
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 10, 2018 

388 | P a g e  

www.ijacsa.thesai.org 

Pipeline Hazards Resolution for a New Programmable 

Instruction Set RISC Processor

Hajer Najjar
1
, Riad Bourguiba

2
 

Tunis El Manar university, National engineering school of 

Tunis, LR11ES20 Laboratory of Analysis, Design and 

Control of Systems (LACS), 1002, Tunis, Tunisia 

Jaouhar Mouine
3
 

Prince Sattam Bin Abdulaziz University 

Saudi Arabia

 

 

Abstract—The work presented in this paper is a part of a 

project that aims to concept and implement a hardwired 

programmable processor. A 32-bit RISC processor with 

customizable ALU (Arithmetic and Logic Unit) is designed then 

the pipeline technique is implemented is order to reach better 

performances. However the use of this technique can lead to 

several troubles called hazards that can affect the correct 

execution of the program. In this context, this paper identifies 

and analyzes all different hazards that can occur in this 

processor pipeline stages. Then detailed solutions are proposed, 

implemented and validated. 
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I. INTRODUCTION 

The use of smart digital devices in almost all fields of 
everyday life increases the embedded systems challenges 
especially those of microprocessors. In fact, they have to cope 
with a wide panel of applications and provide at the same time, 
high performances in terms of operation frequency, energy 
consumption and area occupation. This complicates extremely 
the design process and affects the cost and the time to market. 
On the other hand, these processors are unsuitable for 
applications with hard real-time constraints. Application 
Specific Instruction set Processors (ASIP) [1][2] were 
proposed as an alternative that uses an additional instruction set 
addressing a defined domain. Thus, compared to the general 
purpose processors, they provide a significant acceleration but 
only for a limited class of applications. For better reuse level, 
designers introduce the configuration concept to make 
processors customizable and thus fit a large panel of 
applications. The main proposed solution is to couple a 
programmable functional unit to the hardwired processor 
[3][4][5]. 

In this context, a new configuration technique is 
introduced. Actually, a hard-wired processor based on a 32-bits 
RISC architecture is designed then improved to make it able to 
cope with customizable instruction sets [6]. For better 
performances, the pipeline technique is implemented to insure 
better run-time acceleration. However, a processor with 
pipelined architecture handles many instructions at the some 
clock cycle which can lead to some execution troubles. 
Especially when there are dependencies or resources conflicts 
between these instructions. Such troubles are called hazards 
since they can randomly happen during the program execution 
[7][8][9]. 

In this paper the different hazards related to the architecture 
of the designed programmable processor are analyzed and 
classified then the proposed solutions are detailed, 
implemented and validated. In the second section, an overview 
of the programmable processor design is presented. In the third 
section we the data-path is explored in order to find out the 
different hazards that can happen and classify them. The fourth 
and fifth sections are respectively dedicated to the implemented 
solutions for control and data hazards. Then, in the next section 
the simulation results are illustrated and discussed and finally 
conclusion and outlooks are presented in the last section. 

II. ARCHITECTURE OVERVIEW 

The proposed architecture consists of a 32-bits RISC 
processor based on a programmable ALU that can be 
customized to handle a large range of instruction sets thanks to 
the look up table (LUT) technology. In fact, the ALU is 
composed of a paged LUT where each page contains the truth 
table of a single operation. Being made of SRAM, these pages 
can be rewritten if needed to fit any specific application. As for 
a standard RISC processor we use register/register architecture 
where the ALU is connected to registers to retrieves its non-
immediate operands and store its computing results. This 
registers are assembled into a register bank. On the other hand, 
the memory presents two independent interfaces for data and 
instructions since the processor is designed according to the 
Harvard architecture. 

This processor implements instructions belonging to three 
different kinds that are namely: 

 Arithmetic and logic instructions: They include 
arithmetic, logic, shift and comparison instructions.  
The operands are either immediate value or from 
register bank. The result is stored in the general-purpose 
registers.  

 Instructions for memory access: The address is 
calculated using a base value and an offset. The address 
of the register containing the first data and the 
immediate value representing the offset are both 
extracted from the instruction word.  

 Jump and branching instructions that can be conditional 
or unconditional. 
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Fig. 1. Pipeline Stages of Our Programmable Processor. 

The instruction word is 32-bits length and its structure 
depends on the data it includes. The R format is composed 
from the operands and result registers address besides the 
instruction codes and the shift amount for shift operation. It 
includes mainly arithmetic and logic instructions with non-
immediate operands. Indeed, all instructions using an 
immediate value, whether for ALU operations, memory access 
or conditional jump, belong to the I format. Finally the J format 
is reserved to the unconditional jump instruction. 

As shown in Fig.1, all units of the targeted architecture are 
organized into five balanced pipeline stages representing the 
five execution phases of an instruction. These stages are: 

 Instruction Fetch (IF):  Selection and extraction of the 
instruction from the instruction memory.  

 Instruction Decode (ID):  Decode of the instruction and 
extraction of the operands from the register bank in 
order to be sent to the ALU. 

 Execution (EXE): The instruction result is computed.  

 Memory access (MEM):  The data load and store 
operations are achieved.  

 Write back (WB): The instruction result is stored in the 
register bank. 

III. PIPELINE HAZARDS 

The use of pipeline datapath, although it insures a 
significant computing-power improvement of the processor, 
generates several execution troubles organized in three hazards 
categories [10][11][12]: 

 Structural hazards: They consist on resources conflicts. 
In fact, they happen when two different instructions 
being performed by the processor need to use the some 
resource at the same clock cycle. For example, if the 
processor provides only one interface to communicate 
with memory, it can be requested, at the same time by 
the instructions in the IF and the MEM stages to access 
respectively, an instruction and a data. None of these 
hazards are present in our processor thanks to its design. 

 Control hazards: While the branch decision is being 
calculated, wrong instructions can be introduced into 
the pipeline which leads to this type of hazards. The 
branch prediction technique is used to reduce the 
frequency of wrong instructions fetch. 

 Data hazards: They happen when an instruction needs to 
use a data that is not yet available because it is still 
being computed by a previous instruction in the 
pipeline.  To solve these hazards, the simplest way is to 
stall partially the pipeline until the data is ready. 
However, the frequent use of this technique can lead to 
an important decrease in terms of pipeline 
performances. For that, hardwired solutions are 
implemented to avoid the use of idle cycles as much as 
possible. 

IV. PROPOSED BRANCH PREDICTION SOLUTION 

Branch prediction is used to prevent the control hazards. In 
fact, our programmable processor handles branch instructions 
that need some clock cycles to decide about the next fetch 
address. In fact for the conditional branch, the decision is 
calculated at the EXE stage and even for the unconditional 
branch the jump address can't be known before the ID stage. 
Meanwhile, the following instructions are injected into the 
pipeline.  Thus, each time a jump decision is made these wrong 
instructions must be eliminated. The excessive occurrence of 
this process considerably decreases the processor run-time 
performances. Therefore, a branch prediction unit is inserted in 
the IF stage to speculate the branch decision and to load into 
the pipeline the most likely true instructions. 

A. Static Prediction of the Branch Decision 

A first branch prediction approach is the static prediction 
[13]. Indeed, this method uses a fixed speculation algorithm 
that is based on the classification of branch instructions in 
some with a high probability of being taken and others that are 
often or always not taken. An example of a static prediction 
consists in classifying the instructions according to their nature: 
conditional and unconditional. This way, the unconditional 
branch will form the family of instructions whose prediction is 
always "taken", while the conditional branch instructions will 
always be predicted as "not taken". This heuristic based on 
inaccurate criteria of instructions is not reliable enough because 
a large number of conditional branches are often taken 
specially those used for loop management. For this purpose 
other more precise algorithms are used such as the BTFN 
(Backward Taken Forward Not taken) which predicts that all 
the backward jumps are taken. Thus, for the instructions related 
to the loopback condition, the prediction is always correct as 
large as the loop is going on and is false only when exiting it. 
Although the performances enhancement, this algorithm is 
unsuitable for the instruction sets that rarely use iterations. 
Generally, the performance of the static prediction is limited 
because it does not consider the application proprieties and the 
instructions diversity. 

B. Dynamic Prediction of the Branch Decision 

An alternative the dynamic branch predictor can be use 
instead of the static one. The different methods belonging to 
this category are based on a real-time learning. In fact, 
decisions history related to each branch instruction are saved 
then used to better predict future decisions. 
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Fig. 2. One-Level Branch Predictor. 

 

Fig. 3. FSM for the 2-Bits Saturation Counter. 

The simplest dynamic predictor is based on the one-level 
branch predictor [11][14]. As shown in Fig.2, this predictor 
uses a cache memory called Branch Predictor Buffer (BPB) or 
Branch history table, which is indexed by the least significant 
bits of the branch instruction address. This table maps to each 
address an n-bit saturation counter that functions as follows: 

 Whenever a branch is taken, the counter increments 
unless it is already at its maximum value. 

 Whenever a branch is not taken, the counter decrements 
unless it is already equal to zero. 

The branch decision is deduced from the value of the 
saturation counter. In fact, if its value is lower than     , the 
branch is predicted "not taken" otherwise it is “taken”. 

 
Fig. 4. Correlation-based Branch Predictor. 

In the case where a 1-bit saturation counter is used, the 
predictor only takes into account the last taken decision (1 if 
the last time the branch was taken, 0 otherwise). This method is 
not very reliable because it causes errors even for branch 
whose decision rarely changes. In fact, if we consider a branch 
which follows this sequence of decisions: "taken nine 
successive times, not taken once". In this example, the 
predictor will commit two errors each time: at the beginning 
and at the end of the sequence. For better performance, a 2-bit 
saturation counter is associated with the branch address table 
[11] [13]. In this case, the predictor operation scheme is 
managed by the finite state machine illustrated in Fig.3. This 
way, the prediction changes only if it is false twice 
consecutively. 

In some cases, the program may contain branch instructions 
whose decision changes frequently and depends on decisions 
of previous branch instructions. For such situations, it is 
recommended to use more efficient prediction algorithms that 
take into account these variations and dependencies. An 
example is the two-level branching predictors [11][14][15]. To 
this category belongs the correlation-based branch predictor. 
This predictor uses a (m, n) BPB which considers the decisions 
of the last m stored branches in an offset register to choose a 
prediction among    . Each one of these predictions is 
controlled by a saturation counter n bits. Thus, the two-level 
branching prediction consists of a    column table, as shown 
in Fig.4. For each branch instruction, its address is used for the 
line selection while the sequence of m bits in the shift register 
allows the column choice. The value of the counter contained 
in the selected box allows predict whether the branch will be 
taken or not. As for the one-level predictor, this value will be 
updated as soon as the decision is calculated. Another two-level 
prediction scheme is the adaptive algorithm whose structure is 
illustrated in Fig.5. This algorithm saves the last m decisions 
related to each branch instruction and matches each m bit 
sequence with a n-bit saturation counter located in a table 
named "Global pattern history" composed of    lines 
common to all branching instructions. Thus two branches can 
be referenced on the same line if they have the same decision 
history. The saturation counter allows, as for all other 
methods, to predict the branching decision and its value is 
changed according to the reliability of the prediction. 

 
Fig. 5. Two-Level Adaptative Branch Predictor. 
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The test of a benchmarks range on the various predefined 
prediction methods shows that they have a variable reliability 
rate depending on the nature of the different branches [11][13]. 
Hence the appearance of the hybrid branch prediction which 
uses two or more independent prediction algorithms operating 
in parallel [16]. A selection vector, whose value varies 
according to the history of the branching decisions, allows 
choose for each branch instruction the most adapted predictor. 
Other specific predictors characterized by high levels of 
reliability have been implemented [17][18][19]. Among them 
there are "Multiple history length use"[20], "de-aliased 
predictors"[21], etc. 

Among these different branch predictors, the selected 
solution in order to be implemented is the one-level predictor 
using a 2-bit saturation counter. This choice is justified by the 
fact that this predictor is frequently used, it is simple to 
implement and it presents an acceptable error rate. These 
factors are sufficient for a first implementation. 

C. Branch Direction Prediction 

Branch prediction minimizes the impact of late decisions 
by injecting into the pipeline the instruction corresponding to 
the decision prediction immediately after the branch 
instruction. For this, the predictor must know the jump address 
from the IF stage in the case where a branch is predicted as 
"taken". However, this address is available only at the level of 
the ID stage. In order to minimize the latency generated by this 
address computing delay, a cache memory called "Branch-
Target Buffers" (BTB) is used[11][14]. Its structure is 
described in Fig.6. Each line in this memory contains the 
address of a branch instruction, the jump address, and the 
corresponding prediction. Whenever a new instruction is 
present in the IF stage, if its address does not appear in the first 
column of the BTB, the instruction is not considered as a 
branch and the execution processes normally. In this case, if 
the decision corresponds to "taken", a jump to the address of 
the branch is made. After the execution of a branch instruction, 
if it is already registered in the BTB, then the prediction is 
updated according to the decision. Otherwise, the instruction as 
well as the jump address and the value of the prediction are 
saved in a line of the BTB. Sometimes the BTB can be 
saturated. In this case, some branches must be removed to give 
place to others. As for cache memories, several management 
algorithms are available. However, a judicious choice must be 
made to not alter the performance of the predictor. 

 

Fig. 6. Branch Target Buffer. 

D. Proposed Prediction Algorithm 

For the programmable processor, a prediction algorithm 
that uses the one-level branch predictor and the 2-bit saturation 
counter was selected for the decision prediction, and the 
"Branch-Target Buffers" for calculating the branch address. 
Diagram illustrated in Fig.7 details this algorithm. 

 
Fig. 7. Prediction Algorithm. 

V. PROPOSED SOLUTIONS FOR DATA HAZARDS 

A. Data Hazards Analysis 

The resolution of data hazards requires, at first, to study all 
data-path situations presenting this kind of hazards. For this, 
first the instructions involved in the happening of these hazards 
are split into two classes: consumer instructions and producer 
ones. The first category includes instructions that must use data 
that is not yet available in the register bank. While the second 
includes those responsible for calculating the missing results. 

It should be noted that an instruction is considered as 
consumer or producer regarding the pipeline stage in which it 
needs to use the missing data or produces the required result. 
For example, for an arithmetic addition instruction, if it needs 
an operation which is not yet available at the register bank it is 
"consumer instruction at the EXE stage". However, in the case 
where a next instruction needs its computation result when it 
has not yet reached the WB stage, it is considered as "producer 
instruction at the EXE stage". In the rest of this study, the 
producer and consumer instructions are respectively named Res 
and Reg followed by the name of the stage of the concerned 
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pipeline (ResEXE, RegEXE ...). In order to identify all stages 
that can host consumer instructions, we ask the question: "Does 
this stage use a data retrieved from the register bank ". While 
for producer instructions the question is "Does this stage 
produce a result to the register bank?". Thus, the producer 
instructions are ResEXE and ResMEM whereas the consumer 
ones are RegID, RegEXE and RegMEM. 

Following this classification, all data hazards that may 
occur in the proposed processor pipeline are identified by 
studying all possible scenarios from the point of view of 
producer instructions. In other words, at the output of each 
pipeline stage that may contain producer instructions this 
question is asked: “which of the following instructions may 
need to use the result of this stage before it reaches the 
registers?” 

A producer instruction i can belong either to ResEXE class 
or ResMEM one depending on the pipeline stage that computes 
its result. This produced data can only be used after it has been 
saved in a register. Meanwhile, three subsequent instructions 
will have passed the ID stage and have no longer read access to 
the register bank. Each of these instructions may need to use 
the result of instruction i in one of the pipeline stages ID, EXE, 
or MEM. Thus, for each instruction category, nine cases of 
hazards can occur. All these data hazards are summarized in 
Fig8. The name of each of these hazards will include both 
consumer and producer instructions names and their relative 
position where the producer one is always considered as the 
instruction i. For example, if an instruction must use in the ID 
stage, the result of a previous one computed in the EXE stage, 
then, it is the hazard  named "ResEXE_RegID_i+1" . 

 

Fig. 8. Data Hazards. 

B. Solutions Discussions 

In order to solve data hazards, the simplest way is to delay 
the execution of the consumer instruction until the result of the 
producer one is available in the register bank. However, the 
frequent use of this solution degrades considerably the 
processor performances. Therefore, architectural solutions are 
proposed to limit as much as possible, pipeline stalling. 

 

Fig. 9. Proposed Solutions form the First Category of Data Hazards. 

 

Fig. 10. Proposed Solutions for the Second Category of Data Hazards. 
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Since there is no common solution to all situations, hazards 
are classified according to the availability and the position of 
the result at the clock cycle it is claimed. Three categories are 
identified: 

 The result is not yet calculated. 

 The result is ready and has not left the stage where it 
has been calculated. 

 The result is ready and left the stage where it has been 
calculated but has not yet reached the register bank. 

1) First category solutions: The requested data is not yet 

ready. Therefore, the use of idle cycles is imperative until the 

result computation ends. Then, a bypass is used to bring back 

this result to the pipeline stage that requires it. All situations 

belonging to this category and their proposed solutions are 

summarized in Fig.9. 

2) Second category solutions: In this case, the result is 

available in the stage where il was calculated. A bypass is 

simply added to send it back. The different solutions of this 

hazards category are illustrated in Fig.10. 

 

Fig. 11. Proposed Solutions for the Thired Category of Data Hazards. 

3) Third category solutions: These hazards occur when 

the producer instruction result has left its initial pipeline stage 

but has not yet attained the register bank. Thus, it remains 

unreachable by the consumer instruction. To solve these 

hazards, the result must first be located in the pipeline. If the 

consumer instruction reaches the stage where it need to use the 

producer instruction result before the latter reaches the WB 

stages, then, the use of bypass is enough. Otherwise, if the 

result is already stored in the register bank then it becomes 

inaccessible because only the instruction in the ID stage has a 

reading access to the register bank. For such situations, 

additional registers must be provided to save the result until 

the consumer instruction requests it. Then, it is brought back 

via bypass. Fig.11 presents solutions for each instruction 

belonging to this category. 

C. The Implementation of the Proposed Solution 

A global solution, built from the specific ones proposed for 
each hazard, is implemented. In fact, bypasses are inserted into 
the pipeline architecture and multiplexers are used to select the 
suitable data. 

Besides these architectural modifications, the control of 
stall cycles as well as multiplexers added to the global 
architecture has to be insured. However, this management of 
these parameters depends on several factors such as 
instructions and hazard types. For this, the control of each 
pipeline stage is analyzed separately. In the absence of hazards, 
the data is directly extracted from the previous stage. 
Otherwise, the requested data is either available on one of the 
bypass paths, or it is still being processed. For this last situation 
one or more waiting cycles must be inserted. Thus the analysis 
concerns only stages which can host consumer instructions that 
are ID, EXE and MEM. 

D. Data Hazards Control 

1) ID stage control: There are six hazards where a 

consumer instruction is present in the ID stage. Three of them 

belong to the first category therefore they require one or two 

waiting cycles before reading the data from one of the bypass. 

The other three are from the second and the third categories, 

so the data is read immediately from one of the ID stages 

inputs. Thus depending on the hazard, one of three following 

solutions must be selected: 

 
Fig. 12. ID Stage Control. 
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 Insert 2 stall then read the data. 

 Insert 1 stall then read the data. 

 Read the date immediately. 

These solutions are managed using the FSM presented by 
the Fig.12. It is composed by five states: 

 S0: Default status, it processes the immediate data 
reading situations and corresponds to the first waiting 
cycle if needed. 

 S1: Used by the hazard ResEXE_RegID_i+1 needing 
only one waiting cycle. 

 S2a: It corresponds to the second waiting cycle for the 
ResMEM_RegID_i+1 hazard needing two stall cycle. 

 S2b: Used by the ResMEM_RegID_i+1 hazard. 

 S3: Used by the hazard ResMEM_RegID_i+2 needing 
only one waiting cycle. 

Transitions from S0 to the other states are controlled by the 
following conditions: 

 C1: stage(i)=ID and TypeInst(i)=RegID and    
RS(i)=RD(i-1)    and TypeInst(i-1)=ResEXE. 

 C2: stage(i)=ID and TypeInst(i)=RegID and 
RS(i)=RD(i-1)    and TypeInst(i -1)=ResMEM. 

 C3: stage(i)=ID and TypeInst(i)=RegID and 
RS(i)=RD(i-2)    and TypeInst(i -2)=ResMEM. 

2) Control of the EXE stage: Among the six hazards 

including consumer instruction in the EXE stage, only one 

belongs to the first category and requires a waiting cycle. In 

the remaining cases, the missing data is available in one of the 

bypass paths. Thus the control of the EXE stage is done either 

by immediate reading of the data from the different inputs, or 

by inserting one stall cycle before. Since there is not a single 

common solution in all situations, the FSM illustrated in 

Fig.13 is used. It has only two states: 

 S0: Default status, it processes the immediate data 
reading situations and corresponds to the first waiting 
cycle if needed. 

 S1: State that processes the ResMEM_RegEX_i+1 
hazard requiring only one idle cycle. 

The transition condition is: 

C :  stage(i)=EXE and TypeInst(i)=RegEXE and  

((NbOpInstr(i)= 2 and ( RS1(i)=RD(i-1) or RS2(i)=RD(i-
1)) 

or  ( NbOpInstr(i)= 1 and ( RS1(i)=RD(i-1) )) and 

              TypeInst(i-1)=ResMEM. 

 
Fig. 13. EXE Stage Control. 

3) Control of the MEM stage: The remaining six hazards 

present consumer instruction at the MEM stage. No waiting 

cycles are needed for all these cases. Thus the control of this 

stage consists only on the correct programming of the input 

multiplexer to choose the suitable data. 

VI. IMPLEMENTATION OF THE PROPOSED SOLUTIONS 

The programmable processor as well as the proposed 
hazards solutions are described in VHDL language. The 
implementation and validation step were performed using 
Mentor Graphics Questasim software tool. For this work, we 
focus only on the validation of techniques we used to solve the 
different types of pipeline hazards. We choose to study an 
example of each type. 

A. Branch Detection 

To validate the branch predictor unit, a code sequence 
including branch instructions is used. Simulation results are 
illustrated in Fig.14. Pred is the 2-bits saturation counter used 
by the branch predictor. Its initial value is “01”. Thus, the first 
branch instruction is predicted as “not taken” and no jump is 
made. When this instruction reaches the EXE stage, the branch 
is “taken”.  Then, the instruction at the jump address is injected 
into the pipeline, Pred is incremented and the wrong 
instructions are neutralized. If an branch instruction is fetched 
again, then, it is predicted as “taken”. 

B. Data Hazards Management 

This following pseudo-code sequence is used to simulate 
data hazards: 

addi  R2, R0, 100 

lw     R3 0(R2) 

addu R4, R2, R3 

S_OP1 and S_OP2 are the controllers of multiplexers at the 
input of the EXE stage. 0 selects the ID stage data, while 1, 2 
and 3 correspond respectively to the MEM and WB stages and 
the additional register data. Analyzing the simulation of fig.15, 
it should be noted that the controllers value depend on the 
required data position. Sometimes, the use of a stall cycle is 
imperative as for the last instruction. 
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Fig. 14. Branch Detection Simulator. 

 

Fig. 15. Data Hazards Control. 

VII. CONCLUSION 

The integration of the pipeline technique in the processor 
architectures is essential to ensure high performances level able 
to cope with nowadays technology challenges. However, a 
wrong control of the pipeline stages can disturb instructions 
execution and alter processor performances. Therefore a 
precise analysis of hazards related to each pipelined processor 
architecture, is necessary to be able to implement the suitable 
control system. 

In this paper, a detailed study of the different kinds of 
hazards that can occur in the pipelined architecture of our 
programmable processor is presented. Mainly, data and control 
hazards are identified. Then, solutions for each category are 
proposed. A prediction algorithm that uses the one-level branch 
predictor with a 2-bit saturation counter associated to a 
"Branch-Target Buffers" is used to solve control hazards while 
for data hazards, bypasses are implemented and controlled 
using FSMs. These different solutions are implemented and 
validated using Mentor Graphics Questasim software tool. 

In future work, the suitable compiler for this programmable 
processor will be designed then its silicon implementation will 
be performed. 

REFERENCES 

[1] P. Ienne, R. Leupers, “Automated processor configuration and 
instruction extension” in  Customizable embedded processors, design 
technologies and applications, 1st ed. Elsevier Science, 2006, ch6, 
pp.117-142.  

[2] M.K. Jain, M. Balakrishnan, A. Kumar, “ASIP design methodologies: 
survey and issues”, inproceedings of Fourteenth International 
Conference on VLSI Design, Bangalore, India, 2001. 

[3] C. Zhang, “Design of Coarse-Grained Reconfigurable Architecture for 
Digital Signal Processing”, PhD thesis, Department of Electrical and 
Information Technology, Lund University, Sweden, 2009.  

[4] N.  Vassiliadis, N.  Kavvadias, G.  Theodoridis, S.  Nikolaidis,  “A  
RISC  architecture  extended  by  an efficient tightly coupled 
reconfigurable unit”, in International journal of electronics, vol. 93, no. 
6, pp. 421-438, 2006.  

[5] M.O. Abdulfattah, “Architectural synthesis of a coarse grained run-time-
reconfigurable accelerator for DSP applications”, PhD thesis, 
Technische Universität, Darmstadt, Germany, 2006. 

[6] H.Najjar, R.Bourguiba, J.Mouine “A new programmable ALU 
architecture for hard-core processor”, International IEEE Multi-
Conference on Systems, Signals and Devices, 2016. 

[7]  D. M. Harris, and S. L. Harris,  “Microarchitecture” in  Digital Design 
and Computer architecture,  1st  ed. Morgan Kaufmann, 2012, ch. 7, sec. 
5, pp. 701-720. 

[8] D. A. Patterson, and J. L. Hennessy, “Enhancing performance with 
pipelining” in Computer Organization and Design, 3ed ed. Morgan 
Kaufmann, 2007, ch. 6, sec. 2, pp.384-399. 

[9] D. A. Patterson, and J. L. Hennessy, “Pipelining” in Computer 
Architecture and Quantitative Approach, 2nd ed. Morgan Kaufmann, 
2012, ch. 3, sec.3, pp. 139-146. 

[10] D.A. Patterson and J.L. Hennessy. Computer Organization and Design: 
The Hardware/Software Interface. The Morgan Kaufmann Series in 
Computer Architecture and Design. Elsevier Science, 2011. 

[11] John L. Hennessy and David A. Patterson. Computer Architecture (2nd 
Ed.) : A Quantitative Approach. Morgan Kaufmann Publishers Inc., 
1996. 

[12] D.M. Harris and S.L. Harris. Digital Design and Computer Architecture. 
Engineering professional collection. Morgan Kaufmann, 2013. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 10, 2018 

396 | P a g e  

www.ijacsa.thesai.org 

[13] L Gwennap. New algorithm improves branch prediction. MicroDesign 
Ressources, 9(4), 1995. 

[14] B. Lee. Dynamic branch prediction. http ://web.engr.oregonstate.edu/ 
benl/Projects/branch pred/. Accessed : 2018-01-25. 

[15] Tse-Yu Yeh and Yale N. Patt. Two-level adaptive training branch 
prediction. pages 51-61,1991. 

[16] S McFarling. Combining branch predictors. Technical report, 1993. 

[17] Andre Seznec and Pierre Michaud. A case for (partially) tagged 
geometric history length branch prediction. J. Instruction-Level 
Parallelism, 8, 2006. 

[18] Andre Seznec. Analysis of the o-geometric history length branch 
predictor. SIGARCH Comput. Archit. News, 33(2):394-405, May 2005. 

[19] Daniel A. Jimenez and Calvin Lin. Dynamic branch prediction with 
perceptrons. pages 197,2001. 

[20] Andre Seznec, Stephen Felix, Venkata Krishnan, and Yiannakis 
Sazeides. Design tradeoffs for the alpha ev8 conditional branch 
predictor. SIGARCH Comput. Archit. News, 30(2) :295-306, May 2002. 

[21] Pierre Michaud, Andre Seznec, and Richard Uhlig. Trading conflict and 
capacity aliasing in conditional branch predictors. SIGARCH Comput. 
Archit. News, 25(2) :292-303, May 1997. 

 


