
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

252 | P a g e

www.ijacsa.thesai.org

Convolutional Neural Network Hyper-Parameters

Optimization based on Genetic Algorithms

Sehla Loussaief
1
, Afef Abdelkrim

2

Laboratory of Research in Automatic (LA.R.A)

National Engineering School of Tunis (ENIT), University of Tunis El Manar

National Engineering School of Carthage (ENICarthage), University of Carthage

Tunis, Tunisia

Abstract—In machine learning for computer vision based

applications, Convolutional Neural Network (CNN) is the most

widely used technique for image classification. Despite these deep

neural networks efficiency, choosing their optimal architecture

for a given task remains an open problem. In fact, CNNs

performance depends on many hyper-parameters namely CNN

depth, convolutional layer number, filters number and their

respective sizes. Many CNN structures have been manually

designed by researchers and then evaluated to verify their

efficiency. In this paper, our contribution is to propose an

innovative approach, labeled Enhanced Elite CNN Model

Propagation (Enhanced E-CNN-MP), to automatically learn the

optimal structure of a CNN. To traverse the large search space

of candidate solutions our approach is based on Genetic

Algorithms (GA). These meta-heuristic algorithms are well-

known for non-deterministic problem resolution. Simulations

demonstrate the ability of the designed approach to compute

optimal CNN hyper-parameters in a given classification task.

Classification accuracy of the designed CNN based on Enhanced

E-CNN-MP method, exceed that of public CNN even with the use

of the Transfer Learning technique. Our contribution advances

the current state by offering to scientists, regardless of their field

of research, the ability of designing optimal CNNs for any

particular classification problem.

Keywords—Machine learning; computer vision; image

classification; convolutional neural network; CNN hyper

parameters; enhanced E-CNN-MP; genetic algorithms; learning

accuracy

I. INTRODUCTION

Image classification is an important task in computer vision
involving a large area of applications such as object detection,
localization and image segmentation [1-3]. The most adopted
methods for image classification are based on deep neural
network and especially Convolutional Neural Networks
(CNN). These deep networks have demonstrated impressive
and sometimes human-competitive results [4,5]. CNN deep
architecture can be divided in two main parts [6]. The first part,
based on convolutional layers CNN, offers the ability of
features extraction and input image encoding. Whereas, the
second one is a fully connected neural network classifier which
role is to generate a prediction model for the classification task.
A CNN model is described by many hyper-parameters
specifically convolutional layers number, filters number and
their respective sizes, etc.

Many researchers proposed different CNN models such as
AlexNet, Znet, etc. To improve the network accuracy some of
them choose to increase the depth of the network [7]. Others
propose new internal configurations [8]. Although, these state-
of-the-art CNNs have been shown to be efficient, many of
them were manually designed.

During our research, we note that a miss configured values
of CNN hyper-parameters namely the network depth, the
number of filters and their respective sizes dramatically affect
the performance of the classifier. In addition, manually,
enumerating all the use cases and selecting optimal values for
these hyper-parameters is almost impossible even with a fixed
number of convolutional layers. Through contributions held in
this paper we propose an innovative approach, labeled
Enhanced Elite CNN Model propagation (Enhanced E-CNN
MP), to automatically learn optimal CNN hyper-parameters
values leading to a best CNN structure for a particular
classification problem. Our approach is based on Genetic
Algorithms (GA) known to be meta heuristic methods for non-
deterministic problem resolution. Each CNN candidate solution
structure, is encoded as an individual (chromosome). To search
for the best fit individual, the proposed method is based on
“The elite propagation” through the whole GA process.

The designed Enhanced E-CNN MP approach is an
innovative approach. Our contribution will allow scientists to
design their own CNN based prediction model suitable for their
particular image classification problem.

This paper is organized as follows. Section II provides an
overview of Convolutional Neural Network. In section III, the
Genetic Algorithms paradigm is exposed. Problem statement
is presented through section IV. Section V introduces related
work. Section VI illustrates the designed Elite CNN Model
Propagation (E-CNN-MP) approach based on GAs for CNN
hyper parameters optimization. E-CNN-MP simulations and
results are presented in section VII. Through section VIII, an
Enhanced E-CNN-MP version is proposed. The last section
includes our concluding remarks.

II. DEEP LEARNING BASED ON CONVOLUTIONAL NEURAL

NETWORK

A neural network is a mathematical model with a design
inspired from biological neurons. This network architecture is
divided in layers. Each layer is a set of neurons. The first layer
of a neural network is the input layer into which we inject the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

253 | P a g e

www.ijacsa.thesai.org

data to be analyzed. The last layer is the output layer. In a
classification problem, it returns a number of classes. Layers
on the middle are the hidden layers of the neural network.

As shown in Fig.1, in a neural network, a single neuron has
several inputs. Each input connection is characterized by a
weight . On the activation of the artificial neuron, it
computes its state , by summing all the inputs multiplied by
their corresponding connection weights. To ensure that the
neuron will be activated even when all entries are none, an
extra input, called bias , is added. This extra input is always
equal to 1 and has its own weight connection.

To normalize its result (normally between 0-1), the
neuron passes it through its activation function [9].

Fig. 1. Neuron Parameters.

CNNs are category of deep neural networks used especially
in computer vision area such as image classification [10,11].
The very first CNN was LeNet in 1990 (LeCun et al. 1995). It
was the innovative work by Yann LeCun and the result of
many successful iterations since the year 1988. This pioneering
CNN facilitated propel the field of deep learning. At that time
the LeNet architecture was used mainly for character
recognition application.

There have been numerous new CNN architectures
developed in the recent years. These architectures are
improvements over the LeNet using its main concepts. Among
these models we quote:

 AlexNet (2012): In 2012, Alex Krizhevsky (and others)
released AlexNet. It was a deeper and much wider
version of the LeNet that won, by a large margin, the
difficult ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) in 2012.

 ZF Net (2013): The ILSVRC 2013 winner was a
Convolutional Network from Matthew Zeiler and Rob
Fergus. It became known as the ZFNet. It was an
improvement on AlexNet by tweaking the architecture
hyper-parameters.

 GoogLeNet (2014): The ILSVRC 2014 winner was a
Convolutional Network from Szegedy (and others)
from Google. Its main contribution was the
development of an inception module that dramatically
reduced the number of parameters in the network (4M,
compared to AlexNet with 60M) [12].

 VGGNet (2014): The runner-up in ILSVRC 2014 was
the network that became known as the VGGNet. Its
main contribution was in showing that the depth of the
network (number of layers) is a critical component for
good performance.

 ResNets (2015): Residual Network developed by
Kaiming He (and others) was the winner of ILSVRC
2015.

 DenseNet (August 2016): Recently published by Gao
Huang (and others). The Densely Connected
Convolutional Network has each layer directly
connected to every other layer in a feed-forward
fashion. The DenseNet has been shown to obtain
significant improvements over previous state-of-the-art
architectures on five highly competitive object
recognition benchmark tasks.

There are four main operations which are the basic building
blocks of every CNN [13,14].

1) Convolution

2) Activation function (ReLU)

3) Pooling or Sub Sampling

4) Classification (Fully Connected Layer)

A. Convolution

Convolutional layer derives its name from the convolution
operator. The aim of this layer is image features extraction.
Convolution conserves the spatial relationship between pixels
by learning image features using small squares of input data.
Each convolution layer uses various filters to features detection
and extraction such as Edge Detection, Sharpen, Blur, etc.
These filters are also called „kernels‟ or „feature detectors‟.
After sliding the filter over the image we get a matrix known as
the feature map [15].

In the first convolution layer, the convolution is between
the input image and its filters. Filter values are the neuron
weights (see (1)).

In deep layers of the network, the resulting image of

convolutions is the sum of convolutions, with the
number of outputs of layer (see (2)).

 (1)

 ∑

With

 the value of the neuron of the layer ,

 the

input vector of the neuron ,

 the weight vector and

 the bias.

In practice, a CNN learns the values of these filters on its
own during the training process. Parameters such as number of
filters, filter size and network architecture are specified by the
scientific before launching the training process. The more
number of filters we have, the more image features get
extracted and the better the network becomes at features
extraction and image classification.

The size of the feature map is controlled by three
parameters which are:

 Depth: Depth corresponds to the number of filters used
for the convolution operation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

254 | P a g e

www.ijacsa.thesai.org

 Stride: Stride is the number of pixels by which we slide
our filter matrix over the input matrix. Having a larger
stride will produce smaller feature maps.

 Zero-padding: To apply the filter to bordering elements
of input image, it is convenient to pad the input
matrix with zeros around the border.

B. Activation Function

Once the convolution has been completed, an activation
function is applied to all values in the filtered image to extract
nonlinear features. There are many activation functions such as
the ReLU [16,17]

which is defined as , the

function [18] or the sigmoid function [19].

The output value

 of a neuron of layer depends on its

activation function and is defined as (see (3)) :

with the activation function and

 the value of neuron

 of layer . The choice of the activation function may depend
of the problem. The ReLU function replaces all negative pixel
values in the feature map by zero. The purpose of ReLU is to
introduce non-linearity in the CNN, since the convolution
operator is linear operation and most of the CNN input data
would be non-linear. Result of convolution and ReLU
operation is called rectified feature map.

C. Pooling

The pooling step is also called subsampling or down
sampling. It aims to reduce the dimensionality of each rectified
feature map and retains the most important information.

The two most used methods to apply in this operation are
the average or max pooling [20].

After this step of sub-sampling we get a feature map that is
defined in (4)

with

 the feature map of the layer , the

operation pooling and
 the output value of the neuron of

the layer

The advantages of the pooling function are:

 It makes the input representations (feature dimension)
smaller and more manageable.

 It reduces the number of parameters and computations
in the network, therefore, controlling overfitting.

 It makes the network invariant to small transformations,
distortions and translations in the input image. In fact, a
small distortion in input will not change the output
of pooling since the maximum/average value in a local
neighborhood is taken.

 It helps getting an almost scale invariant representation
of input image. This is very powerful since we can
detect objects in an image no matter where they are
located.

D. Fully Connected Layer

The output from the convolutional and pooling layers of a
CNN is the image features vector. The purpose of the fully
connected layer is to use these features vector for
classifying the input images into several classes based on a
labeled training dataset.

The fully connected layer is composed of two parts. The
first part consists of layers so-called fully connected layers
where all its neurons are connected with all the neurons of the
previous and next layers. The second part is based on an
objective function. In fact, CNNs seek to optimize some
objective function, specifically the loss function. The well-used
loss function is the Softmax function [21]. It normalizes the
results and produces a probability distribution between the
different classes (each class will have a value in the range [0,
1]) [22]. Adding a fully-connected layer allows learning non-
linear combinations of extracted features which might be even
better for the classification task.

E. Genetic Algorithms

GAs are heuristic solution-search or optimization methods.
These techniques were originally inspired from the Darwinian
principle of evolution through (genetic) selection.

A GA is based on a highly abstract form of evolutionary
processes to give solutions to complex problems. Each GA
operates on a population of artificial chromosomes. Each
chromosome signifies a solution to the problem to be resolved
and has a fitness. A chromosome fitness is a real number
measure which represents its performance as a solution of the
specific problem.

GA method begins with a randomly generated population
of chromosomes. It, then carries out a process of selection and
recombination based on each chromosome fitness. Parent
genetic materials are recombined to generate child
chromosomes producing a next generation. This process is
iterated until some stopping criterion is reached. In this way, a
GA evolves a best solution to a given problem.

GAs were first proposed by John McCall [23] as a method
to find best solutions to problems that were otherwise
computationally intractable. McCall‟s theorem, and the related
building block hypothesis, delivered a theoretical basis for the
conception of effective GAs. The development and success of
GAs have significantly contributed to their adoption in many
computational approaches based on natural phenomena. GA is,
henceforth, a major part of the wider field of Computational
Intelligence such as Neural Networks, Ant Colony
Optimization, etc.

F. Genetic Algorithm Structure

A GA is made from a number of “standard” components.
This conception facilitated their re-use with trivial adaptation
in many different problems. The main components of GA are:
chromosome encoding, fitness function, selection,
recombination and evolution scheme.

1) Chromosome encoding: In GA a population is a set

of chromosomes, which are solution candidates to a particular

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

255 | P a g e

www.ijacsa.thesai.org

problem. A chromosome is an abstraction of a biological DNA

chromosome. It can be thought of as a combination of genes.

For a given problem, a particular representation is used and

referred to as the GA encoding of the problem. GA proposes

two ways for chromosome encoding:

 A bit-string representation to encode solutions: bit-
string chromosomes consist of a string of genes whose
allele values are characters from the alphabet {0,1}.

 Value Encoding: chromosome, in direct value encoding,
is a string of some values which can be whatever form
related to problem such as numbers, real numbers,
chars, some complicated objects, etc.

2) Fitness: The fitness function allows to compute and

evaluates the quality of a chromosome as a solution to a

particular problem. Fitness computation will go on through

GA generations measuring the performance of each individual

in terms of various criteria and objectives defined by

researchers (completion time, resource utilization, cost

minimization, etc).

3) Selection: Selection method in a GA is very important

as it guides the evolution of chromosomes through

generations. This method will permit to make a choice

regarding the parent chromosomes to be used for child

chromosome creation.

In GA process, chromosome selection for recombination is
based on its fitness value. Best fit individuals should have a
greater chance of selection than those with lower fitness.

Many selection methods are proposed in literature such as
[24]:

 Roulette Wheel (or fitness proportional) selection
method which allocates each chromosome a probability
of being designated proportional to its relative fitness.
This value is computed as a proportion of the sum of all
chromosome‟s fitness in the population.

 Random Stochastic selection explicitly chooses each
individual a number of times equal to its expectation of
being selected under the fitness proportional method.

 Tournament selection first chooses two individuals
based on a uniform probability and then selects the one
with the highest value of fitness.

 Truncation selection first eliminates a fixed number of
the least fit chromosomes and, then, picks one at
random from the population having.

4) GA Recombination operators: GA recombination

method allows the production of offspring with combinations

of genetic material from parents chosen through the selection

method. This process allows to form members of a successor

population based on recombination of chromosomes selected

from a source population. Since the selection mechanism is

biased towards chromosomes with higher fitness value, this

guarantees (hopefully) the evolution to more highly fit

individuals in the descendant generations.

There are two main operators for genetic recombination
which are:

 Crossover:

 Mutation

Those Genetic operators are nondeterministic in their
behavior. Their outcome is also nondeterministic: each
happens with a certain probability.

Crossover operator characterizes the fact of mixing genes
from two selected parent chromosomes. This recombination
allows to produce one or two child chromosomes.

Literature proposes many alternative forms of crossover
method:

 One-point crossover generalized to 2- and multi-point
crossover operations: the idea is to choose a sequence
of crossover points along the chromosome length.
Child chromosomes are subsequently created by
interchanging the gene values of both parents at each
chosen crossover points.

 Uniform crossover creates a child chromosome by
picking uniformly between parent gene values at each
chosen position.

Crossover algorithms also vary with according to the
number of created children through the process.

To ensure a maximum of diversity when creating offspring,
all crossover resulted chromosome(s) are then passed on to the
mutation process. Mutation operators perform on an individual
chromosome to change one or more gene values. The aim of
these genetic operators is to increase population diversity and
avoid premature convergence to a less optimal solution for a
particular problem.

5) Evolution: After the crossover and mutation process,

the resulting chromosomes are passed into the descendant

population called next generation. This process is then iterated

for all upcoming generations until reaching a stopping criteria.

Termination conditions can include:

 A solution with minimum criteria is found.

 Fixed number of generations elapsed.

 Due budget such as computation time/money reached.

 The highest level solution's fitness is reaching or
converge to a best-fitness solution such that successive
generations no longer yield better results.

 Manual inspection that fully satisfies a set of
constraints.

Evolutionary schemes depend on the degree to which
individuals from a source population are permitted to move on
unchanged to the next generation. Evolutionary scheme is an
important aspect of GA design. It depends closely on the nature
of the solution space being investigated. These schemes vary
from:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

256 | P a g e

www.ijacsa.thesai.org

 Complete replacement, where all next generation
chromosomes are generated through selection and
mutation.

 Steady state, where the next generation is created by
generating one new chromosome at each new
population and using it to replace a less-fit individual of
the original population.

 Replacement-with-elitism: This is a hybrid complete
replacement method since the best one or two
individuals from the source population are preserved in
the next generation. This scheme avoids individual of
the highest relative fitness from being lost through the
nondeterministic selection process

G. GA Design

When solving problem is based on GA metaheuristic
approach, scientific may make many choices in designing the
genetic algorithm. These choices are related to:

 Chromosome encoding;

 Fitness function form;

 Population size;

 Crossover and mutation operators and their respective
rates;

 Evolutionary scheme to be applied;

 Appropriate stopping criteria.

Numerous examples of non-classical GAs can be found
in literature [25,26]. A typical architecture adopted for a
classical GA using complete replacement with standard genetic
operators might be as follows:

(S1) Randomly create an initial population of
chromosomes (source population).

(S2) Compute the fitness value, , of each chromosome
c in the initial population.

(S3) Create a successor population of chromosomes as
follows:

(S3a) Use selection method to select two parent
chromosomes, and , from the previous population.

(S3b) Apply crossover technic to and with a
crossover rate to get a child chromosome .

(S3c) Apply a mutation method to with mutation rate
to produce .

(S3d) include the chromosome to the successor
population.

(S4) Replace the source population with the successor
population.

(S5) If not reaching stopping condition, return to Step S2.

The flexibility of this standard architecture allows its
implementation and refinement by scientific to fit a particular
problem to be solved based on of this metaheuristic approach.

III. PROBLEM STATEMENT

In this section we establish the context of the current work
according to a previous investigated one. The aim of our
research is to design an approach to be used for image
classification task. For this purpose, we are interested in
machine learning algorithms and specially supervised learning.

Machine learning (ML) is a wide variety of algorithms
particularly suited to prediction. ML avoids starting with a data
model and rather uses an algorithm to learn the relationship
between the response and its predictors. As shown in Fig. 2,
ML techniques try to learn the response by observing inputs
and responses and finding dominant patterns.

At the end of the training process we get a predictive model
which can be used to classify a new input data.

When we use supervised learning algorithms for
classification purpose the input variables are a labeled data
(for each input from the dataset we know its class or category)
and the output variable represents a category (class). A
supervised algorithm aims to learn the mapping function from
the input to the output:

The goal is to well approximate the mapping function ()
in such a way that for a new input data the algorithm can
predict its category . Learning stops when the algorithm
achieves an acceptable level of prediction accuracy.

In previous works, we investigated many approaches to
design a machine learning framework for image classification.
During research, we investigated two approaches:

1) The Bag of Features paradigm and CNN as features

extraction and image encoding methods [27,28]. Our

experimentation results shown in Fig.3,4 demonstrated how

CNN performs better than BoF as features extractor and image

encoding technique [30].

Deep Learning approach based on Transfer Learning
technique. The pre-trained used CNN is AlexNet [29]. Its
architecture is described in Fig.5 [6]. Based on this approach,
we reached a classification accuracy of 93.33% [31].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

257 | P a g e

www.ijacsa.thesai.org

Fig. 2. Machine Learning Framework.

Fig. 3. SVM Classifiers Accuracies.

Fig. 4. KNN Classifiers Accuracies.

Fig. 5. AlexNet Architecture.

63.5 65.9 62.7

10.3

33.3 38.1

92.9 95.2 94.4

10.3

91.2 88.1

0
20
40
60
80

100

L
in

ea
r

S
V

M

Q
u
ad

ra
ti

c

S
V

M

C
u

b
ic

 S
V

M

F
in

e

G
u
as

si
an

…

M
ed

iu
m

G
au

ss
ia

n
…

C
o

ar
se

G
au

ss
ia

n
…

Classifier Algorithm

Support Vector Machine

Classification Accuracy

BOF Deep Learning

42.9 38.9
23

57.1
39.7 38.1

91.3 92.9 86.5
96.8 93.7 92.9

0
20
40
60
80

100

F
in

e
K

N
N

M
ed

iu
m

K
N

N

C
o

ar
se

 K
N

N

C
o

si
n

e
K

N
N

C
u

b
ic

 K
N

N

W
ei

g
h

te
d

K
N

N

Classifier Algorithm

Nearest Neighbor Classification

Accuracy

BOF Deep Learning

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

258 | P a g e

www.ijacsa.thesai.org

In the current work, our overarching approach is to design
our own CNN model for stop sign image classification. The
designed CNN will be trained from scratch. For the CNN to be
created, many hyper parameters must be defined, such as:
CNN depth, filters number per convolutional layer and their
respective sizes. To build our network, we, first, choose to
follow the same model as the AlexNet one. The CNN model
includes 5 convolutional layers each layer is followed by a
ReLU and MaxPooling layer. The input image size is
227x227x3. The feature vector resulting from the convolution
part of the model has a dimension of 4096, which is a good
dimension to encode image for classification task. The fully
connected part of the model is composed of three fully
connected layers. The first two layers have 4096 neurons. The
activation function used is the ReLU. The third layer is a
softmax that calculates the probability distribution of the five
classes. In the first approach simulation, we put a large
number of filters on the convolution layers. This number of
filters and their sizes are chosen randomly. For this purpose,
we refer to already developed CNNs such as AlexNet.

The CNN designed architecture is represented in Table I.

TABLE I. THE MANUALLY DESIGNED CNN ARCHITECTURE

Layer Layer Name Layer Properties

1 Image Input
227x227x3 images with 'zerocenter'
normalization

2 Convolution
96 11x11x3 convolutions with stride [4 4]
and padding [0 0 0 0]

3 ReLU ReLU

4 Max Pooling
3x3 max pooling with stride [2 2] and
padding [0 0 0 0]

5 Convolution
256 5x5x96 convolutions with stride [1 1]

and padding [2 2 2 2]

6 ReLU ReLU

7 Max Pooling
3x3 max pooling with stride [2 2] and

padding [0 0 0 0]

8 Convolution
384 3x3x256 convolutions with stride [1 1]

and padding [1 1 1 1]

9 ReLU ReLU

10 Convolution
384 3x3x384 convolutions with stride [1 1]

and padding [1 1 1 1]

11 ReLU ReLU

12 Convolution
256 3x3x384 convolutions with stride [1 1]
and padding [1 1 1 1]

13 ReLU ReLU

14 Max Pooling
3x3 max pooling with stride [2 2] and
padding [0 0 0 0]

15 Fully Connected 4096 fully connected layer

16 ReLU ReLU

17 Fully Connected 4096 fully connected layer

18 ReLU ReLU

19 Fully Connected 256 fully connected layer

20 Softmax softmax

21
Classification
Output

 crossentropyex

Fig. 6. Manually Designed CNN Training Accuracy (30%).

Many popular image datasets can be used for CNN training
including MNIST [32], CIFAR10 [33], Caltech-256 [34],
ImageNet [6], etc. CNN training from scratch requires a large
amount of computational resources. In our experimentations
we choose the Caltech-256 dataset including 256 object
categories containing a total of 30607 images. For training
step, we use 70% of the whole dataset and leave 30% for the
test process and accuracy computing.

Fig.6 shows the training accuracy progress through
iterations.

The accuracy of the manually designed model is too bad
and not exceed a 30.8%. The main issue of this model is that
the value of its hyper parameters are not optimum for our stop
sign image classification problem.

In this stage of research, we have to solve a problem with N
variables corresponding to the CNN hyper parameters while
ensuring a good learning accuracy. In order to optimize the
values of these variables we design a solution based on a
genetic algorithm approach well known for nondeterministic
problem resolution.

IV. RELATED WORK

For decades, neural networks have proved their ability in
machine learning. To increase network performance, some
researches are based on deeper networks [35,36] while others
propose adding highway information [37,38].

One of the most challenging aspects of deep networks is
how to configure them and search for their hyperparameter
values. To address this problem, some proposed methods
include the use of stochastic depth [39,40] or dense
convolutional networks [41]. However, the limit of these
approaches is that all proposed deep network structures are
deterministic which limits the flexibility of the models and
consequently motivates us to design an automated search for
optimal CNN hyperparameters for a given classification task.

In fact, searching for optimal deep network
hyperparameters can be led through different strategies:

 Random configuration inspired from literature and
intuition.

 Grid search by trying a systematic exploration across
the layer number and nodes per layer.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

259 | P a g e

www.ijacsa.thesai.org

 Exhaustive search by trying all possible combinations
for hyperparameter values.

 Heuristic search such as genetic algorithm or Bayesian
optimization.

Reference [42] shows that a simple random search gives
better results than grid search, particularly for high-
dimensional problems with low intrinsic dimensionality. In
[43] and [44], proposed methods are based on Bayesian
optimization process and yield better performance. In this
paper we investigate a heuristic search. Our strategy is based
on genetic algorithm well known for non-deterministic
problem resolution. Our work aims to design and experiment a
competitor new GA encoding method for CNN structure
search.

V. PROPOSED APPROACH: ELITE CNN MODEL

PROPAGATION (E-CNN-MP)

To design an optimal CNN model for our classification
problem, we design a GA based approach labeled “Elite CNN
Model Propagation” (E-CNN-MP). The main structure of a GA
method is adopted. We, then, develop a specific method for
chromosome encoding, chromosome recombination and fitness
function.

In this section, we describe the E-CNN-MP modules that
allow to evolve optimum hyper-parameters of a CNN for sign
stop image classification problem. In the proposed framework,
each chromosome is a candidate solution representing a CNN
architecture. The training process error is chosen as the fitness
function of a chromosome. In this case the GA based solution
aims to compute the optimal hyper-parameters value giving the
less error and consequently the higher classification accuracy.

A. Chromosome Encoding

In the designed approach, each chromosome represents a
solution to the problem. For a CNN with Dp convolutional
layers (CNN depth), the genetic algorithm inputs are 2*Dp
variables to be optimized through the GA process. These
variables are Dp pairs of values (Filter Number per Layer FNL,
Filter Size per Layer FSL). The value encoding scheme of a
chromosome (individual in a population) is illustrated in Fig.7.

Fig. 7. Chromosome Encoding.

B. Population Initialization

GA population is a set of C individuals . Each individual is
represented by a vector with length (GA variables number).

To initialize the first population , we use an uniform
randomized values in the defined intervals:

 {
 } []

With: {

These values will be modified through mutation and
crossover when discovering competitive structures during the

genetic process. Each initialized individual will be evaluated.
For this purpose, we compute its fitness score which is the
classification error of the corresponding CNN. Our approach
aims to search for the optimum individual which minimizes the
fitness function and subsequently the classification error.
Computing individual fitness is realized through a whole CNN
training and evaluation process which requires heavy
computation. For all simulations we use a single GPU. To
evaluate the designed approach, generations of eight
individuals are used. This number can be generalized and
scaled up if we dispose more resources.

C. Selection Method

At the beginning of every generation creation, we apply a
selection method. A successor generation of a source
generation is defined as follows:

1) A fraction of elite individuals from propagated to

 . These individuals are the fit individuals with lower fitness

function value (CNN classification error) over the whole

generation .

2) A fraction of , other than elite children, that are

created by crossover.

3) The remaining individuals to form the new generation

are chosen randomly. This ensures the population diversity

and avoids that the genetic algorithm converges rapidly.

Our selection approach aims to eliminate the least fit
individuals from each generation.

To select parents of crossover children we perform a
roulette method. During this step, we simulate a roulette wheel,
in which the section area of the wheel corresponding to an
individual is proportional to the individual's expectation .

In a population of size , for an individual of fitness value
 , its expectation is computed as follows:

𝑠𝑐𝑜𝑟𝑒

With:

 ∑

The method generates, then, a random number in the
interval [] The individual whose segment spans the
random number is chosen. This process is repeated until the
preferred number of children to be created is reached.

D. Crossover Method

Crossover is a basic operator used in GA for producing new
children which will have some parts of both parent‟s genetic
material. In the proposed approach a scattered crossover
technique is used. For a child creation we:

1) Select 2 parents by the use of the selection method.

2) Generate a random binary vector of length (: the

length of a chromosome).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

260 | P a g e

www.ijacsa.thesai.org

3) To form the child, we use the gene from the first parent

if the vector value is 1 and the gene from the second parent if

the vector value is 0.

E. Mutation Method

Mutation method is applied on children created by
crossover mechanism. The genetic algorithm applies small
random changes in each child. Mutation offers population
diversity and allows the genetic algorithm to explore a broader
space.

Our mutation method is a two-step process:

1) Randomly select the fraction of the child vector to be

mutated according to a probability rate . In practice is

often small. This small value guarantees that the mutation

operator preserves the good properties of a chromosome while

exploring new possibilities. In our experimentation we choose

a equal to .

2) Replace each selected entry (chromosome gene) by a

random number chosen from its corresponding range.

F. Termination of the GA

A GA approach is known to be a stochastic search method.
The specification of a convergence criteria is sometimes
problematic as the fitness function value may remain
unchanged for a number of generations before a superior
individual is found. In our approach, we choose to terminate
the GA process after an already specified number of
generations to avoid materials saturation. Then, we verify the
quality of the best individual fitness and if necessary we restart

the GA process with the initialization of a fresh search. The
GA Fitness Function.

In this work we are optimizing CNN hyper-parameters for
image classification task. Each individual corresponds to a
plausible configuration of a CNN. It specifies its number of

filters and their respective sizes. The fitness function or
of an individual is computed via the CNN training from scratch

based on an input dataset . In our approach, the classification
error is used as individual score.

The input dataset is divided in a and
 .

The of training is computed as:

The individual

G. Designed Algorithms

According to the previously exposed GA methods, the E-
CNN-MP main algorithm is described in Algorithm 1. This
algorithm returns the best individual and the corresponding
CNN for which we save all weights and biases.

The FitnessCNN function used in the main program is the
GA fitness function. It is described in Algorithm 2. It aims to
construct the CNN model according to individual‟s values
generated through the GA process and then operates a from
scratch training.

Methods used for successor generations creation are
described in algorithm3.

Algorithm 1: E-CNN-MP main algorithm

Input: D, convolutional layers number (NumConLayers), Max generations number (MaxG), Generation size N

Output: Best individual FitI, FitCNN

Loading images dataset D

Initialization of the training dataset (TrainingDS), the test dataset (TestDS), Best Accuracy, Fraction of elites (fe), Fraction of

crossover created children(fc)

Randomly (Uniform distribution) create an initial population P of N chromosomes.

for g in 1 to MaxG

 do

[S1,S2 ,..,SN, BestAccuracy, FitI, FitCNN] FitnessCNN (P, NumConLayers, BestAccuracy, TrainingDS, TestDS);

P‟ Recombination (P , fe, fc);

PP‟;

end for;

return FitI;

save FitCNN;

Algorithm 2: FitnessCNN function

Input: Population of N chromosomes, NumConLayers, BestAccuracy, TrainingDS, TestDS

Output: Vector of chromosome scores Si, BestAccuracy, FitI, FitCNN

/*CNN model generation*/

Layers[imageInputLayer([227 227 3]);
for C in 1 to N

for i in 1 to length(C)/2

FNC[i];

FSC[i+length(C)/2];

Layersconcatenate(layers,convolution2dLayer(FS,FN,'padding',FS/2),reluLayer, maxPooling2dLayer(2,'Stride',2));

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

261 | P a g e

www.ijacsa.thesai.org

end for;

layersconcatenate(layers, fullyConnectedLayer, reluLayer, fullyConnectedLayer, reluLayer, fullyConnectedLayer(),

softmaxLayer ,classificationLayer());

/*From scratch CNN training*/

CNNtraining(TrainingDS, layers, trainingoptions);

TestLabel classify(CNN, TestDS);

ImageLabel TestDS.Labels;

accuracy 100*sum(TestLabel==ImageLabel)/size(TestDS);

scores(C) 100-accuracy;

if accuracy > BestAccuracy

then

 BestAccuracyaccuracy;

 save(C);

 save(CNN);

 end if;

end for;

return C;

return CNN;

Algorithm 3: Successor generations creation algorithm

Input: Population of N Chromosomes P, fe, fc

Output: Population of N Chromosomes P‟

/* Elite individual propagation*/

EN* fe;

Select E Elite chromosomes from P and place them in P‟;

/*Create N‟ child chromosomes by crossover method*/

N‟N* fc;

For i 1 to N‟

do
initialize a child vector C;

select 2 parents P1 and P2 from P based on roulette method;

randomly generate a binary vector R with length(R)=length(P1);

for j in 1 to length(R)

 do
 if R[j]==1

 then
 C[j]P1[j]; //choose the first parent gene to be conserved in the child

 else
 C[j]P2[j]; //choose the second parent gene to be conserved in the child

 end if;

end for;

/*Mutation operation*/

randomly select child gene position i to be mutated:

 i random (1,length (C));

 randomly select x from the child gene initial range;

C(i) x;

end for;

/*Randomly generation of remaining individuals in P‟*/

N‟‟ N-(E+N‟);

Inject randomly N‟‟ chromosomes in P‟ (To guaranty diversity);

Return P‟;

VI. SIMULATIONS AND RESULTS OF E-CNN-MP

The proposed approach for CNN hyper-parameters
optimization is executed in a single GPU. The setting of the
GA global parameters used for method implementation is
synthetized in Table II.

To search for the best CNN model for our particular
classification task, the GA process is iterated 5 times and the
GA result performance is verified. Table.III shows the
individual scores during each GA process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

262 | P a g e

www.ijacsa.thesai.org

TABLE II. GA SETTINGS

GA Settings Value

Number of convolutional layers 5

Number of GA variables to optimized 10

GA population size 8

Individual score
Classification

Error

GA stopping criteria is the maximum number of

generations
4

Elite individuals fraction 20%

Fraction of children created by crossover 40%

Simulation results are summarized in Table. IV. The best
individual reached by the GA process is a CNN model offering
89.47% accuracy which is not bad. In addition, comparing to
the manually designed CNN (Section IV, Table I), it gives
better classification accuracy.

Despite this accuracy improvement, we notice that the GA
individual scores oscillate a lot through generations giving an
accuracy average not exceeding 50%.

In the following step, the CNN training process is improved
to get better classification accuracy values.

TABLE III. GA SIMULATIONS RESULTS BASED ON E-CNN-MP METHOD

GA Process Iteration N°1 GA Process Iteration N°2

GA Process Iteration N°3 GA Process Iteration N°4

GA Process Iteration N°5

TABLE IV. CLASSIFICATION ACCURACY (ACCU.%) BASED ON E-CNN-MP METHOD

GA process
Max

Accu.%

Min

Accu.%

Average Accu.

%
Best Network Encoding

1 85.27 0 49.81 73 49 61 96 73 18 7 8 7 16

2 85.26 0 47.73 42 75 57 48 76 2 5 11 17 16

3 89.47 0 44.55 80 80 55 70 66 14 4 2 18 2

4 86.32 0 42.11 70 70 60 77 58 17 7 3 6 9

5 87.02 0 46.85 60 73 52 76 61 11 9 3 4 2

0
10
20
30
40
50
60
70
80
90

100

1 4 7 10 13 16 19 22 25 28 31
GA Individual

GA Algorithm Fitness

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 1113151719212325272931
GA Individual

Genetic Algorithm Fitness

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 1113151719212325272931

GA Individual

Genetic Algorithm Fitness

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 1113151719212325272931
GA Individual

Genetic Algorithm Fitness

0
10
20
30
40
50
60
70
80
90

100

1 4 7 10 13 16 19 22 25 28 31
GA Individual

Genetic Algorithm Fitness

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

263 | P a g e

www.ijacsa.thesai.org

VII. ENHANCED E-CNN-MP

Many methods are proposed to optimize a deep neural
network training. Some of them try to reduce the sensitivity to
network initialization. Among these enhanced initialization
schemes, we quote: Xavier Initialization [45], Theoretically
Derived Adaptable Initialization [46], Standard Fixed
Initialization [6], etc. However, researches demonstrate that
these methods have some limits. In fact, Xavier Initialization is
not suited for rectification-based nonlinear activations CNN.
Although, Theoretically Derived Adaptable Initialization
method improves convergence characteristics, it is not
confirmed that it led to better accuracy. It is also proven that
Standard Fixed Initialization delays convergence because of
the gradients magnitude or activations in a deep network final
layers [7,47].

Other methods are interested to reduce the internal
covariate shift phenomenon produced by variations in the
distribution of each layer‟s inputs due to parameters changes in
the previous layer. An “internal covariate shift” problem can
dramatically affect CNN training [48]. In fact, during training
process when the data is flowing through the CNN, their values
are adjusted by the weights and parameters. This procedure
makes sometimes the data too big or too small. To largely
avoid this problem, the idea is to normalize the data in each
mini-batch and not only for input data during the preprocessing

step [48]. For each input channel across a mini-batch,
activation normalization is, first, performed by subtracting the
mini-batch mean and dividing by the mini-batch standard
deviation. Input is, then, shifted by a learnable offset β and
scaled by a learnable scale factor γ.

To enhance the designed E-CNN-MP approach, a CNN
batch normalization is adopted. Comparing to Fig. 6, training
accuracy results presented in Fig. 8 show that merely adding
batch normalization to our CNN model yields a considerable
speedup and achieves higher classification accuracy.

Fig. 8. Training Accuracy based on Bach Normalization Layers.

In the Enhanced E-CNN-MP proposed method, batch
normalization layers are incorporated between convolutional
layers and ReLU layers. FitnessCNN algorithm is describe in
Algorithm 2’.

Algorithm 2’: FitnessCNN Based on Bach Normalization

Input: N chromosomes, NumConLayers, BestAccuracy, TrainingDS, TestDS
Output: Vector of chromosome scores Si, BestAccuracy, FitCNN
/*CNN model generation*/
Layers[imageInputLayer([227 227 3]);
for C in 1 to N

for i in 1 to length(C)/2
FNC[i];
FSC[i+length(C)/2];
/*CNN structure generation with the use of Batch Normalization Layer*/

Layersconcatenate(layers,convolution2dLayer(FS,FN,'padding',FS/2), batchNormalizationLayer, reluLayer,
maxPooling2dLayer(2,'Stride',2));

end for;

layersconcatenate(layers, fullyConnectedLayer, reluLayer, fullyConnectedLayer, reluLayer, fullyConnectedLayer(5),

softmaxLayer ,classificationLayer());

/*From scratch CNN training*/

CNNtraining(TrainingDS, layers, trainingoptions);
TestLabel classify(CNN, TestDS);
ImageLabel TestDS.Labels;
accuracy 100*sum(TestLabel==ImageLabel)/size(TestDS);
scores(C) 100-accuracy;
if accuracy > BestAccuracy
then
 BestAccuracyaccuracy;
 save(C);
 save(CNN);
 end if;

end for;

return C;

return CNN;

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

264 | P a g e

www.ijacsa.thesai.org

To evaluate the GA process based on this new fitness
function. The whole GA process is repeated 5 times. Table. V
shows the fitness function values evolution through the GA
process iterations. Table. VI synthesizes CNN accuracies got at
the end of each GA process iteration. The new CNN structure

allows to reach a classification accuracy of 98.94%. The best
fit CNN structure obtained through the Enhanced E-CNN-MP
proposed approach is given in Table. VII. All its weights and
biases are saved.

TABLE V. GA SIMULATIONS RESULTS BASED ON ENHANCED E-CNN-MP METHOD

GA Process Iteration N°1 GA Process Iteration N°2

GA Process Iteration N°3 GA Process Iteration N°4

GA Process Iteration N°5

TABLE VI. CLASSIFICATION ACCURACY (ACCU. %) BASED ON ENHANCED E-CNN-MP METHOD

GA process Max Accu.% Min Accu.% Average Accu.% Best Network Encoding

1 94.74 82.11 89.9 57 98 94 98 38 8 9 7 3 7

2 91.57 83.15 87.89 31 84 50 81 86 13 3 12 20 6

3 94.93 80 87.79 57 98 94 98 37 8 9 7 3 7

4 98.94 85.26 93.25 59 37 81 79 41 19 4 6 17 5

5 96.97 83.11 92.37 60 73 52 76 61 11 9 3 4 2

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 1113151719212325272931

GA Individual

Genetic Algorithm Fitness

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 1113151719212325272931
GA Individual

Genetic Algorithm Fitness

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 1113151719212325272931
GA Individual

Genetic Algorithm Fitness

0
10
20
30
40
50
60
70
80
90

100

1 4 7 10 13 16 19 22 25 28 31

GA Individual

Genetic Algorithm Fitness

0
10
20
30
40
50
60
70
80
90

100

1 4 7 10 13 16 19 22 25 28 31
GA Individual

Genetic Algorithm Fitness

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

265 | P a g e

www.ijacsa.thesai.org

TABLE VII. BEST FIT CNN STRUCTURE

Layer Layer Name Layer Properties

1 Image Input 227x227x3 images with 'zerocenter' normalization

2 Convolution
59 19x19x3 convolutions with stride [1 1] and padding [9 9 9

9]

3 Batch Normalization Batch normalization with 59 channels

4 ReLU ReLU

5 Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]

6 Convolution 37 4x4x59 convolutions with stride [1 1] and padding [2 2 2 2]

7 Batch Normalization Batch normalization with 37 channels

8 ReLU ReLU

9 Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]

10 Convolution 81 6x6x37 convolutions with stride [1 1] and padding [3 3 3 3]

11 Batch Normalization Batch normalization with 81 channels

12 ReLU ReLU

13 Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]

14 Convolution
79 17x17x81 convolutions with stride [1 1] and padding [8 8 8

8]

15 Batch Normalization Batch normalization with 79 channels

16 ReLU ReLU

17 Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]

18 Convolution 41 5x5x79 convolutions with stride [1 1] and padding [2 2 2 2]

19 Batch Normalization Batch normalization with 41 channels

20 ReLU ReLU

21 Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]

22 Fully Connected 256 fully connected layer

23 Softmax softmax

24 Classification Output crossentropyex with 5 classes

VIII. CONCLUSIONS

In this work CNN is investigated as an image classification
method. The performance of such network depends on the
setting of its hyper parameters such as the number of
convolutional layers, the number of filters per layer and their
respective sizes. Our particular problem is to generate a
predictive model for sign stop image classification by the use
of CNN. First we try to manually design the CNN structure.
This approach gives a very poor classification accuracy

(30%).

As the number of candidate solutions is very large we
develop a E-CNN-MP framework, based on GA methods, to
search for a best CNN structure. This heuristic method, starts
by creating an initial population of potential CNN structure and
then evaluates each individual by a “from scratch classification
error computing”. For all CNN training we use a reference
dataset. During simulations the network is set as a block of
convolutional, ReLU and Maxpooling layers. Simulations
prove the ability of the GA process to search for the Elite CNN

model. This model offers a classification accuracy 90%.
Once we test the well doing of the GA process we try to
improve the framework to get better results. Hence, we choose
to insert a batch normalization layer after each convolutional
layer to improve the quality of the network training. The
Enhanced E-CNN-MP performs better than the first designed
one. GA simulations allow us to get a pre trained CNN
performing an accuracy of 98.94%.

In this article we propose a competitor strategy using the
GAs to search for a best CNN structure offering a high-quality
pre-trained CNN suitable for stop sign image classification.
The designed Enhanced E-CNN MP approach is an innovative
approach.

Our contribution will allow scientists from any field of
research (biology, medicine, robotic, geology ...) to design their
own Convolutional Neural Network (CNN) prediction model
suitable for their particular image classification problem.

REFERENCES

[1] A.Karpathy and L. Fei-Fei,. Deep visual-semantic alignments for
generating image descriptions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. (2016), pp. 3128–3137.

[2] R.Bernardi, R.Cakici, D. Elliott, A. Erdem, E. Erdem, N. Ikizler-Cinbis,
F. Keller, A. Muscat and B. Plank. Automatic Description Generation
from Images: A Survey of Models, Datasets, and Evaluation Measures.
Journal of Artificial Intelligence Research (JAIR) (2016), pp. 409-442.

[3] D. Garcia-Gasulla, F. Parès, A. Vilalta, J. Moreno, E. Ayguadé, J.
Labarta, U. Cortés and T. Suzumura. On the Behavior of Convolutional
Nets for Feature Extraction. Journal of Artificial Intelligence Research
61 (JAIR) (2018), pp. 563-592.

[4] G. E. Dahl, D. Yu, L. Deng and A. Acero,.Context dependent pre-
trained deep neural networks for large vocabulary speech recognition.
Audio, Speech, and Language Processing, IEEE Transactions on, 20(1)
(2012), pp.30-42.

[5] Y. Taigman, M. Yang, M. Ranzato and L. Wolf. Deepface: Closing the
gap to human-level performance in face verification. In Computer
Vision and Pattern Recognition (CVPR) (2014), pp. 1701-1708.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification
with deep convolutional neural networks. In Advances in neural
information processing systems (2012), pp. 1097–1105.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

266 | P a g e

www.ijacsa.thesai.org

[7] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. International Conference on Learning
Representations. (2014).

[8] K. He, X. Zhang, S.Ren and J.Sun Deep Residual Learning for Image
Recognition. Computer Vision and Pattern Recognition. (2016).

[9] F. M. Ham and I. Kostanic. Principles of Neurocomputing for Science
and Engineering. McGraw-Hill Higher Education. (2000).

[10] Y. LeCun, Y. Bengio and G. Hinton. Deep Learning. Nature521(7553)
(2015), pp. 436–444. doi:10.1038/nature14539.

[11] S. Srinivas, R. K. Sarvadevabhatla, K. R. Mopuri, N. Prabhu, S.
S.Kruthiventi and R. V. Babu, A taxonomy of deep convolutional neural
nets for computer vision. (2016). arXiv 1601.06615.

[12] C. Szegedy, W. Liu, Y. Jia, P. S. Sermanet, D. Anguelov, D. Erhan, V.
Vanhoucke and A. Rabinovich. Going Deeper with Convolutions
(2014). arXiv:1409.4842.

[13] M. D. Zeiler, and R. Fergus. Visualizing and Understanding
Convolutional Networks (2013). arXiv:1311.2901v3.

[14] A. W. Harley. An Interactive Node-Link Visualization of Convolutional
Neural Networks. In ISVC (2015), pp. 867-877.

[15] A. W. Dumoulin, and F. Visin, A guide to convolution arithmetic for
deep learning (2016). arXiv:1603.07285v1.

[16] K. Jarrett, K. Kavukcuoglu, M. Ranzato and Y. LeCun, What is the best
multi-stage architecture for object recognition?. In Proceedings of the
IEEE International Conference on Computer Vision (2009), pp. 2146–
2153.

[17] V. Nair and G. Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of International Conference on
Machine Learning (2010), pp. 807–814.

[18] D. Nguyen and B. Widrow. Improving the learning speed of 2-layer
neural networks by choosing initial values of the adaptive weights. In
International Joint Conference on Neural Networks (1990), pp. 21–26
vol.3.

[19] M. Norouzi, M. Ranjbar and G.Mori. Stacks of convolutional restricted
boltzmann machines for shift-invariant feature learning. In IEEE
Transactions on Conference on Computer Vision and Pattern
Recognition (2009), pp. 2735–2742.

[20] B. Xu, N. Wang, T. Chen and M. Li. Empirical evaluation of rectified
activations in convolutional network (2015). arXiv 1505.00853v2.

[21] W. Liu, Y. Wen, M. Scut, Z. Yu and M. Yang. Large-margin softmax
loss for convolutional neural networks. In Proceedings of the 33rd
International Conference Machine Learning (2016), pp. 507–516.

[22] G. Brandon and A. Sigberto. Real-time American Sign Language
Recognition with Convolutional Neural Networks. Stanford Vision Lab,
(2016).

[23] J. McCall. Genetic algorithms for modelling and optimization. Journal
of Computational and Applied Mathematics (2005), Volume 184, pp.
205-222.

[24] T. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of Evolutionary
Computation. IOP Publishing. (1997).

[25] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold,
New York (1991).

[26] Z. Michaelewicz. Genetic Algorithms + Data structures = Evolution
Programs (third ed.), (Springer, Berlin ,1999).

[27] S. Loussaief and A. Abdelkrim. Machine Learning Framework for
Image Classification. In Sciences of Electronics, Technologies of
Information and Telecommunications, SETIT 2016.

[28] S. Loussaief and A. Abdelkrim. Machine Learning Framework for
Image Classification. In, Advances in Sciences, Technology and
Engineering Systems Journal (2018), Vol.3 No. 1, 01-10, ISSN: 2415-
6698.

[29] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng and T.
Darrell. A deep convolutional activation feature for generic visual
recognition (2013), CoRR, abs/1310.1531.

[30] S. Loussaief and A. Abdelkrim. Deep Learning vs. Bag of Features in
Machine Learning for Image Classification. In International Conference
on Advanced Systems and Electrical Technologies, IC‟ASET 2018.

[31] N. Jmour, S. Loussaief and A. Abdelkrim. Convolutional Neural
Networks for image classification. In International Conference on
Advanced Systems and Electrical Technologies, IC‟ASET 2018.

[32] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased
Learning Applied to Document Recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[33] A. Krizhevsky and G. Hinton. Learning Multiple Layers of Features
from Tiny Images. Technical Report, University of Toronto, 1(4):7,
2009.

[34] G. Griffin, A. Holub and P. Perona. Caltech-256 Object Category
Dataset. Mars 2007.

[35] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. International Conference on Learning
Representations, 2014.

[36] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich. Going Deeper with
Convolutions. Computer Vision and Pattern Recognition, 2015.

[37] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image
Recognition. Computer Vision and Pattern Recognition, 2016.

[38] S. Zagoruyko and N. Komodakis. Wide Residual Networks. arXiv
preprint, arXiv: 1605.07146, 2016.

[39] L. Xie, J. Wang, W. Lin, B. Zhang, and Q. Tian. Towards Reversal-
Invariant Image Representation. International Journal on Computer
Vision, 2016.

[40] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K.Weinberger. Deep Networks
with Stochastic Depth. European Conference on Computer Vision, 2016.

[41] G. Huang, Z. Liu, and K. Weinberger. Densely Connected
Convolutional Networks. arXiv preprint, arXiv:1608.06993, 2016.

[42] J. Bergstra and Y. Bengio. Random search for hyper-parameter
optimization. JMLR, 13(1):281–305, 2012.

[43] J. Bergstra, D. Yamins, and D.D. Cox. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures. In Proc. Of ICML, pages 115–123, 2013.

[44] F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In Proc. of LION,
pages 507–523. Springer, 2011.

[45] X. Glorot and Y. Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics (2010), pp. 249–256.

[46] K. He, X. Zhang, S. Ren and J. Sun. Deep residual learning for image
recognition (2015). arXiv 1512.03385.

[47] D. Mishkin and J. Matas. All you need is a good init. In Proceedings of
the 4th International Conference on Learning Representations (2016),
pp. 1–13.

[48] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate(2015).
arXiv:1502.03167

