
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

320 | P a g e

www.ijacsa.thesai.org

Software Components’ Coupling Detection for

Software Reusability

Zakarya A. Alzamil

Software Engineering Department

King Saud University

Riyadh, Saudi Arabia

Abstract—Most of the software systems design and modeling

techniques concentrates on capturing the functional aspects that

comprise a system’s architecture. Non-functional aspects are

rarely considered on most of the software system modeling and

design techniques. One of the most important aspects of software

component is reusability. Software reusability may be

understood by identifying components’ dependence, which can

be measured by measuring the coupling between system’s

components. In this paper an approach to detect the coupling

between software system’s components is introduced for the

purpose of identifying software components’ reusability that may

help in refining the system design. The proposed approach uses a

dynamic notion of sequence diagram to understand the dynamic

behavior of a software system. The notion of data and control

dependence is used to detect the dependences among software

components. The components’ dependences are identified in

which one component contributes to the output computation of

the other component. The results of the experiments show that

the proposed algorithm can help the software engineers to

understand the dependences among the software components

and optimize the software system model by eliminating the

unnecessary dependences among software components to

enhance their cohesiveness. Such detection provides a better

understanding of the software system model in terms of its

components’ dependences and their influence on reusability, in

which their elimination may enhance software reusability.

Keywords—Software component coupling; software component

dependence; software component reusability; components

interdependence; components dependence testing

I. INTRODUCTION

Software components interact with each other by
maintaining a duct. Such interactions incorporated via software
connectors. Software connectors play different roles in
providing interaction among set of components, in which a
protocol specification defines its properties such as the types of
interfaces it is able to mediate, assurances about interaction
properties, rules about interaction ordering, and interaction
commitments (e.g., performance). Software connectors
facilitate the interaction as communication, coordination,
conversion, or facilitation [1]. Components interactions may be
incorporated using different types of software connectors such
as procedure call, data access, event, stream, linkage,
distributor, arbitrator, and adaptor. In addition, software
component may be interacted using composite connectors i.e.,
multi-type connector.

One of the software design basic principles when designing
software component’s is maximizing the component’s
cohesiveness and minimizing component coupling. Software
coupling was first introduced by Stevens at el. [2]. Coupling is
a measure of the interdependence degree between software
components [3]. The Components interaction may take
different forms in terms of the degree of their interdependence.
Coupling can occur in various ways, however, the
concentration are on dependencies between components that
arise from associations and collaborations. Software
components may exhibit different levels of interdependence;
Myers [4] has identified the levels of coupling as follows;
content coupling, common coupling, external coupling, control
coupling, stamp coupling, and data coupling. Ideally, the best
case for components’ reusability is to have no coupling among
software components, however, such case may not be
achievable in most of the cases, therefore, such coupling’s
levels can be used as an interdependence measure between
software components. These levels of coupling can be ordered
based on their effects on components’ understandability,
maintainability, and reusability from the worst to the best as
follows; content coupling, common coupling, external
coupling, control coupling, stamp coupling, and data coupling
[5], in which the content coupling is the worst because it
represents the high and tight components’ coupling; and the
data coupling is the best because it represents the low and loose
components’ coupling. Data coupling occurs when a simple
data i.e., a simple argument, is passed between the
interconnecting components. Stamp coupling occurs when a
data portion of data structure is passed between components,
control coupling occurs when a control such as flag is passed
between components, external coupling occurs when the two
components are tied to an environment or medium that is
external to the system such as communicating via I/O device or
file, common coupling occurs when the interacting components
reference a global data. Content coupling occurs when one
component uses or changes the data or control information
maintained within the boundary of another component [6].
Additional types of coupling have been introduced; such as
tramp coupling [5], scalar data coupling, scalar control
coupling, non-local coupling, and global coupling [7].

Low coupling is desirable because less interaction between
components reduces the possibility of the affects that may be
caused by a failure or change in one component to other
connecting components [5]. In addition, low coupling enhances
components independence which leads to software
understandability as well as software reusability. Software

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

321 | P a g e

www.ijacsa.thesai.org

dependence is one of the core factors for the software
reusability measurement, in which component’s dependency
should be measured to understand software component’s
reusability. Such dependency can be measured by measuring
the coupling between system’s components. The coupling
measures the strength of the relationship between two modules.
In the case of object-oriented designs, modules are classes.
Since the introduction of this measure, a large number of
coupling measures have been proposed [8], which correspond
to different types of relationships between classes.

In this paper, an approach to detect the coupling between
software system components is introduced for the purpose of
identifying software components’ interdependence which may
contribute to understanding the software components’
reusability that may help in refining the system design. The
proposed approach uses a dynamic notion of sequence diagram
to understand the dynamic behavior of a software system. The
notion of data and control dependence is used to detect the
dependences among software components. The dependences
among two software components are identified such that such
dependence of one component influences or contributes to the
output computation of the other component. This paper is
organized as follow; the following section presents the related
work, section III provides some basic definition of the terms
used throughout this paper. The proposed algorithm is
described in section IV, and section V provides the
experimental study of this work. The conclusions and the
future works are presented in section VI.

II. THE RELATED WORK

Most of the software testing research has concentrated on
the implementation phase of the software development life
cycle. Software testing at early stages of software system
development has been recognized in past few years and many
software modeling testing researches has been conducted in the
literatures. Software components' coupling has been
investigated in the literatures as a metric for different purposes
such as complexity [9], modularity [10], maintainability [11,
12], dependencies [8, 13], reusability [14, 15, 16],
dependability [17],

Software coupling has been used for structured design to
identify the modules’ dependence. An early attempt to use
module coupling based on the measurement of information
flow between system components has been proposed in [9] for
evaluating the structure of large-scale systems. Among the
proposed metrics, in addition to module coupling, are
procedure complexity and module complexity.

A framework of coupling measurement in object-oriented
systems has been presented in [8] based on a standard
terminology, formalism, and a review of the existing
frameworks and measures for coupling measurement in object-
oriented systems. A unified framework based on this review
was developed in which the existing measures were classified.
The proposed framework provides a mechanism for comparing
measures and their potential use, integrating existing measures
as well as defining new ones, and selecting from existing
measures for a specific goal of measurement. It has been
reported that most of the coupling measurement in object-
oriented systems focuses on components’ static dependencies

and much less has investigated components’ dynamic
dependencies.

In [15] static measures of indirect coupling have been
proposed to assess the reusability of Java components retrieved
from the internet by a search engine. The class coupling has
been traditionally described as when a class accesses one or
more of another class’s variables or invokes at least one of its
methods. However, such description ignores inheritance based
coupling but a variant includes it. The proposed measures
intended to overcome the limitation of the existing static
measures to handle indirect coupling such as inheritance. An
empirical comparison of the proposed measures has been
presented to test such metric.

A new design pattern coupling role and component
concepts have been proposed in [13] to solve the challenge of
building the appropriate coupling of separated code elements
of components, and reducing the build-level dependencies.
Roles are related to the functional aspects of a target software
program (composition and collaboration of functional units)
and components correspond to the physical distribution of code
elements with limited build-level dependencies. The proposed
coupling is enabled to instantiate a software program using a
generic main program to retrieves and composes functionalities
at run-time according to a description file.

An information theory has been used to propose coupling
measures for modular systems [10]. An abstraction of software
system, such as graph, has been used to represent system in
which inter-module coupling and intra-module coupling have
been proposed to assess or predict the quality of software
system. Inter-module coupling measures system level coupling
based on relationships between modules, and intra-module
coupling is similar, but measures a different subgraph, i.e.,
measures coupling at subsystem level.

An indirect coupling metric that identify the exact
relationship between indirect coupling and maintainability has
been presented in [12]. A chain that is expressed in terms of
graph vocabulary has been used as a central attribute to detect
the indirect coupling. The proposed metrics focus on the
reflection of “strength” as it is a fundamental component of
coupling which is viewed as the relationship between a given
pair of classes as well as on the aggregation of coupling
relationships with respect to a single class with the intent of
seeing how much influence a given class has over the system.

A dynamic coupling metric has been proposed in [14] to
measure the direct coupling of object-oriented software at the
object level based on the structural relationships, method call
types, and the number of method calls between classes. The
proposed metric is designed for embedded systems that are
based on component-based or object-oriented systems to
produce efficient and reusable component.

A module coupling has been used to propose a spatial
impact metric to capture the extent of error propagation in a
software system by identifying the location of dependability
components called detectors and correctors at early stage of
software system development [17]. The proposed metric is
based on the hypothesis that modules with high coupling
values are most likely potential locations for detectors.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

322 | P a g e

www.ijacsa.thesai.org

A survey of the components dependencies has been done in
[16] in which a classification of such dependencies is
introduced based on composition, distribution and platform
dependencies to promote component reusability. The authors
assessed the contemporary component models for networked
embedded systems using Loosely-coupled Component
Infrastructure (LooCI), which is a platform-independent
component model designed for networked embedded systems.
LooCI eliminates composition dependencies at compile time
with explicit definitions of interfaces and receptacles. The
authors have found that most of the component models in such
systems eliminate composition dependencies but not
distribution and platform dependencies.

A static analysis tool for measuring the coupling between
Java classes has been presented in [11] for the purpose of
maintainability, based on source code analysis aiming to
identify the types of couplings that are not available until after
the implementation is completed. It uses interdependencies
between objects to define coupling types, in which it defines
four types of coupling; parameter coupling, external/file
coupling, inheritance coupling, and global coupling.

An empirical study is presented in [18] that analyzed the
coupling among number of open source software projects to
identify two types of coupling; logical coupling and structural
coupling. This study aims at to determine the interplay between
the two types of coupling, the coupling strength between
classes, and the level of stability between the coupled classes
as stable or unstable. In addition, this study aims to understand
the impact of the two types of coupling on each other.
Statistical tests have been used to compute the correlation
between the strengths of logical and structural dependencies.
Although the achieved results cannot be generalized, statistical
analysis has shown that interplay occurs between structural and
logical dependencies in most of the analyzed software projects.

A component ranking method based on non-dominated
sorting for the purpose of software components reuse is
presented in [19] in which a specification of the relative
importance of non-functional properties is used for a partial
ordering. In addition, components’ coupling has been used as a
measure for the external and internal dependencies between
classes; however, such measure is restricted to the entry class
of candidates determined by test-driven search evaluation. An
explorative study has been applied on a set of components
obtained from the Maven Central repository.

A study of coupling measures between software
components has been presented in [20] to determine the most
significant coupling measure among a set of measures. The
authors have categorized the coupling measures in two
categories; ratio oriented and ratio less. The analysis of the
coupling measures has been conducted by defining two types
of class interactions; Operation-Operation interaction which is
defined as the interaction between two operations of two or
more different objects or classes, and Class-Class interaction
which is defined as the interaction between two classes if any
one of the above two interaction occurs. A case study has been
performed on three industrial software systems.

A measure of the level of coupling for components within a
software system has been used in [21] to predict the

maintenance efforts for the purpose of evaluating the
relationship between system design decisions and the costs of
maintenance. The aim of this paper was reduce the cost of
redesign a software system by predicting the released value of
such redesign, or what has been called architectural debt. The
authors have measured system coupling for two software
systems; one has a hierarchical design, the other has a core-
periphery design, and have shown that, the tightly-coupled
components cost more to maintain than loosely-coupled
components.

In [22] software metrics have been used to classify the
software components into cyclic and non-cyclic for the purpose
of understanding the relationship between the dependencies of
cyclic components and defect profiles of cyclically dependent
components. A static analysis has been used to identify the
components' coupling, in which some measures have been used
such as coupling between classes and response for class. An
empirical study of six object-oriented programs along with
some statistical tests has been conducted to investigate the
components' cyclic dependencies and their impact on detecting
defective components. The study has shown that components
with cyclic dependencies are the more defective than non-
cyclic components which is similar to the results of related
studies.

A multiple dependency metric based on network analysis
has been proposed in [23] to investigate the relationship
between structural features of classes and their functions within
a network system. The metric measures the degree of
reusability of a component, as well as its direct and indirect
coupling. The measurement of coupling (direct and indirect)
may indicate the construction cost of new class. The authors
have conducted an empirical study on several open source
codes, which has shown that, the used metric is useful in
analyzing the complexity, stability, and maintainability of
classes. In addition, it has shown that, classes with multiple
dependencies have more complicated functions that are less
cohesive than other less complicated classes.

The coupling between object classes (CBO), as an object-
oriented design metric, has been introduced in [24], as a count
of the number of other classes to which a class is coupled with,
in which methods of one class use methods or instance
variables of another.

A dynamic coupling measure is presented in [25] for
change proneness of classes in object-oriented software. The
data is collected and analyzed through a dynamic analysis of
the code at runtime or from the dynamic design models to
collect such measures to identify the objects interaction. Such
dynamic measures capture more properties that static
measures.

Although the aforementioned related work proposed
several techniques for testing and detecting different types of
software components’ dependences and couplings, the main
purpose of detecting software components’ dependence is to
identify the components’ coupling that reduces components’
reusability. Most of the presented related works identify
software components’ coupling without investigating whether
such coupling is contributing to the components’ computation
i.e., component’s output. Such is based on the premise that

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

323 | P a g e

www.ijacsa.thesai.org

each dependency among components within a software system
should influence at least one component’s output; otherwise,
such dependency is unnecessary and may be eliminated
without influencing the software semantic.

This paper introduces an approach that detects the software
components’ coupling based on dependence that influences or
contributes to the components’ output computation which may
help in understanding components’ reusability for the purpose
of refining the system design.

III. BASIC DEFINITIONS

Software components collaborations can be dynamically
modeled by a sequence diagram model, such dynamic model of
the system is represented by a sequence of messages passed
between the components showing the message-sends involved
in specific collaborations in order to carry out the system
functionality. In UML, sequence diagrams are employed to
model the runtime of the software system.

The sequence diagram describes the dynamic behavior of
system and can be viewed as a set of sequences of events,
referred to as traces, where each event represents an occurrence
of a message passed between components. For a given
sequence diagram S, a trace of the sequence diagram is defined
and referred to as Ts. For a finite set R of roles and a finite set
M of messages, a message label is defined as a function g that
maps each message in M to a triple (l, s, r) where l denotes a
label of the occurred message, s and r denote roles in R, called
sender and receiver, respectively [26]. Assume that there are an
infinite set O and a finite set L for participating objects and
labels of messages, respectively, an event ∈ as a triple

g()= (, ,) is defined, where the p is the event

number within the trace , ∈ L for the label, ∈ O for the

sender, and ∈ O for the receiver. Because a code statement

within an event may be executed several times during a trace,
an execution position for each executed code statement within

an event is defined as in which Y is the code statement
number and i is the position of an executed code statement

within the message’s code statements. is referred as
executed code statement or execution position interchangeably.

The event e can be represented as a directed graph (V, E),
where V is a set of nodes, and E is a set of arcs. The nodes
represent the objects associated with an event (sender and
receiver). The arcs represent the dependence among the
participating objects within a given event. Such dependence
can be identified as data or control dependence. Every graph
has an entry node and an exit node . The program
dependence graph has been proposed in [27] for the purpose of
program optimization. Program dependence graph is a control
flow graph with nodes corresponding to statements and control
predicates, and arcs corresponding to data and control
dependencies. It has been widely used for program analysis for
different purposes such program testing and program
optimization.

The data dependence can be defined in terms of defining or
using passed data among participating objects via message
passing within an event in a trace . The data passed among

objects within an event in a trace via label are stored

in a memory address referred to as variable. A passed variable
might be simple data type, data structures, or complex objects.
Also, a variable may contain data that is used as a control flag.
A use of a variable occurs when such variable is referenced,
and a definition of a variable occurs when a value is assigned
to it. A variable v that is passed via a label is said to be used

at if such variable is referenced. A variable v passed via a

label is said to be defined at if a value has been assigned

to that variable. A variable might be defined (assigned another
value) several times and may be at different objects (receivers)
within an event in a trace . A label is considered as used if at
least one of its passed variables has been referenced, and is
considered as defined if at least one of its passed variables has
been defined. The last definition LD(v) of a variable v at
execution position m within a receiver object of an event in

a trace is defined as the closest execution position within
the sender or receiver object of the event that contains a

definition of v such that i < m. Another type of dependence
comes in the form of returned value of the receiver to the
sender such that the sender is dependent on the receiver.
Therefore, returned value of passed variable v via a label is

defined if a value is returned from the receiver to the sender

 . Such returned value may come in the form of passed

value, reference value, shared data structures, or common
variable.

The data dependence captures a situation where one object
(sender) assigns a value to a variable and the other object
(receiver) uses that value. In terms of the directed graph, the
sender object assigns a value to a variable before the entry
node of a directed graph, and the receiver object uses that
value before the exit node . The control dependence captures
the situation when the execution of a statement within an
object (receiver) depends on the evaluation of a test statement
(i.e., a predicate) of a conditional statement within another
object (sender). Originally, the control dependence has been
defined in [27]. The proposed definition is modified to fit the
control dependence among software components. Formally, let
Q and Z be two code statements within participating sender and
receivers objects of an event, respectively, and (Q, X) be a
branch of Q. Code statement Z postdominates code statement
Q iff Z is on every path from Q to the exit node of the event.
Code statement Z postdominates branch (Q, X) iff Z is on every
path from Q to the event’s exit node through branch (Q, X).
Z is control dependent on Q iff Z postdominates one of the
branches of Q and Z does not postdominate Q. As stated
earlier, coupling is a measure of the interdependence degree
between software components [3], in which coupling is defined
between two components if they exhibit data or control
dependences.

Due to various reasons, components may exhibit
dependence (data or control) that is not contributing to their
output. The output of a component may be a regular output
statement or return statement. The dependence that is not
contributing to the components’ output computation is
unnecessary or useless dependence, and may occur due to fault
in the system model or poor design. Therefore, the notion of
influence between components is identified, such that

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

324 | P a g e

www.ijacsa.thesai.org

component influences component iff the data or control
dependence contributes to the output computation of
component . As described earlier, coupling is a measure of
the interdependence degree and the strength of the relationship
between software components. Hence, the coupling that is
based on the influence among the components is recognized for
the purpose of software reusability. However, the other
components’ dependences that are not contributing to the
component’s output are considered as unnecessary coupling
that should be minimized to improve the software reusability.
The proposed approach aims to provide a new type of
information that is based on the premise that the components’
dependence is computed based on the influence of a
component on another component’s output.

IV. COMPONENTS COUPLING DETECTION ALGORITHM

The proposed algorithm is based on the notion of data and
control dependence defined in the earlier section to identify the
component coupling. A trace analysis has been used to
determine the defined-used chain; in which different sets are
defined to store some collected data for later analysis.
Therefore, the sequence diagrams of the system model under
analysis should be instrumented and recorded in a trace . As
described earlier, the sequence diagram trace consists of a
series of events that records the message label along with

its passed parameters, the sender along with its defined

variables, and the receiver along with its used variables. In

the trace , the used and defined variables are stored at each
executed code statement. The trace of a given system is
instrumented based on test cases that may be generated based
on random inputs, certain inputs, or based on system
operational profile [28], which is a description of how the
system is used. It is usually developed during the system
engineering or requirements definition phase.

As described earlier, the aim of the proposed approach is to
identify the coupling among systems’ components for the
purpose of understanding components’ reusability which may
contribute to system design refinement. For that purpose, the
proposed algorithm analyzes the system model under analysis
in a backward fashion that requires the sequence diagram trace
 to be recorded and the data are collected and stored in
defined sets, in which the analysis starts from the end of the
sequence diagram trace and goes backward. Such approach,
i.e., backward analysis, is appropriate for analyzing the
dynamic model of the system under test in which the model is
executed first, and the data is collected and stored in the trace,
so that the model is analyzed dynamically based on its actual
execution. However, such approach can be used for static
analysis of a model, in which the model is analyzed statically,
i.e., without its execution, to collect and store data in the trace
based on all possible execution traces.

The proposed algorithm, as presented in the subsequent
paragraph, requires the trace of the sequence diagram as an
input. The algorithm starts by defining two sets for the data and
control dependences and identifying the used variables at

and . Then it sets all executed output and return code

statements in the participating objects within each event (

and). Then the algorithm iterates from the end of the trace

 and goes in backward fashion to identify the data and
control dependence for every event in the trace .

ALGORITHM

INPUT:

OUTPUT: Coupled components

1 DEFINE DataDependent() and ControlDependent() as two sets

of data and control dependences

2 DEFINE USED(O,) as the set of used variables at of a

given object ∈ O.

3 SET all output/return executed code statements within and

as marked for each event.

// start from the end of the in backward fashion

4 WHILE (not the beginning of)

5 FOR (every) DO

6 WHILE (not of)

7 FOR (every marked executed code statement ∈)

 DO

8 FOR (every variable v ∈ USED(
)) DO

// returns the executed code statement as the last definition of v

9 = Find_LD(v);

10 SET as marked executed code statement;

11 IF (∈) THEN

12 ADD (,) to DataDependent();

 END_IF;

 END_FOR;

// returns that controls or zero if no control dependence

13 = Find_CD(n);

14 IF (> zero) THEN

15 SET as marked executed code statement;

16 IF (∈) THEN

17 ADD (,) to ControlDependent();

 END_IF;

 END_IF;

 END_FOR;

 END_WHILE;

 END_FOR;

 END_WHILE;

18 DISPLAY DataDependent() & ControlDependent() as the

coupled components.

As described earlier, the algorithm starts by defining
several sets to be used during the analysis and marking all
executed output code statements in the trace within each
executed component. The algorithm analysis starts from the
end of the trace and goes backward and iterates for every
event while not reaching its entry . Then for every used
variable at every marked executed code statement, the
algorithm finds its last definition, and marks it. If the marked
executed code statement is within the sender object, it means
that the data dependent among the sender and receiver object
contributes to the output computation of the receiver object. As
a result, the sender and receiver objects are added to the
DataDependent set as data dependent objects. Next the
algorithm checks whether the marked executed code statement
is control dependent on any other code statement, if so, such
executed code statement is marked. In addition if this marked
executed code statement is within the sender object, the sender
and receiver objects are added to the ControlDependent set as
control dependent objects. The algorithm iterates until it
reaches the beginning of the trace , and at the end, it displays

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

325 | P a g e

www.ijacsa.thesai.org

the coupled components as the dependent components based
on the influence on the output computation. In addition, for the
purpose of investigating useless dependences, the algorithm
can provide all data and control dependences among
components regardless of their contributions to the
computations of the components’ output.

Although, there are many dependencies that might occur
among software components, the proposed algorithm
minimizes such information by only identifying the
dependencies between components that contribute to the
computations of the components’ output. The software
engineers can use such information to identify the coupled
components for the purpose of software reusability. In
addition, software engineers can consider the rest of
dependences among software components as an unnecessary
coupling that might occur as a result of poor or inefficient
software components’ design. The software engineers might
use such information to investigate such dependencies for
potential design problems. The contribution of the proposed
approach is that, it computes the components’ dependences
based on the premise of components’ output computation, such
that a component influences another component if it
contributes to its output computation.

V. EXPERIMENTAL STUDY

To illustrate the applicability of the proposed algorithm a
small experimental study has been conducted. This study
consists of three samples of sequence diagrams for selected
operations within software system. In addition, testing is
performed on randomly selected operations within four
software systems that were modeled by different groups of
students as system modeling project of real world systems.
According to the proposed algorithm, the success criterion for
detecting coupled components is the detection any form of data
or control dependences. To demonstrate how the proposed
algorithm is applied, consider the events in Figures 1, 3, and 5.
The components model presented in the figures are simple
examples of events that show sequence diagrams of a portion
of lending library system, portion of home surveillance system,
and student class enrolment. The presented samples of
sequence diagrams and traces have been simplified for the
purpose of demonstrating the algorithm. In addition, based on
the specification of the given object, a note has been added at
the activation bar of the receiver object containing a pseudo
code that describes the execution of the sent message.

Figure 1 shows the sequence diagram of a lending library
system event, in which a message LendCopy(title) is being sent
to the Main object to search for a given title, and then
GetNumAvailable() message is sent to the aCopy object to
return how many copies are available for a specific title that is
returned as num variable. Figure 2 shows the trace of the
lending library system event. The trace starts with the event’s
entry which shows the function g() as the event triple, i.e.,
message label, sender, and receiver. When inspecting this trace
by the proposed algorithm, the code statement at the execution
position 4

4
 is marked as an output code statement, then the

analysis starts from the event’s exit in backward fashion.
The marked execution position 4

4
 is identified and its last

definition at position 3
3
 is marked. Note that this code

statement does not belong to the sender object, so no data
dependent is detected. The algorithm iterates until it reaches
the event’s entry . According to this quick analysis, no data
or control dependent is detected among these two objects
(Main and aCopy), in which a conclusion can be drawn that no
coupling is detected between Main and aCopy, in which either
of these two components can be reused within another system
or subsystem without the need of attaching the other
component.

Another example is presented in Figure 3 which shows a
simplified sequence diagram of an event of within a home
surveillance system, in which a message
Activate_Deactivate(sensor) is being sent to the Control_Panel
object to search for an object Sensor to activate it or deactivate
it. Figure 4 shows the trace of the event of the home
surveillance system. As can be seen the message
Activate_Deactivate() is being sent to the object Sensor to
examine its state, in which the Sensor is activated if its state is
inactive and deactivated if its state is active. The code
statement at the execution position 5

5
 is marked by the

algorithm as an output code statement, which returns the
Sensor state to the control panel. The algorithm detects no used
variables at this marked code statement, and as a result no data
or control dependences are detected between the
Control_Panel and Sensor objects in which no coupling is
identified among those two objects, and they can be reused
separately.

1: LendCopy(title)

Main aCopy

2: GetNumAvailable()

3: num

NumCopies=FindNumCopies()
NumLended=FindNumLended()
num=NumCopies - NumLended
return num

Fig. 1. Sample Sequence Diagram of a Lending Library System.

Fig. 2. The Trace of the Sequence Diagram of a Lending Library System

in Fig 1.

V0 g(𝑒)=(LendCopy(title), Main, aCopy)

1 Send “LendCopy(title) to Main”

 11 FindTitle(title)

2 Send “GetNumAvailable() to aCopy”

 11 NumCopies=FindNumCopies()

 22 NumLended=FindNumLended()

 33 num= NumCopies - NumLended

 44 return num

3 Send “num to Main”

4 Vx

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

326 | P a g e

www.ijacsa.thesai.org

Control_Panel Sensor

sen_state=Get_Sensor_State()
if (sen_state=active) then
 Set_Deactive()
else
 Set_Active()
return (Get_Sensor_State())

2: Activate_Deactivate()

3: Sensor State

1: Activate_Deactivate(sensor)

Fig. 3. Sample Sequence Diagram of Home Surveillance System.

Fig. 4. The Trace of the Sequence Diagram of Home Surveillance System

in Fig 3.

The last example is the sequence diagram of student class
enrolment that is shown in Figure 5. As shown the message
Register(std, CourseID) is sent to the aStudent object to search
for the course, then the message Enroll(std, IsPrerequisite) is
sent to the aCourse object to search for the session number and
assign the student to it if the prerequisite course is satisfied,
next the session number is returned to the aStudent object.
Figure 6 shows the trace of the event of the student class
enrolment system. When analyzing this trace by the proposed
algorithm in backward fashion, with the assumption that the
IsPrerequisite flag is true, the code statement at the execution
position 5

5
 is marked, then the last definition of the

SessionNumber is identified at execution position 3
3
 and

marked. The algorithm iterates searching for marked code
statement and looking for the last definition of all used
variables at each marked code statement and marks them. As a
result, the code statement at the execution positions 2

2
 is

marked in which a control dependent is identified between the
two objects aStudent and aCourse because the passed flag
IsPrerequisite is used at the predicate of the execution position
2

2
. Also, data dependent is identified as well between these two

objects because the passed variable std is used at the marked
execution position 3

3
. The detected data and control dependent

contribute to the output computation of this event; therefore, a
coupling can be identified between the two objects aStudent
and aCourse. Therefore, the software engineer should consider
the coupling among these two components when reusing either
one.

1: Register(std, CourseID)

aStudent aCourse

2: Enroll(std, IsPrerequisite)

3: SessionNumber

FindStudent(std)
if (IsPrerequisite=true) then
 SessionNumber=add(std)
else
 SessionNumber=nul
return SessionNumber

Fig. 5. Sample Sequence Diagram of Student Class Enrolment.

Fig. 6. The Trace of the Sequence Diagram of Student Class Enrolment in

Fig 5.

The remaining of this section describes some real world
software systems which have been used to test the proposed
algorithm. Table 1 summarizes the four software systems that
have been modeled by different groups of students as a system
modeling project of real world systems to demonstrate their
skills in software design and architecture course. These four
systems have been selected as semi-commercial software
systems to test the applicability of the proposed algorithm for
the real world systems.

TABLE I. EVENTS OF THE SELECTED SYSTEMS WITH COMPONENTS’

DEPENDENCES

System

Name

Components (&

)
Message Name

Couplin

g

NCAAA

System
Website & Database validate(ID) No

Universit

y RFID

Sensor &

RFID_Reader
read(signal) Yes

Studying

Abroad

Advising

System

Registration_System

&

Authentication_Syste

m

Validate_User_Information(in

fo)
No

Truck

Car

Traffic

Tracking

System

RTD & DB_Driver Retrieve_Driver_Data(ID) Yes

V0 g(𝑒)=(Activate_Deactivate(sensor), Control_Panel,

Sensor)

1 Send “Activate_Deactivate(sensor) to Control_Panel”

2 Send “Activate_Deactivate() to Sensor”

 11 sen_state=Get_Sensor_State()

 22 if (sen_state = active) then

 33 Set_Deactive()

 44 else Set_Active()

 55 return Get_Sensor_State()

3 Send “Sensor State to Control_Panel”

4 Vx

V0 g(𝑒)=(Register(std, CourseID), aStudent, aCourse)

1 Send “Register(std, CourseID) to aStudent”

 11 FindCourse(CourseID)

 22 CheckPrerequisite(CourseID)

2 Send “Enroll(std, IsPrerequisite) to aCourse”

 11 FindStudent(std)

 22 if (IsPrerequisite = true) then

 33 SessionNumber = add(std)

 44 else SessionNumber = nul

 55 return SessionNumber

3 Send “SessionNumber to Student”

4 Vx

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

327 | P a g e

www.ijacsa.thesai.org

The first system model is the NCAAA Accreditation
System which is an automation system aims to automate all the
processes that are required for any university applying for
accreditation at the Saudi National Commission for Academic
Accreditation and Assessment (NCAAA). The purpose of this
system is to develop a system model that can be implemented
to automate the accreditation process via an online system. The
selected message validate(ID) is a validation event that occurs
as a result of sending the message validate(ID) from the
website object to the database object. This message validates
the login of a client against the registered clients in the
database. After analyzing this event by the proposed algorithm
based on the specifications of the participating objects, no data
or control dependence was identified among the object website
that influences the output computation of the database object.
Such result indicates the independence of the two components
from each other, and the software engineer may reuse any of
the two components without the need to attach the other one.

The second system model is the University RFID that is a
part of an access control system that allows the university to
control and monitor the access to its buildings and properties.
The modeled system manages the access to the buildings,
classrooms, labs, and offices within the university via the use
of hardware solutions such as RFID cards that are linked to a
software solution to manage and monitor the access. The
selected message read(signal) is a reading event that occurs as
a result of sending a signal to the sensor component which
causes a read(signal) message to be sent to the RFID_Reader
object to read the signal. After analyzing this event using the
proposed algorithm based on the specifications of the
participating objects, it has been identified that, the
computation of the returned value of the RFID_Reader object
is dependent on the passed data of the sensor object. Therefore,
such dependence influences the output computation of the
RFID_Reader object, and as a result, there is a coupling among
the two objects sensor and RFID_Reader that must be
considered when reusing either of these two components
within another system.

The third system model is the Studying Abroad Advising
System which aims to automate the supervision program at the
ministry of higher education in Saudi Arabia. The ministry has
established a scholarship program for Saudi students to study
their BSc, MSc, and PhD in various specialties. This program
is offered for the students to study at local private universities
as well as at abroad universities. The ministry would like to
manage this program such as facilitating the admission to the
program, local/abroad universities subscriptions, monitoring
students’ performance, and facilitating the communications
with the students/guardians. The selected message
Validate_User_Information(info) is sent from the
Registration_System object to the Authentication_System
object. This event has been analyzed by the algorithm based on
the specifications of the participating objects and found no data
or control dependence of the object Registration_System that
influences the computation of the output of the
Authentication_System object, such detection identifies the
independence of the two components, in which the two
components may be reused separately within other system or
subsystem.

The fourth system model is the Truck Car Traffic Tracking
System that aims to help the Riyadh Traffic Department (RTD)
to manage the trucks movement within the city highways and
local roads due to the congestions that caused by these truck
cars during the day and rush hours and to monitor the vehicles
movements on the roads and highways by linking the RTD
system with GPS system. The purpose of the modeled system
is to guide the truck vehicles to follow alternative roads during
the rush hours or in the case of congestions in the highway.
Also, the system aims to provide different services such as
monitoring the vehicles movements and issuing violation
tickets. A data retrieving event has been selected that occurred
as a result of sending the Retrieve_Driver_Data(ID) message
from the RTD object to the DB_Driver object. After analyzing
this event by the proposed algorithm, based on the
specifications of the participating objects, control dependence
is discovered by the RTD object that influences the
computation of the output of the DB_Driver object, which
causes a coupling among these two objects that should be
considered when reusing either one.

Although the experiments have been investigated on
several events within some selected software systems’ models,
the results of the experiments have shown encouraging results
for the applicability of the proposed algorithm in detecting
software components’ coupling. The proposed algorithm can
help the software engineers to better understand the software
system model and the relationships among its components.
This may help the software engineers to comprehend the
software components’ dependences in order to optimize the
software system model by eliminating the unnecessary
dependences among software components. Such minimization
definitely, will increase the components’ cohesiveness, and as
a result, the software components’ reusability should be
improved. In addition, the algorithm provides the software
engineer with information about the influence among
components that identifies components’ coupling in which a
component should be attached with another reused component
within other system or subsystem.

VI. CONCLUSION

In this paper an approach for detecting coupling among
software components has been proposed. The proposed
approach analyzes the software system model under test in
terms of a sequence diagram trace which represents the
dynamic behavior of the system under analysis. The notion of
data and control dependence is used in the proposed approach
to identify the dependence among system components. The
notion of influence between components has been introduced
in which a data or control dependence of a component is
considered if it contributes to the output computation of the
other component. The applicability of the proposed algorithm
in identifying the software components’ coupling has been
presented in the paper through an experimental study.

The experimental study has shown encouraging results in
detecting the coupling between the software components. The
software engineer may use the results to have a better
understanding of the software system model under analysis in
terms of the dependences among its components and how they
may influence their reusability. Software engineers may use the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

328 | P a g e

www.ijacsa.thesai.org

provided information by the algorithm to eliminate the
unnecessary components’ couplings for the purpose of
enhancing software reusability.

The proposed algorithm has been applied manually by
inspection and walkthrough of the tested model, in which the
trace is inspected manually. The future plan is to implement the
proposed algorithm in which the system model under test can
be automatically instrumented and the trace is recorded
dynamically, in which the model analysis can be performed at
the runtime. In addition, an integration of the proposed
algorithm within one of the open source environment may be
implemented in which the system model can be constructed
and examined. Furthermore, an investigation may be conducted
to extend the algorithm to identify the different types of
coupling among components such as content coupling,
common coupling, external coupling, control coupling, stamp
coupling, and data coupling.

REFERENCES

[1] R. Taylor, N. Medvidovic, and E. Dashofy, Software Architecture
Foundations, Theory, and Practice, 2010, Wiley.

[2] W.P. Stevens, G.J. Myers, and L.L. Constantine, “Structured design”.
IBM Systems Journal, 1974, 13(2), pp. 115-139.

[3] L.L. Constantine and E. Yourdon, Structured Design, 1979, Prentice-
Hall, New Jersey.

[4] G. Myers, Reliable Software through Composite Design, Mason and
Lipscomb, New York, 1974.

[5] P.-J. Meilir, Practical Guide to Structured Systems Design, Prentice
Hall, 2nd Edition, 1988.

[6] R. Pressman, Software Engineering: a Practitioner’s Approach, 1992,
McGraw-Hill.

[7] A.J. Offutt, M.J. Harrold, and P. Kolte, “A software metric system for
module coupling”, The Journal of Systems and Software, March 1993,
20(3), pp. 295-308.

[8] L. Briand, J. Daly, and J. Wust, “A unified framework for coupling
measurement in object-oriented systems”, IEEE Transactions on
Software Engineering, 1999, Vol. 25, No. 1, pp. 91-121.

[9] S. Henry and D. Kafura, “Software structure metrics based on
information flow”, IEEE Transactions on Software Engineering, 1981,
Vol. SE-7, No. 5, pp. 510-518.

[10] E.B. Allen and T.M., Khoshgoftaar “Measuring coupling and cohesion:
an information-theory approach”, Proceedings of the 6th International
Software Metrics Symposium, 1999, pp. 119 – 127.

[11] J. Offutt, A. Abdurazik, and S. Schach, “Quantitatively measuring
object-oriented couplings”, Software Quality Journal, 2008, Vol. 16, No.
4, pp. 489 – 512.

[12] H.Y. Yang and E. Tempero, “Measuring the strength of indirect
coupling”, IEEE Proceedings of the Australian Software Engineering
Conference (ASWEC'07), 2007.

[13] J.-B. Fasquel and J. Moreau, “A design pattern coupling role and
component concepts: Application to medical software”, The Journal of
Systems and Software, 2011, No. 84, pp. 847–863.

[14] M. Choi and J. Lee, “A dynamic coupling for reusable and efficient
software system”, IEEE 5th International Conference on Software
Engineering Research, Management and Applications, 2007, pp. 720-
726.

[15] G. Gui and P.D Scott., “Ranking reusability of software components
using coupling metrics”, The Journal of Systems and Software, 2007,
No. 80, pp. 1450–1459.

[16] W. Horré, D. Hughes, K.L. Man, S. Guan, B. Qian, T. Yu, H. Zhang, Z.
Shen, M. Schellekens, and S. Hollands, “Eliminating implicit
dependencies in component models”, Proceedings of the IEEE 2nd
International Conference on Networked Embedded Systems for
Enterprise Applications (NESEA) , 2011, pp. 1-6.

[17] A. Jhumka and M., Leeke “The early identification of detector locations
in dependable software”, Proceedings of the 22nd IEEE International
Symposium on Software Reliability Engineering, 2011, pp. 40-49.

[18] N. Ajienka and A. Capiluppi, “Understanding the interplay between the
logical and structural coupling of software classes”, The Journal of
Systems and Software, No. 134, 2017, pp. 120–137.

[19] M. Kessel and C. Atkinson, “Ranking software components for reuse
based on non-functional properties”, Inf Syst Front, No.18, 2016, pp.
825–853.

[20] K. Hasan and M. Hasan, “Principal Component Analysis of Coupling
Measures for Developing High Quality Object Oriented Software”,
International Conference on Computer and Communication Engineering
(ICCCE 2010), 2010.

[21] A. MacCormack and D. Sturtevant, “Technical debt and system
architecture: The impact of coupling on defect-related activity”, The
Journal of Systems and Software, No. 120, 2016, pp. 170–182.

[22] T. Oyetoyan, D. Cruzes, and R. Conradi, “A study of cyclic
dependencies on defect profile of software components”, The Journal of
Systems and Software, No. 86, 2013, pp. 3162– 3182.

[23] M. Yutao, H. Keqing, L. Bing, and Z. Xiaoyan, "How multiple-
dependency structure of classes affects their functions a statistical
perspective". The 2nd International Conference on Software Technology
and Engineering, 2010, pp. V2-60-V62-66.

[24] S. Chidamber and C. Kemerer, “A Metrics Suite for Object Oriented
Design”, IEEE Transactions on Software Engineering, Vol. 20, No. 6,
1994, pp. 476-493.

[25] E. Arisholm, L. Briand, and A. Føyen, “Dynamic Coupling
Measurement for Object-Oriented Software”, IEEE Transactions on
Software Engineering, Vol. 30, No. 8, 2004, pp. 491-506.

[26] S.M. Cho, H.H. Kim, S.D. Cha, and D.H. Bae, “A semantics of
sequence diagrams”, Information Processing Letters, 2002, No. 84, pp.
125–130.

[27] J. Ferrante, K. Ottenstein, and J. Warren, “The program dependence
graph and its use in optimization”, ACM Transactions on Programming
Languages and Systems, 1987, Vol. 9, No. 3, pp. 319-349.

[28] J. Musa, “Operational profiles in software reliability engineering”, IEEE
Software, March 1993, Vol. 10, No. 2, pp. 14-32.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6139205
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6139205

