilinx into the market, as a new series of products. The
Zynq-7000 FPGA combines ARM dual-core 1GHz Cortex-A9
MPCore Processing System (PS) that comes with a high-
performance memory system, with Xilinx 28 nm
Programmable Logic (PL). Our technique has some parts
which can be run in parallel, such as computing FDS, MDS, or
FMDS for each sequence. These computations are sequence
independent and therefore, they can be run in parallel using
the logic gates of the FPGA. On the other hand, our technique
has another part which needs powerful computations such as
sorting the database sequences based on their similarity score.
This part can be run on the ARM processor of the FPGA. By
partitioning the implementation, we exploit the new features
of Xilinx Zynq7000 series to design heterogeneous HW/SW
FPGA-Based embedded system.

1 Digilent, Inc. Website: www.zedboard.org. 2016
2 Xilinx, Inc. 7 Series FPGAs Overview. Volume 1. Number 15. 2014

A. FPGA Implementation

To implement the embedded design of our technique on
the FPGA prototyping board, different software/hardware
tools are used. The software tools are the MATLAB and the
SDK (Software Development Kit), and the hardware tool is
the Vivado from Xilinx

3
. The MATLAB software is used to

compute the frequency and mean of each code of the
sequences.

The Xilinx Vivado design suite is used to instantiate all
required IPs for our embedded design and to build interfaces
between them. It synthesizes the complete design, implements
it, and generates the bit-stream to be downloaded on the
FPGA for verification. The SDK is used to write the software
application (sorting algorithm), in C programming language,
to be run on one of the two ARM processors. It initiates the
IPs and transfers the required information to/from DDR
memory.

Figure 2 shows the schematic of our embedded design
which contains different IP blocks:

 "DMA IP" (Direct Memory Access)

 "Processing System IP"

 "FMDS IP"

The "DMA IP" is used to transfer Data from the DDR
memory to other parts of the system, and vice versa through
the interface "M AXI HP0" of "Processing System IP". This
will increase the data throughput and will offload the
processor from tasks that involve memory transfers.

The "Processing System IP" includes the ARM processor,
the processor System Reset, the DDR memory controller, and
the AXI interconnects. All these components are combined
together to simplify the schematic as shown in Figure 3.

The "FMDS IP" (Frequency+Mean Difference Score)
includes the FDS (Frequency Difference Score) IP and the
MDS (Mean Difference Score) IP. Each of these blocks is a
two-input subtractor. Their outputs are summed up using two-
input adder to give the Frequency+Mean Difference Score.
The computed frequency and mean values of each sequence
are stored in the DDR memory of the ZedBoard. The
implementation starts by initiating the FMDS and DMA IPs
by the ARM processor through the interfaces M00 AXI and
M01 AXI, of the Processing System IP, respectively (see
Figure 2). The ARM processor transfers the stream of
frequency and means values from the DDR memory to the
"FMDS IP" through M AXIS MM2S interface of the DMA.
The "FMDS IP" computes the absolute values of the
frequency difference scores using FDS IP and the mean
difference scores using MDS IP.

3 Xilinx, Vivado Design Suite - HLx Editions.

www.xilinx.com/products/design-tools/vivado.html. 2016

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

248 | P a g e

www.ijacsa.thesai.org

Fig. 2. Schematic of our Embedded Design Implemented in Xilinx Vivado.

Fig. 3. Schematic of our Embedded Design Implemented in Xilinx Vivado.

Fig. 4. Schematic of our Embedded Design Implemented in Xilinx Vivado.

Fig. 5. FPGA Floorplan for the Embedded System Design.

FDS

Subtractor

Input1

Input2

Output

Add

Adder

Input1

Input2
Output

MDS

Subtractor

Input1

Input2
Output

Frequency + Mean Difference Score (FMDS)

Processing System

DMA

FMDS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

249 | P a g e

www.ijacsa.thesai.org

TABLE I. FPGA RESOURCES UTILIZATION OF OUR EMBEDDED DESIGN

Resources Utilization Available Utilization (%)

FF 7303 106400 6.86

LUT 5921 53200 11.13

Memory LUT 280 17400 1.61

BRAM 3 140 2.14

BUFG 1 32 3.12

Those scores are added to get the frequency+mean
difference scores (see Figure 4). The output of the "FMDS IP"
is then transferred back to the DDR memory through the M
AXIS S2MM interface of the DMA. The sorting algorithm,
which is running on the ARM processor, is used to sort the
sequences based on their score.

B. FPGA Resources Utilization

We implement our design on a Xilinx Zynq-7000 All
Programmable SoC (XC7Z020-CLG484) Artix-7 FPGA using
Zedboard. All IPs are clocked using a 100 MHz frequency
clock signal which is generated by the processing system.
Table I summarizes the FPGA resources utilization of our
embedded system. For example, less than 12% of the slice
Look-up tables and less than 7% of the Flip-Flops registers are
utilized. In the fact, the most resources are dominated by the
processing system IP and the DMA, as shown in Figure 5.
This figure shows the floorplan placement of the different IPs:
the processing system IP is marked in red, the DMA in yellow
and the FMDS IP in blue.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results of our
technique. For evaluation, DNA sequences of the database
DNA Data Bank of Japan (ddbj)

4
 were used. 100000

sequences of the length of 400 nucleotides were selected as a
case study. Our technique is compared with the optimal
sequence alignment Needleman-Wunsch Algorithm

5
. Random

sequences were selected as a query to test our technique using
different similarity functions.

Fig. 6. Average and Worst thresholds when our Similarity Functions:

Frequency, Mean, or Frequency + Mean is used.

4 DDBJ Center, http://www.ddbj.nig.ac.jp/

5 National Center for Biotechnology Information, "Basic Local
Alignment Search Tool", blast.ncbi.nlm.nih.gov/Blast.cgi

Figure 6 shows the threshold when our similarity
functions, Frequency, Mean or Frequency + Mean is used. In
this figure, we define a new parameter called "Threshold". The
threshold refers to the number of sequences we need to apply
Needleman Wunsch Algorithm on them (using our technique).

The first similarity function used in Figure 6 is
"Frequency". The maximum threshold among all tested
queries is 46. This is the worst case in which we need to apply
the Needleman-Wunsch Algorithm on 46 sequences. The
average threshold of the "Frequency" similarity function is
10.4.

When our similarity function "Mean" is used (second bars
in Figure 6), the maximum threshold (worst case) and the
average among all other queries is 78 and 17.5, respectively.

Looking at the obtained results, we find that using a
similarity function alone (no combinations) does not yield
good results. This is because two sequences are to have a close
number of code frequencies (but distributed differently among
both of them). Here, the FDS is not a correct measurement of
similarity. Also, when two sequences have close Mean, but
their frequency is different. Here, MDS is not a correct
measure. Therefore, a combination of both yields better
results, as shown in the third bars of Figure 6. The worst case
threshold (maximum) among all the other cases in this
function, and the average threshold become 40 and 7.2
respectively. Hence, the use of FMDS yields the best outcome.
Or, when our technique is to be used on the best 40%
sequences, applying the Needleman-Wunsch algorithm is
enough to obtain a maximum alignment score. Figure 7 shows
the details of distributing the threshold through all
experiments when the similarity function "Frequency + Mean"
is used.

As shown, in 66% of the experiments, the maximum
threshold is less than 10, i.e., it exists in the top 10% of the
database. It is between 10 and 20 in 15% of the experiments,
while, it is between 20 and 30 in 10% of the experiments, and
between 30 and 40 in the rest.

Fig. 7. Distributing the threshold through all Experiments when the

Similarity Function: Frequency + Mean is used.

% 66

% 15

% 10

9 %

Distributio

n

 n of threshold when the similarity function "Frequency +

Mean" is used

Less than 10 Between 10 and 20 Between 20 and 30 Between 30 and 40

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

250 | P a g e

www.ijacsa.thesai.org

Fig. 8. The Error Rate Resulted from Removing Sequences from the

Database.

When the technique is applied to less than 40% of
sequences in the database, the result will not be correct for all
experiments, because the sequence that has the lowest DS is
not the sequence that has the highest similarity score. The
result will be different depending on how many sequences are
omitted from the database.

Figure 8 provides the rate of error that results when we
omit sequences from the database. The x-axis represents the
percentage of the sequences which have been removed from
every database for all experiments. The y-axis represents the
number of the wrong cases that result when we omit
sequences from the database. For instance, when 99% of
database sequences are removed, there will be 61% of wrong
cases and only 39% cases with correct results. Decreasing the
percentage of removed sequences decreases the error rate, and
the correct cases number increases. If the percentage of the
omitted sequences is 60%, and 40% of the database remains,
then no wrong cases will be available. This is considered as
the best case in accordance with the database size and time of
execution. Omitting fewer sequences will not have an effect
on the results, but will increase the size of the database, which
increases the analyzation time.

Fig. 9. The Effect of Removing the Sequences on the Execution Time.

Fig. 10. Execution Time Comparison between Traditional Methods and the

Proposed Technique.

Figure 9 demonstrates the impact of omitting more
sequences on the time needed to obtain the highest similarity
score sequences. Using traditional methods by applying the
Needleman-Wunsch Algorithm on the entire sequences in the
database, requires 5.9 seconds to obtain the best solution.
Increasing the number of sequences omitted will not reduce
execution time, however, it will increase the error rate, as seen
in Figure 8.

Figure. 10 shows a comparison between the execution time
of traditional methods and our technique. In this figure, The x-
axis shows the best, worst and average cases through all
sequences of the database. The y-axis shows the execution
time in seconds. The blue bar shows the time for traditional
methods while the red one shows the time for our technique
which applies NW algorithm on selected 40% of the database
sequences. The first bars show the best case in which the time
difference is the best (70% improvement), while the worst
difference is shown in the second bars (58% improvement).
The third bars represent the average of all experiments. Here,
the time of execution via the use of our technique is improved
by 60% in respect to that of the traditional methods. (The
average of the traditional methods is 4.18 seconds, while our
technique has a 1.7 seconds average time.) We obtained this
result because we have excluded 60% of the sequences before
applying the Needleman-Wunsch Algorithm.

VII. CONCLUSIONS

The paper introduced an efficient and novel algorithm to
measure the similarity between two sequences in a large
database. The proposed technique computes the difference
score for each sequence of the database and selects sequences
that have the highest scores. Dynamic programming is then
applied on selected sequences. The proposed method was
implemented and tested on the HW/SW FPGA-based
embedded system using the Zedboard FPGA prototyping
board. The performance of the proposed method was
compared with other traditional methods. The comparison
study showed that our proposed method over performed other
methods by 60% in term of computation time.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

251 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] T. F. Smith and M. S. Watermann. Identification of common molecular
subsequence. Journal of Molecular Biology. Pages 196197, 1981

[2] Talal Bonny, Accuracy/Speed Trade-off Technique for Dynamic
Programing Based Algorithms, IEEE 5th International conference on
Electronic Devices, Systems and Applications (ICEDSA), Ras Al
Khaimah, United Arab Emirates. December 2016

[3] Talal Bonny, M. A. Z. and Salama, K. N. An adaptive hybrid
multiprocessor technique for bioinformatics sequence alignment. In the
5th Cairo International Conference on Biomedical Engineering. pages
112115, 2010

[4] Talal Bonny and Bassel Soudan, Filtering Technique for High Speed
Database Sequence Comparison, IEEE International Conference on
Semantic Computing (ICSC 2015), Anaheim, California, USA. February
2015.

[5] S. Kim, Y. J. Yoo, J. So, J. G. Lee and J. Kim., Design and
Implementation of Binary File Similarity Evaluation System.
International Journal of Multimedia and Ubiquitous Engineering, Vol.9,
No.1. Pages 1-10, 2014

[6] Jiaoyun Yang, Yun Xu, Yi Shang, Guoliang Chen. A space-bounded
anytime algorithm for the multiple longest common subsequence
problem. IEEE Transactions on Knowledge and Data Engineering, 2014.

[7] B. Halpin and T. W. Chan. Class Careers as Sequences: An Optimal
Matching Analysis of Work-Life Histories. European Sociological
Review 14(2). Pages 111-30, 1998

[8] L. Lesnard. Optimal Matching And Social Sciences. Working Paper,
Centre de Recherche en Economie et Statistique. Institut Nationale de la
Statistique et des Etudes Economiques, Paris, France. 2006

[9] G. Pollock. Holistic Trajectories: A Study of Combined Employment,
Housing and Family Careers by Using Multiple-Sequence Analysis.
Journal of the Royal Statistical Society: Series A 170(1). Pages:167-83,
2007

[10] P. F. Marteau. Time Warp Edit Distance with Stiffness Adjustment for
Time Series Matching. IEEE Transactions on Pattern Analysis and
Machine Intelligence. Pages 306-318. 2008

[11] Manal Al Ghamdi and Yoshihiko Gotoh. Alignment of nearly-repetitive
contents in a video stream with manifold embedding. In IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Pages 1255-1259, 2014

[12] Talal Bonny, "Performance Optimization of the Database Sequencing
Applications", International Journal of Computer Applications, volume
112 - number 5, February 2015.

[13] Talal Bonny, "A Hybrid Heuristic/Deterministic Dynamic Programing
Technique for Fast Sequence Alignment", International Journal of
Advanced Computer Science and Applications, volume 6 - issue 8,
August 2015.

[14] Z. Nawaz, M. Nadeem, J. van Someren, and K.L.M. Bertels. A parallel
fpga design of the smith-waterman traceback. In Field-Programmable
Technology (FPT), 2010 International Conference on, pages 454-459,
Beijing, China, December 2010.

[15] M. Affan Zidan, T. B. and Salama, K. N. High performance technique
for database applications using a hybrid gpu/cpu platform. IEEE/ACM
21st Great Lake Symposium on VLSI. pages 8590, 2011

[16] E. F. de O.Sandes and A.C.M.A. de Melo. Retrieving smith-waterman
alignments with optimizations for megabase biological sequences using
gpu. Parallel and Dis- tributed Systems, IEEE Transactions on,
24(5):1009-1021, 2013.

[17] A. Chakraborty and S. Bandyopadhyay. Clustering of web sessions by
FOGSAA. In IEEE Recent Advances in Intelligent Computational
Systems (RAICS). Pages 282-287. 2013

[18] Xin Chang, Fernando A. Escobar, Carlos Valderrama, Vincent Robert.
Optimization strategies for Smith-Waterman algorithm on FPGA
platform. International Conference on Computational Science and
Computational Intelligence (CSCI), 2014.

[19] Kratika Garg, Yan Lin Aung, Siew-Kei Lam, Thambipillai Srikanthan.
Modelsim simulation for real-time stereo matching using DP algorithm.
The 28th IEEE International Conference on System-on-Chip (SOCC),
2015.

[20] Bartolomeo Stellato, Paul J. Goulart. Real-time FPGA implementation
of direct MPC for power electronics. IEEE 55th Conference on Decision
and Control (CDC), 2016.

[21] S. Needleman and C. A. Wunsch. General method applicable to the
search for similarities in the amino acid sequence of two sequences.
Journal of Molecular Biology. Pages 443453, 1970

