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Abstract—In machine learning for computer vision based 

applications, Convolutional Neural Network (CNN) is the most 

widely used technique for image classification. Despite these deep 

neural networks efficiency, choosing their optimal architecture 

for a given task remains an open problem. In fact, CNNs 

performance depends on many hyper-parameters namely CNN 

depth, convolutional layer number, filters number and their 

respective sizes. Many CNN structures have been manually 

designed by researchers and then evaluated to verify their 

efficiency. In this paper, our contribution is to propose an 

innovative approach, labeled Enhanced Elite CNN Model 

Propagation (Enhanced E-CNN-MP), to automatically learn the 

optimal structure of a CNN.  To traverse the large search space 

of candidate solutions our approach is based on Genetic 

Algorithms (GA). These meta-heuristic algorithms are well-

known for non-deterministic problem resolution. Simulations 

demonstrate the ability of the designed approach to compute 

optimal CNN hyper-parameters in a given classification task.  

Classification accuracy of the designed CNN based on Enhanced 

E-CNN-MP method, exceed that of public CNN even with the use 

of the Transfer Learning technique. Our contribution advances 

the current state by offering to scientists, regardless of their field 

of research, the ability of designing optimal CNNs for any 

particular classification problem. 
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I. INTRODUCTION 

Image classification is an important task in computer vision 
involving a large area of applications such as object detection, 
localization and image segmentation [1-3]. The most adopted 
methods for image classification are based on deep neural 
network and especially Convolutional Neural Networks 
(CNN). These deep networks have demonstrated impressive 
and sometimes human-competitive results [4,5]. CNN deep 
architecture can be divided in two main parts [6]. The first part, 
based on convolutional layers CNN, offers the ability of 
features extraction and input image encoding. Whereas, the 
second one is a fully connected neural network classifier which 
role is to generate a prediction model for the classification task. 
A CNN model is described by many hyper-parameters 
specifically convolutional layers number, filters number and 
their respective sizes, etc. 

Many researchers proposed different CNN models such as 
AlexNet, Znet, etc. To improve the network accuracy some of 
them choose to increase the depth of the network [7]. Others 
propose new internal configurations [8]. Although, these state-
of-the-art CNNs have been shown to be efficient, many of 
them were manually designed. 

During our research, we note that a miss configured values 
of CNN hyper-parameters namely the network depth, the 
number of filters and their respective sizes dramatically affect 
the performance of the classifier. In addition, manually, 
enumerating all the use cases and selecting optimal values for 
these hyper-parameters is almost impossible even with a fixed 
number of convolutional layers. Through contributions held in 
this paper we propose an innovative approach, labeled 
Enhanced Elite CNN Model propagation (Enhanced E-CNN 
MP), to automatically learn optimal CNN hyper-parameters 
values leading to a best CNN structure for a particular 
classification problem. Our approach is based on Genetic 
Algorithms (GA) known to be meta heuristic methods for non-
deterministic problem resolution. Each CNN candidate solution 
structure, is encoded as an individual (chromosome). To search 
for the best fit individual, the proposed method is based on 
“The elite propagation” through the whole GA process. 

The designed Enhanced E-CNN MP approach is an 
innovative approach. Our contribution will allow scientists to 
design their own CNN based prediction model suitable for their 
particular image classification problem. 

This paper is organized as follows. Section II provides an 
overview of Convolutional Neural Network. In section III, the 
Genetic Algorithms paradigm is exposed.  Problem statement 
is presented through section IV. Section V introduces related 
work. Section VI illustrates the designed Elite CNN Model 
Propagation (E-CNN-MP) approach based on GAs for CNN 
hyper parameters optimization. E-CNN-MP simulations and 
results are presented in section VII. Through section VIII, an 
Enhanced E-CNN-MP version is proposed. The last section 
includes our concluding remarks. 

II. DEEP LEARNING BASED ON CONVOLUTIONAL NEURAL 

NETWORK 

A neural network is a mathematical model with a design 
inspired from biological neurons. This network architecture is 
divided in layers. Each layer is a set of neurons. The first layer 
of a neural network is the input layer into which we inject the 
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data to be analyzed. The last layer is the output layer. In a 
classification problem, it returns a number of classes. Layers 
on the middle are the hidden layers of the neural network. 

As shown in Fig.1, in a neural network, a single neuron has 
several inputs. Each input connection is characterized by a 
weight     . On the activation of the artificial neuron, it 
computes its state   , by summing all the inputs multiplied by 
their corresponding connection weights. To ensure that the 
neuron will be activated even when all entries are none, an 
extra input, called bias  , is added. This extra input is always 
equal to 1 and has its own weight connection. 

To normalize its result    (normally between 0-1), the 
neuron passes it through its activation function [9]. 

 
Fig. 1. Neuron Parameters. 

CNNs are category of deep neural networks used especially 
in computer vision area such as image classification [10,11]. 
The very first CNN was LeNet in 1990 (LeCun et al. 1995). It 
was the innovative work by Yann LeCun and the result of 
many successful iterations since the year 1988. This pioneering 
CNN facilitated propel the field of deep learning. At that time 
the LeNet architecture was used mainly for character 
recognition application. 

There have been numerous new CNN architectures 
developed in the recent years. These architectures are 
improvements over the LeNet using its main concepts. Among 
these models we quote: 

 AlexNet (2012):  In 2012, Alex Krizhevsky (and others) 
released AlexNet. It was a deeper and much wider 
version of the LeNet that won, by a large margin, the 
difficult ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) in 2012.  

 ZF Net (2013): The ILSVRC 2013 winner was a 
Convolutional Network from Matthew Zeiler and Rob 
Fergus. It became known as the ZFNet. It was an 
improvement on AlexNet by tweaking the architecture 
hyper-parameters. 

 GoogLeNet (2014): The ILSVRC 2014 winner was a 
Convolutional Network from Szegedy (and others) 
from Google. Its main contribution was the 
development of an inception module that dramatically 
reduced the number of parameters in the network (4M, 
compared to AlexNet with 60M) [12]. 

 VGGNet (2014): The runner-up in ILSVRC 2014 was 
the network that became known as the VGGNet. Its 
main contribution was in showing that the depth of the 
network (number of layers) is a critical component for 
good performance. 

 ResNets (2015): Residual Network developed by 
Kaiming He (and others) was the winner of ILSVRC 
2015.  

 DenseNet (August 2016): Recently published by Gao 
Huang (and others). The Densely Connected 
Convolutional Network has each layer directly 
connected to every other layer in a feed-forward 
fashion. The DenseNet has been shown to obtain 
significant improvements over previous state-of-the-art 
architectures on five highly competitive object 
recognition benchmark tasks. 

There are four main operations which are the basic building 
blocks of every CNN [13,14]. 

1) Convolution  

2) Activation function (ReLU) 

3) Pooling or Sub Sampling 

4) Classification (Fully Connected Layer) 

A. Convolution 

Convolutional layer derives its name from the convolution 
operator. The aim of this layer is image features extraction. 
Convolution conserves the spatial relationship between pixels 
by learning image features using small squares of input data. 
Each convolution layer uses various filters to features detection 
and extraction such as Edge Detection, Sharpen, Blur, etc. 
These filters are also called „kernels‟ or „feature detectors‟. 
After sliding the filter over the image we get a matrix known as 
the feature map [15].  

In the first convolution layer, the convolution is between 
the input image and its filters. Filter values are the neuron 
weights (see (1)). 

In deep layers of the network, the resulting image of 

convolutions is the sum of      convolutions, with      the 
number of outputs of layer     (see  (2)). 
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In practice, a CNN learns the values of these filters on its 
own during the training process. Parameters such as number of 
filters, filter size and network architecture are specified by the 
scientific before launching the training process. The more 
number of filters we have, the more image features get 
extracted and the better the network becomes at features 
extraction and image classification. 

The size of the feature map is controlled by three 
parameters which are: 

 Depth: Depth corresponds to the number of filters used 
for the convolution operation.  
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 Stride: Stride is the number of pixels by which we slide 
our filter matrix over the input matrix. Having a larger 
stride will produce smaller feature maps. 

 Zero-padding: To apply the filter to bordering elements 
of input image, it is convenient to pad the input 
matrix with zeros around the border. 

B. Activation Function 

Once the convolution has been completed, an activation 
function is applied to all values in the filtered image to extract 
nonlinear features. There are many activation functions such as 
the ReLU [16,17]

 
which is defined as               , the 

function         [18] or the sigmoid function [19]. 

The output value   
   

 of a neuron   of layer   depends on its 

activation function and is defined as (see  (3)) : 

  
   

     
      

with   the activation function and   
   

 the value of neuron 

  of layer  . The choice of the activation function may depend 
of the problem. The ReLU function replaces all negative pixel 
values in the feature map by zero. The purpose of ReLU is to 
introduce non-linearity in the CNN, since the convolution 
operator is linear operation and most of the CNN input data 
would be non-linear. Result of convolution and ReLU 
operation is called rectified feature map. 

C. Pooling 

The pooling step is also called subsampling or down 
sampling. It aims to reduce the dimensionality of each rectified 
feature map and retains the most important information. 

The two most used methods to apply in this operation are 
the average or max pooling [20]. 

After this step of sub-sampling we get a feature map that is 
defined in (4) 

  
   

        
      

with   
   

 the feature map of the layer  , the         

operation pooling and   
    the output value of the neuron   of 

the layer    

The advantages of the pooling function are: 

 It makes the input representations (feature dimension) 
smaller and more manageable. 

 It reduces the number of parameters and computations 
in the network, therefore, controlling overfitting.  

 It makes the network invariant to small transformations, 
distortions and translations in the input image. In fact, a 
small distortion in input will not change the output 
of pooling since the maximum/average value in a local 
neighborhood is taken. 

 It helps getting an almost scale invariant representation 
of input image. This is very powerful since we can 
detect objects in an image no matter where they are 
located. 

D. Fully Connected Layer 

The output from the convolutional and pooling layers of a 
CNN is the image features vector. The purpose of the fully 
connected layer is to use these features vector for 
classifying the input images into several classes based on a 
labeled training dataset.  

The fully connected layer is composed of two parts. The 
first part consists of layers so-called fully connected layers 
where all its neurons are connected with all the neurons of the 
previous and next layers. The second part is based on an 
objective function. In fact, CNNs seek to optimize some 
objective function, specifically the loss function. The well-used 
loss function is the Softmax function [21]. It normalizes the 
results and produces a probability distribution between the 
different classes (each class will have a value in the range [0, 
1]) [22]. Adding a fully-connected layer allows learning non-
linear combinations of extracted features which might be even 
better for the classification task. 

E. Genetic Algorithms 

GAs are heuristic solution-search or optimization methods. 
These techniques were originally inspired from the Darwinian 
principle of evolution through (genetic) selection. 

A GA is based on a highly abstract form of evolutionary 
processes to give solutions to complex problems. Each GA 
operates on a population of artificial chromosomes. Each 
chromosome signifies a solution to the problem to be resolved 
and has a fitness. A chromosome fitness is a real number 
measure which represents its performance as a solution of the 
specific problem. 

GA method begins with a randomly generated population 
of chromosomes. It, then carries out a process of selection and 
recombination based on each chromosome fitness. Parent 
genetic materials are recombined to generate child 
chromosomes producing a next generation. This process is 
iterated until some stopping criterion is reached. In this way, a 
GA evolves a best solution to a given problem. 

GAs were first proposed by John McCall [23] as a method 
to find best solutions to problems that were otherwise 
computationally intractable. McCall‟s theorem, and the related 
building block hypothesis, delivered a theoretical basis for the 
conception of effective GAs. The development and success of 
GAs have significantly contributed to their adoption in many 
computational approaches based on natural phenomena. GA is, 
henceforth, a major part of the wider field of Computational 
Intelligence such as Neural Networks, Ant Colony 
Optimization, etc. 

F. Genetic Algorithm Structure 

A GA is made from a number of “standard” components. 
This conception facilitated their re-use with trivial adaptation 
in many different problems. The main components of GA are: 
chromosome encoding, fitness function, selection, 
recombination and evolution scheme. 

1) Chromosome encoding: In GA a population is a set 

of chromosomes, which are solution candidates to a particular 
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problem. A chromosome is an abstraction of a biological DNA 

chromosome. It can be thought of as a combination of genes. 

For a given problem, a particular representation is used and 

referred to as the GA encoding of the problem. GA proposes 

two ways for chromosome encoding: 

 A bit-string representation to encode solutions: bit-
string chromosomes consist of a string of genes whose 
allele values are characters from the alphabet {0,1}.  

 Value Encoding: chromosome, in direct value encoding, 
is a string of some values which can be whatever form 
related to problem such as numbers, real numbers, 
chars, some complicated objects, etc. 

2) Fitness: The fitness function allows to compute and 

evaluates the quality of a chromosome as a solution to a 

particular problem. Fitness computation will go on through 

GA generations measuring the performance of each individual 

in terms of various criteria and objectives defined by 

researchers (completion time, resource utilization, cost 

minimization, etc). 

3) Selection: Selection method in a GA is very important 

as it guides the evolution of chromosomes through 

generations. This method will permit to make a choice 

regarding the parent chromosomes to be used for child 

chromosome creation. 

In GA process, chromosome selection for recombination is 
based on its fitness value. Best fit individuals should have a 
greater chance of selection than those with lower fitness. 

Many selection methods are proposed in literature such as 
[24]: 

 Roulette Wheel (or fitness proportional) selection 
method which allocates each chromosome a probability 
of being designated proportional to its relative fitness. 
This value is computed as a proportion of the sum of all 
chromosome‟s fitness in the population. 

 Random Stochastic selection explicitly chooses each 
individual a number of times equal to its expectation of 
being selected under the fitness proportional method.  

 Tournament selection first chooses two individuals 
based on a uniform probability and then selects the one 
with the highest value of fitness.  

 Truncation selection first eliminates a fixed number of 
the least fit chromosomes and, then, picks one at 
random from the population having. 

4) GA Recombination operators: GA recombination 

method allows the production of offspring with combinations 

of genetic material from parents chosen through the selection 

method. This process allows to form members of a successor 

population based on recombination of chromosomes selected 

from a source population. Since the selection mechanism is 

biased towards chromosomes with higher fitness value, this 

guarantees (hopefully) the evolution to more highly fit 

individuals in the descendant generations. 

There are two main operators for genetic recombination 
which are: 

 Crossover: 

 Mutation 

Those Genetic operators are nondeterministic in their 
behavior. Their outcome is also nondeterministic: each 
happens with a certain probability. 

Crossover operator characterizes the fact of mixing genes 
from two selected parent chromosomes. This recombination 
allows to produce one or two child chromosomes. 

Literature proposes many alternative forms of crossover 
method: 

 One-point crossover generalized to 2- and multi-point 
crossover operations: the idea is to choose a sequence 
of crossover points along the chromosome length.  
Child chromosomes are subsequently created by 
interchanging the gene values of both parents at each 
chosen crossover points. 

 Uniform crossover creates a child chromosome by 
picking uniformly between parent gene values at each 
chosen position. 

Crossover algorithms also vary with according to the 
number of created children through the process. 

To ensure a maximum of diversity when creating offspring, 
all crossover resulted chromosome(s) are then passed on to the 
mutation process. Mutation operators perform on an individual 
chromosome to change one or more gene values. The aim of 
these genetic operators is to increase population diversity and 
avoid premature convergence to a less optimal solution for a 
particular problem. 

5) Evolution: After the crossover and mutation process, 

the resulting chromosomes are passed into the descendant 

population called next generation. This process is then iterated 

for all upcoming generations until reaching a stopping criteria. 

Termination conditions can include: 

 A solution with minimum criteria is found. 

 Fixed number of generations elapsed. 

 Due budget such as computation time/money reached. 

 The highest level solution's fitness is reaching or 
converge to a best-fitness solution such that successive 
generations no longer yield better results. 

 Manual inspection that fully satisfies a set of 
constraints. 

Evolutionary schemes depend on the degree to which 
individuals from a source population are permitted to move on 
unchanged to the next generation. Evolutionary scheme is an 
important aspect of GA design. It depends closely on the nature 
of the solution space being investigated. These schemes vary 
from: 
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 Complete replacement, where all next generation 
chromosomes are generated through selection and 
mutation. 

 Steady state, where the next generation is created by 
generating one new chromosome at each new 
population and using it to replace a less-fit individual of 
the original population.  

 Replacement-with-elitism: This is a hybrid complete 
replacement method since the best one or two 
individuals from the source population are preserved in 
the next generation. This scheme avoids individual of 
the highest relative fitness from being lost through the 
nondeterministic selection process 

G. GA Design 

When solving problem is based on GA metaheuristic 
approach, scientific may make many choices in designing the 
genetic algorithm. These choices are related to: 

 Chromosome encoding;  

 Fitness function form;  

 Population size;  

 Crossover and mutation operators and their respective 
rates; 

 Evolutionary scheme to be applied;  

 Appropriate stopping criteria. 

Numerous examples of non-classical GAs can be found 
in literature [25,26]. A typical architecture adopted for a 
classical GA using complete replacement with standard genetic 
operators might be as follows: 

(S1) Randomly create an initial population of   
chromosomes (source population). 

(S2) Compute the fitness value,     , of each chromosome 
c in the initial population. 

(S3) Create a successor population of   chromosomes as 
follows: 

(S3a) Use selection method to select two parent 
chromosomes,    and   , from the previous population. 

(S3b) Apply crossover technic to    and    with a 
crossover rate    to get a child chromosome  . 

(S3c) Apply a mutation method to   with mutation rate    
to produce   . 

(S3d) include the chromosome    to the successor 
population. 

(S4) Replace the source population with the successor 
population. 

(S5) If not reaching stopping condition, return to Step S2. 

The flexibility of this standard architecture allows its 
implementation and refinement by scientific to fit a particular 
problem to be solved based on of this metaheuristic approach. 

III. PROBLEM STATEMENT 

In this section we establish the context of the current work 
according to a previous investigated one. The aim of our 
research is to design an approach to be used for image 
classification task. For this purpose, we are interested in 
machine learning algorithms and specially supervised learning. 

Machine learning (ML) is a wide variety of algorithms 
particularly suited to prediction. ML avoids starting with a data 
model and rather uses an algorithm to learn the relationship 
between the response and its predictors. As shown in Fig. 2, 
ML techniques try to learn the response by observing inputs 
and responses and finding dominant patterns. 

At the end of the training process we get a predictive model 
which can be used to classify a new input data. 

When we use supervised learning algorithms for 
classification purpose the input variables     are a labeled data 
(for each input from the dataset we know its class or category) 
and the output variable      represents a category (class). A 
supervised algorithm aims to learn the mapping function from 
the input to the output: 

          

The goal is to well approximate the mapping function  () 
in such a way that for a new input data     the algorithm can 
predict its category    . Learning stops when the algorithm 
achieves an acceptable level of prediction accuracy. 

In previous works, we investigated many approaches to 
design a machine learning framework for image classification. 
During research, we investigated two approaches: 

1) The Bag of Features paradigm and CNN as features 

extraction and image encoding methods [27,28]. Our 

experimentation results shown in Fig.3,4 demonstrated how 

CNN performs better than BoF as features extractor and image 

encoding technique [30]. 

Deep Learning approach based on Transfer Learning 
technique. The pre-trained used CNN is AlexNet [29]. Its 
architecture is described in Fig.5 [6].  Based on this approach, 
we reached a classification accuracy of 93.33% [31]. 
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Fig. 2. Machine Learning Framework. 

 

Fig. 3. SVM Classifiers Accuracies. 

 

Fig. 4. KNN Classifiers Accuracies. 

 
Fig. 5. AlexNet Architecture. 
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In the current work, our overarching approach is to design 
our own CNN model for stop sign image classification. The 
designed CNN will be trained from scratch. For the CNN to be 
created, many hyper parameters must be defined, such as:  
CNN depth, filters number per convolutional layer and their 
respective sizes. To build our network, we, first, choose to 
follow the same model as the AlexNet one. The CNN model 
includes 5 convolutional layers each layer is followed by a 
ReLU and MaxPooling layer. The input image size is 
227x227x3. The feature vector resulting from the convolution 
part of the model has a dimension of 4096, which is a good 
dimension to encode image for classification task. The fully 
connected part of the model is composed of three fully 
connected layers. The first two layers have 4096 neurons. The 
activation function used is the ReLU. The third layer is a 
softmax that calculates the probability distribution of the five 
classes.  In the first approach simulation, we put a large 
number of filters on the convolution layers. This number of 
filters and their sizes are chosen randomly. For this purpose, 
we refer to already developed CNNs such as AlexNet. 

The CNN designed architecture is represented in Table I. 

TABLE I.  THE MANUALLY DESIGNED CNN ARCHITECTURE 

Layer  Layer Name Layer Properties 

1      Image Input 
227x227x3 images with 'zerocenter' 
normalization 

2  Convolution 
96 11x11x3 convolutions with stride [4  4] 
and padding [0  0  0  0] 

3   ReLU ReLU 

4   Max Pooling 
3x3 max pooling with stride [2  2] and 
padding [0  0  0  0] 

5    Convolution 
256 5x5x96 convolutions with stride [1  1] 

and padding [2  2  2  2] 

6  ReLU ReLU 

7  Max Pooling 
3x3 max pooling with stride [2  2] and 

padding [0  0  0  0] 

8  Convolution 
384 3x3x256 convolutions with stride [1  1] 

and padding [1  1  1  1] 

9   ReLU ReLU 

10  Convolution 
384 3x3x384 convolutions with stride [1  1] 

and padding [1  1  1  1] 

11 ReLU ReLU 

12   Convolution 
256 3x3x384 convolutions with stride [1  1] 
and padding [1  1  1  1] 

13  ReLU ReLU 

14   Max Pooling 
3x3 max pooling with stride [2  2] and 
padding [0  0  0  0] 

15 Fully Connected 4096 fully connected layer 

16   ReLU ReLU 

17 Fully Connected 4096 fully connected layer 

18  ReLU ReLU 

19   Fully Connected 256 fully connected layer 

20   Softmax softmax 

21 
Classification 
Output 

 crossentropyex 

 

Fig. 6. Manually Designed CNN Training Accuracy (30%). 

Many popular image datasets can be used for CNN training 
including MNIST [32], CIFAR10 [33], Caltech-256 [34], 
ImageNet [6], etc.  CNN training from scratch requires a large 
amount of computational resources. In our experimentations 
we choose the Caltech-256 dataset including 256 object 
categories containing a total of 30607 images. For training 
step, we use 70% of the whole dataset and leave 30% for the 
test process and accuracy computing. 

Fig.6 shows the training accuracy progress through 
iterations. 

The accuracy of the manually designed model is too bad 
and not exceed a 30.8%. The main issue of this model is that 
the value of its hyper parameters are not optimum for our stop 
sign image classification problem. 

In this stage of research, we have to solve a problem with N 
variables corresponding to the CNN hyper parameters while 
ensuring a good learning accuracy. In order to optimize the 
values of these variables we design a solution based on a 
genetic algorithm approach well known for nondeterministic 
problem resolution. 

IV. RELATED WORK 

For decades, neural networks have proved their ability in 
machine learning.  To increase network performance, some 
researches are based on deeper networks [35,36] while others 
propose adding highway information [37,38]. 

One of the most challenging aspects of deep networks is 
how to configure them and search for their hyperparameter 
values. To address this problem, some proposed methods 
include the use of stochastic depth [39,40] or dense 
convolutional networks [41]. However, the limit of these 
approaches is that all proposed deep network structures are 
deterministic which limits the flexibility of the models and 
consequently motivates us to design an automated search for 
optimal CNN hyperparameters for a given classification task. 

In fact, searching for optimal deep network 
hyperparameters can be led through different strategies: 

 Random configuration inspired from literature and 
intuition. 

 Grid search by trying a systematic exploration across 
the layer number and nodes per layer. 
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 Exhaustive search by trying all possible combinations 
for hyperparameter values.  

 Heuristic search such as genetic algorithm or Bayesian 
optimization. 

Reference [42] shows that a simple random search gives 
better results than grid search, particularly for high-
dimensional problems with low intrinsic dimensionality. In 
[43] and [44], proposed methods are based on Bayesian 
optimization process and yield better performance. In this 
paper we investigate a heuristic search. Our strategy is based 
on genetic algorithm well known for non-deterministic 
problem resolution. Our work aims to design and experiment a 
competitor new GA encoding method for CNN structure 
search. 

V. PROPOSED APPROACH: ELITE CNN MODEL 

PROPAGATION (E-CNN-MP) 

To design an optimal CNN model for our classification 
problem, we design a GA based approach labeled “Elite CNN 
Model Propagation” (E-CNN-MP). The main structure of a GA 
method is adopted. We, then, develop a specific method for 
chromosome encoding, chromosome recombination and fitness 
function. 

In this section, we describe the E-CNN-MP modules that 
allow to evolve optimum hyper-parameters of a CNN for sign 
stop image classification problem. In the proposed framework, 
each chromosome is a candidate solution representing a CNN 
architecture. The training process error is chosen as the fitness 
function of a chromosome. In this case the GA based solution 
aims to compute the optimal hyper-parameters value giving the 
less error and consequently the higher classification accuracy. 

A. Chromosome Encoding 

In the designed approach, each chromosome represents a 
solution to the problem. For a CNN with Dp convolutional 
layers (CNN depth), the genetic algorithm inputs are 2*Dp 
variables to be optimized through the GA process.  These 
variables are Dp pairs of values (Filter Number per Layer FNL, 
Filter Size per Layer FSL). The value encoding scheme of a 
chromosome (individual in a population) is illustrated in Fig.7. 

 

Fig. 7. Chromosome Encoding. 

B. Population Initialization 

GA population is a set of C individuals  . Each individual is 
represented by a vector with length   (GA variables number). 

To initialize the first population  , we use an uniform 
randomized values in the defined intervals: 

  {  
 }   [    ]   

With:  {
                                     

                     
 

These values will be modified through mutation and 
crossover when discovering competitive structures during the 

genetic process. Each initialized individual will be evaluated. 
For this purpose, we compute its fitness score which is the 
classification error of the corresponding CNN. Our approach 
aims to search for the optimum individual which minimizes the 
fitness function and subsequently the classification error. 
Computing individual fitness is realized through a whole CNN 
training and evaluation process which requires heavy 
computation.  For all simulations we use a single GPU. To 
evaluate the designed approach, generations of eight 
individuals are used. This number can be generalized and 
scaled up if we dispose more resources. 

C. Selection Method 

At the beginning of every generation creation, we apply a 
selection method. A successor generation    of a source 
generation   is defined as follows: 

1) A fraction    of elite individuals from   propagated to 

  . These individuals are the fit individuals with lower fitness 

function value (CNN classification error) over the whole 

generation  . 

2) A fraction    of   , other than elite children, that are 

created by crossover. 

3) The remaining individuals to form the new generation 

are chosen randomly. This ensures the population diversity 

and avoids that the genetic algorithm converges rapidly. 

Our selection approach aims to eliminate the least fit 
individuals from each generation. 

To select parents of crossover children we perform a 
roulette method. During this step, we simulate a roulette wheel, 
in which the section area of the wheel corresponding to an 
individual   is proportional to the individual's expectation   . 

In a population of size  , for an individual of fitness value 
      , its expectation is computed as follows: 

   
 

   
 

𝑠𝑐𝑜𝑟𝑒

With: 

    ∑      

 

   

 

The method generates, then, a random number in the 
interval [     ]  The individual whose segment spans the 
random number is chosen. This process is repeated until the 
preferred number of children to be created is reached. 

D. Crossover Method 

Crossover is a basic operator used in GA for producing new 
children which will have some parts of both parent‟s genetic 
material. In the proposed approach a scattered crossover 
technique is used. For a child creation we: 

1) Select 2 parents by the use of the selection method. 

2) Generate a random binary vector of length   ( : the 

length of a chromosome). 
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3) To form the child, we use the gene from the first parent 

if the vector value is 1 and the gene from the second parent if 

the vector value is 0. 

E. Mutation Method 

Mutation method is applied on children created by 
crossover mechanism. The genetic algorithm applies small 
random changes in each child. Mutation offers population 
diversity and allows the genetic algorithm to explore a broader 
space. 

Our mutation method is a two-step process: 

1) Randomly select the fraction of the child vector to be 

mutated according to a probability rate   . In practice   is 

often small. This small value guarantees that the mutation 

operator preserves the good properties of a chromosome while 

exploring new possibilities. In our experimentation we choose 

a    equal to     . 

2) Replace each selected entry (chromosome gene) by a 

random number chosen from its corresponding range. 

F. Termination of the GA 

A GA approach is known to be a stochastic search method. 
The specification of a convergence criteria is sometimes 
problematic as the fitness function value may remain 
unchanged for a number of generations before a superior 
individual is found. In our approach, we choose to terminate 
the GA process after an already specified number of 
generations to avoid materials saturation. Then, we verify the 
quality of the best individual fitness and if necessary we restart 

the GA process with the initialization of a fresh search. The 
GA Fitness Function. 

In this work we are optimizing CNN hyper-parameters for 
image classification task. Each individual corresponds to a 
plausible configuration of a CNN. It specifies its number of 

filters and their respective sizes. The fitness function or       
of an individual is computed via the CNN training from scratch 

based on an input dataset  . In our approach, the classification 
error is used as individual score. 

The input dataset   is divided in a              and 
     . 

The          of training is computed as: 
                                          

            
 

The individual                    

G. Designed Algorithms 

According to the previously exposed GA methods, the E-
CNN-MP main algorithm is described in Algorithm 1. This 
algorithm returns the best individual and the corresponding 
CNN for which we save all weights and biases. 

The FitnessCNN function used in the main program is the 
GA fitness function. It is described in Algorithm 2. It aims to 
construct the CNN model according to individual‟s values 
generated through the GA process and then operates a from 
scratch training. 

Methods used for successor generations creation are 
described in algorithm3. 

Algorithm 1: E-CNN-MP main algorithm 

Input: D, convolutional layers number (NumConLayers), Max generations number (MaxG), Generation size N 

Output: Best individual FitI, FitCNN  

Loading images dataset D 

Initialization of the training dataset (TrainingDS), the test dataset (TestDS), Best Accuracy, Fraction of elites (fe), Fraction of 

crossover created children(fc)  

Randomly (Uniform distribution) create an initial population P of N chromosomes. 

for g in 1 to MaxG 

 do  

[S1,S2 ,..,SN, BestAccuracy, FitI, FitCNN] FitnessCNN (P, NumConLayers, BestAccuracy, TrainingDS, TestDS); 

P‟ Recombination (P , fe, fc); 

PP‟; 

end for; 

return FitI; 

save FitCNN;  

Algorithm 2: FitnessCNN function 

Input: Population of N chromosomes, NumConLayers, BestAccuracy, TrainingDS, TestDS 

Output: Vector of chromosome scores Si, BestAccuracy, FitI, FitCNN 

/*CNN model generation*/ 

Layers[imageInputLayer([227 227 3]);  
for C in 1 to N 

for i in 1 to length(C)/2 

FNC[i]; 

FSC[i+length(C)/2]; 

Layersconcatenate(layers,convolution2dLayer(FS,FN,'padding',FS/2),reluLayer, maxPooling2dLayer(2,'Stride',2)); 
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end for; 

layersconcatenate(layers, fullyConnectedLayer, reluLayer, fullyConnectedLayer, reluLayer, fullyConnectedLayer(), 

softmaxLayer ,classificationLayer()); 

/*From scratch CNN training*/ 

CNNtraining(TrainingDS, layers, trainingoptions); 

TestLabel  classify(CNN, TestDS); 

ImageLabel  TestDS.Labels; 

accuracy  100*sum(TestLabel==ImageLabel)/size(TestDS); 

scores(C)  100-accuracy; 

if accuracy > BestAccuracy 

then 

         BestAccuracyaccuracy; 

         save(C);  

         save(CNN); 

 end if; 

end for; 

return C; 

return CNN;  

Algorithm 3: Successor generations creation algorithm 

Input: Population of N Chromosomes P, fe, fc 

Output: Population of N Chromosomes P‟ 

/* Elite individual propagation*/ 

EN* fe; 

Select E Elite chromosomes from P and place them in P‟; 

/*Create N‟ child chromosomes by crossover method*/  

N‟N* fc; 

For i 1 to N‟  

do 
initialize a child vector C; 

select 2 parents P1 and P2 from P based on roulette method; 

randomly generate a binary vector R with length(R)=length(P1); 

for j in 1 to length(R) 

   do 
       if R[j]==1 

           then 
               C[j]P1[j]; //choose the first parent gene to be conserved in the child 

           else 
               C[j]P2[j]; //choose the second parent gene to be conserved in the child 

       end if; 

end for; 

/*Mutation operation*/ 

randomly select child gene position i to be mutated:  

  i random (1,length (C)); 

  randomly select x from the child gene initial range; 

C(i) x; 

end for; 

/*Randomly generation of remaining individuals in P‟*/ 

N‟‟ N-(E+N‟); 

Inject randomly N‟‟ chromosomes in P‟ (To guaranty diversity); 

Return P‟;  

VI. SIMULATIONS AND RESULTS OF E-CNN-MP 

The proposed approach for CNN hyper-parameters 
optimization is executed in a single GPU. The setting of the 
GA global parameters used for method implementation is 
synthetized in Table II. 

To search for the best CNN model for our particular 
classification task, the GA process is iterated 5 times and the 
GA result performance is verified. Table.III shows the 
individual scores during each GA process. 
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TABLE II.  GA SETTINGS 

GA Settings Value 

Number of convolutional layers  5 

Number of GA variables to optimized  10 

GA population size  8 

Individual score  
Classification 

Error 

GA stopping criteria is the maximum number of 

generations 
4 

Elite individuals fraction 20% 

Fraction of children created by crossover 40% 

Simulation results are summarized in Table. IV. The best 
individual reached by the GA process is a CNN model offering 
89.47% accuracy which is not bad. In addition, comparing to 
the manually designed CNN (Section IV, Table I), it gives 
better classification accuracy. 

Despite this accuracy improvement, we notice that the GA 
individual scores oscillate a lot through generations giving an 
accuracy average not exceeding 50%. 

In the following step, the CNN training process is improved 
to get better classification accuracy values. 

TABLE III.  GA SIMULATIONS RESULTS BASED ON E-CNN-MP METHOD 

GA Process Iteration N°1 GA Process Iteration N°2 

  

GA Process Iteration N°3 GA Process Iteration N°4 

  
GA Process Iteration N°5 

 

TABLE IV.  CLASSIFICATION ACCURACY (ACCU.%) BASED ON E-CNN-MP METHOD 

GA process 
Max 

Accu.% 

Min 

Accu.% 

Average Accu. 

% 
Best Network Encoding 

1 85.27 0 49.81 73 49 61 96 73 18 7 8 7 16 
 

2 85.26 0 47.73 42 75 57 48 76 2 5 11 17 16 
 

3 89.47 0 44.55 80 80 55 70 66 14 4 2 18 2 
 

4 86.32 0 42.11 70 70 60 77 58 17 7 3 6 9 
 

5 87.02 0 46.85 60 73 52 76 61 11 9 3 4 2 
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VII. ENHANCED E-CNN-MP 

Many methods are proposed to optimize a deep neural 
network training. Some of them try to reduce the sensitivity to 
network initialization.  Among these enhanced initialization 
schemes, we quote: Xavier Initialization [45], Theoretically 
Derived Adaptable Initialization [46], Standard Fixed 
Initialization [6], etc. However, researches demonstrate that 
these methods have some limits. In fact, Xavier Initialization is 
not suited for rectification-based nonlinear activations CNN. 
Although, Theoretically Derived Adaptable Initialization 
method improves convergence characteristics, it is not 
confirmed that it led to better accuracy. It is also proven that 
Standard Fixed Initialization delays convergence because of 
the gradients magnitude or activations in a deep network final 
layers [7,47]. 

Other methods are interested to reduce the internal 
covariate shift phenomenon produced by variations in the 
distribution of each layer‟s inputs due to parameters changes in 
the previous layer. An “internal covariate shift” problem can 
dramatically affect CNN training [48]. In fact, during training 
process when the data is flowing through the CNN, their values 
are adjusted by the weights and parameters. This procedure 
makes sometimes the data too big or too small. To largely 
avoid this problem, the idea is to normalize the data in each 
mini-batch and not only for input data during the preprocessing 

step [48]. For each input channel across a mini-batch, 
activation normalization is, first, performed by subtracting the 
mini-batch mean and dividing by the mini-batch standard 
deviation. Input is, then, shifted by a learnable offset β and 
scaled by a learnable scale factor γ. 

To enhance the designed E-CNN-MP approach, a CNN 
batch normalization is adopted.  Comparing to Fig. 6, training 
accuracy results presented in Fig. 8 show that merely adding 
batch normalization to our CNN model yields a considerable 
speedup and achieves higher classification accuracy. 

 
Fig. 8. Training Accuracy based on Bach Normalization Layers. 

In the Enhanced E-CNN-MP proposed method, batch 
normalization layers are incorporated between convolutional 
layers and ReLU layers. FitnessCNN algorithm is describe in 
Algorithm 2’.  

Algorithm 2’: FitnessCNN Based on Bach Normalization 

Input: N chromosomes, NumConLayers, BestAccuracy, TrainingDS, TestDS 
Output: Vector of chromosome scores Si, BestAccuracy, FitCNN 
/*CNN model generation*/ 
Layers[imageInputLayer([227 227 3]);  
for C in 1 to N  

for i in 1 to length(C)/2 
FNC[i]; 
FSC[i+length(C)/2]; 
/*CNN structure generation with the use of Batch Normalization Layer*/ 

Layersconcatenate(layers,convolution2dLayer(FS,FN,'padding',FS/2), batchNormalizationLayer, reluLayer, 
maxPooling2dLayer(2,'Stride',2)); 

end for; 

layersconcatenate(layers, fullyConnectedLayer, reluLayer, fullyConnectedLayer, reluLayer, fullyConnectedLayer(5), 

softmaxLayer ,classificationLayer()); 

/*From scratch CNN training*/ 

CNNtraining(TrainingDS, layers, trainingoptions); 
TestLabel  classify(CNN, TestDS); 
ImageLabel  TestDS.Labels; 
accuracy  100*sum(TestLabel==ImageLabel)/size(TestDS); 
scores(C)  100-accuracy; 
if accuracy > BestAccuracy 
then 
         BestAccuracyaccuracy; 
         save(C); 
         save(CNN); 
 end if; 

end for; 

return C; 

return CNN; 
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To evaluate the GA process based on this new fitness 
function. The whole GA process is repeated 5 times. Table. V 
shows the fitness function values evolution through the GA 
process iterations. Table. VI synthesizes CNN accuracies got at 
the end of each GA process iteration. The new CNN structure 

allows to reach a classification accuracy of 98.94%. The best 
fit CNN structure obtained through the Enhanced E-CNN-MP 
proposed approach is given in Table. VII. All its weights and 
biases are saved. 

TABLE V.  GA SIMULATIONS RESULTS BASED ON ENHANCED E-CNN-MP METHOD 

GA Process Iteration N°1 GA Process Iteration N°2 

  
GA Process Iteration N°3 GA Process Iteration N°4 

  
GA Process Iteration N°5 

 

TABLE VI.  CLASSIFICATION ACCURACY (ACCU. %) BASED ON ENHANCED E-CNN-MP METHOD 

GA process Max Accu.% Min Accu.% Average Accu.% Best Network Encoding 

1 94.74 82.11 89.9 57 98 94 98 38 8 9 7 3 7 
 

2 91.57 83.15 87.89 31 84 50 81 86 13 3 12 20 6 
 

3 94.93 80 87.79 57 98 94 98 37 8 9 7 3 7 
 

4 98.94 85.26 93.25 59 37 81 79 41 19 4 6 17 5 
 

5 96.97 83.11 92.37 60 73 52 76 61 11 9 3 4 2 
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TABLE VII.  BEST FIT CNN STRUCTURE 

Layer Layer Name Layer Properties 

1 Image Input 227x227x3 images with 'zerocenter' normalization 

2 Convolution   
59 19x19x3 convolutions with stride [1  1] and padding  [9  9  9  

9] 

3 Batch Normalization  Batch normalization with 59 channels 

4 ReLU  ReLU 

5 Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

6 Convolution              37 4x4x59 convolutions with stride [1  1] and padding [2  2  2  2] 

7 Batch Normalization  Batch normalization with 37 channels 

8 ReLU               ReLU 

9 Max Pooling    2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

10 Convolution              81 6x6x37 convolutions with stride [1  1] and padding [3  3  3  3] 

11 Batch Normalization  Batch normalization with 81 channels 

12 ReLU                ReLU 

13 Max Pooling   2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

14 Convolution  
79 17x17x81 convolutions with stride [1  1] and padding [8  8  8  

8] 

15 Batch Normalization  Batch normalization with 79 channels 

16 ReLU    ReLU 

17 Max Pooling   2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

18 Convolution            41 5x5x79 convolutions with stride [1  1] and padding [2  2  2  2] 

19 Batch Normalization  Batch normalization with 41 channels 

20 ReLU   ReLU 

21 Max Pooling  2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

22 Fully Connected        256 fully connected layer 

23 Softmax  softmax 

24 Classification Output  crossentropyex with 5 classes 

VIII. CONCLUSIONS 

In this work CNN is investigated as an image classification 
method. The performance of such network depends on the 
setting of its hyper parameters such as the number of 
convolutional layers, the number of filters per layer and their 
respective sizes. Our particular problem is to generate a 
predictive model for sign stop image classification by the use 
of CNN. First we try to manually design the CNN structure. 
This approach gives a very poor classification accuracy 

(30%). 

As the number of candidate solutions is very large we 
develop a E-CNN-MP framework, based on GA methods, to 
search for a best CNN structure. This heuristic method, starts 
by creating an initial population of potential CNN structure and 
then evaluates each individual by a “from scratch classification 
error computing”. For all CNN training we use a reference 
dataset. During simulations the network is set as a block of 
convolutional, ReLU and Maxpooling layers. Simulations 
prove the ability of the GA process to search for the Elite CNN 

model. This model offers a classification accuracy  90%. 
Once we test the well doing of the GA process we try to 
improve the framework to get better results. Hence, we choose 
to insert a batch normalization layer after each convolutional 
layer to improve the quality of the network training. The 
Enhanced E-CNN-MP performs better than the first designed 
one. GA simulations allow us to get a pre trained CNN 
performing an accuracy of 98.94%. 

In this article we propose a competitor strategy using the 
GAs to search for a best CNN structure offering a high-quality 
pre-trained CNN suitable for stop sign image classification. 
The designed Enhanced E-CNN MP approach is an innovative 
approach. 

Our contribution will allow scientists from any field of 
research (biology, medicine, robotic, geology ...) to design their 
own Convolutional Neural Network (CNN) prediction model 
suitable for their particular image classification problem. 
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