
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

388 | P a g e

www.ijacsa.thesai.org

Pipeline Hazards Resolution for a New Programmable

Instruction Set RISC Processor

Hajer Najjar
1
, Riad Bourguiba

2

Tunis El Manar university, National engineering school of

Tunis, LR11ES20 Laboratory of Analysis, Design and

Control of Systems (LACS), 1002, Tunis, Tunisia

Jaouhar Mouine
3

Prince Sattam Bin Abdulaziz University

Saudi Arabia

Abstract—The work presented in this paper is a part of a

project that aims to concept and implement a hardwired

programmable processor. A 32-bit RISC processor with

customizable ALU (Arithmetic and Logic Unit) is designed then

the pipeline technique is implemented is order to reach better

performances. However the use of this technique can lead to

several troubles called hazards that can affect the correct

execution of the program. In this context, this paper identifies

and analyzes all different hazards that can occur in this

processor pipeline stages. Then detailed solutions are proposed,

implemented and validated.

Keywords—Processor; RISC; hardware; instruction set;

pipeline; hazards; branch predictor; bypass

I. INTRODUCTION

The use of smart digital devices in almost all fields of
everyday life increases the embedded systems challenges
especially those of microprocessors. In fact, they have to cope
with a wide panel of applications and provide at the same time,
high performances in terms of operation frequency, energy
consumption and area occupation. This complicates extremely
the design process and affects the cost and the time to market.
On the other hand, these processors are unsuitable for
applications with hard real-time constraints. Application
Specific Instruction set Processors (ASIP) [1][2] were
proposed as an alternative that uses an additional instruction set
addressing a defined domain. Thus, compared to the general
purpose processors, they provide a significant acceleration but
only for a limited class of applications. For better reuse level,
designers introduce the configuration concept to make
processors customizable and thus fit a large panel of
applications. The main proposed solution is to couple a
programmable functional unit to the hardwired processor
[3][4][5].

In this context, a new configuration technique is
introduced. Actually, a hard-wired processor based on a 32-bits
RISC architecture is designed then improved to make it able to
cope with customizable instruction sets [6]. For better
performances, the pipeline technique is implemented to insure
better run-time acceleration. However, a processor with
pipelined architecture handles many instructions at the some
clock cycle which can lead to some execution troubles.
Especially when there are dependencies or resources conflicts
between these instructions. Such troubles are called hazards
since they can randomly happen during the program execution
[7][8][9].

In this paper the different hazards related to the architecture
of the designed programmable processor are analyzed and
classified then the proposed solutions are detailed,
implemented and validated. In the second section, an overview
of the programmable processor design is presented. In the third
section we the data-path is explored in order to find out the
different hazards that can happen and classify them. The fourth
and fifth sections are respectively dedicated to the implemented
solutions for control and data hazards. Then, in the next section
the simulation results are illustrated and discussed and finally
conclusion and outlooks are presented in the last section.

II. ARCHITECTURE OVERVIEW

The proposed architecture consists of a 32-bits RISC
processor based on a programmable ALU that can be
customized to handle a large range of instruction sets thanks to
the look up table (LUT) technology. In fact, the ALU is
composed of a paged LUT where each page contains the truth
table of a single operation. Being made of SRAM, these pages
can be rewritten if needed to fit any specific application. As for
a standard RISC processor we use register/register architecture
where the ALU is connected to registers to retrieves its non-
immediate operands and store its computing results. This
registers are assembled into a register bank. On the other hand,
the memory presents two independent interfaces for data and
instructions since the processor is designed according to the
Harvard architecture.

This processor implements instructions belonging to three
different kinds that are namely:

 Arithmetic and logic instructions: They include
arithmetic, logic, shift and comparison instructions.
The operands are either immediate value or from
register bank. The result is stored in the general-purpose
registers.

 Instructions for memory access: The address is
calculated using a base value and an offset. The address
of the register containing the first data and the
immediate value representing the offset are both
extracted from the instruction word.

 Jump and branching instructions that can be conditional
or unconditional.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

389 | P a g e

www.ijacsa.thesai.org

Fig. 1. Pipeline Stages of Our Programmable Processor.

The instruction word is 32-bits length and its structure
depends on the data it includes. The R format is composed
from the operands and result registers address besides the
instruction codes and the shift amount for shift operation. It
includes mainly arithmetic and logic instructions with non-
immediate operands. Indeed, all instructions using an
immediate value, whether for ALU operations, memory access
or conditional jump, belong to the I format. Finally the J format
is reserved to the unconditional jump instruction.

As shown in Fig.1, all units of the targeted architecture are
organized into five balanced pipeline stages representing the
five execution phases of an instruction. These stages are:

 Instruction Fetch (IF): Selection and extraction of the
instruction from the instruction memory.

 Instruction Decode (ID): Decode of the instruction and
extraction of the operands from the register bank in
order to be sent to the ALU.

 Execution (EXE): The instruction result is computed.

 Memory access (MEM): The data load and store
operations are achieved.

 Write back (WB): The instruction result is stored in the
register bank.

III. PIPELINE HAZARDS

The use of pipeline datapath, although it insures a
significant computing-power improvement of the processor,
generates several execution troubles organized in three hazards
categories [10][11][12]:

 Structural hazards: They consist on resources conflicts.
In fact, they happen when two different instructions
being performed by the processor need to use the some
resource at the same clock cycle. For example, if the
processor provides only one interface to communicate
with memory, it can be requested, at the same time by
the instructions in the IF and the MEM stages to access
respectively, an instruction and a data. None of these
hazards are present in our processor thanks to its design.

 Control hazards: While the branch decision is being
calculated, wrong instructions can be introduced into
the pipeline which leads to this type of hazards. The
branch prediction technique is used to reduce the
frequency of wrong instructions fetch.

 Data hazards: They happen when an instruction needs to
use a data that is not yet available because it is still
being computed by a previous instruction in the
pipeline. To solve these hazards, the simplest way is to
stall partially the pipeline until the data is ready.
However, the frequent use of this technique can lead to
an important decrease in terms of pipeline
performances. For that, hardwired solutions are
implemented to avoid the use of idle cycles as much as
possible.

IV. PROPOSED BRANCH PREDICTION SOLUTION

Branch prediction is used to prevent the control hazards. In
fact, our programmable processor handles branch instructions
that need some clock cycles to decide about the next fetch
address. In fact for the conditional branch, the decision is
calculated at the EXE stage and even for the unconditional
branch the jump address can't be known before the ID stage.
Meanwhile, the following instructions are injected into the
pipeline. Thus, each time a jump decision is made these wrong
instructions must be eliminated. The excessive occurrence of
this process considerably decreases the processor run-time
performances. Therefore, a branch prediction unit is inserted in
the IF stage to speculate the branch decision and to load into
the pipeline the most likely true instructions.

A. Static Prediction of the Branch Decision

A first branch prediction approach is the static prediction
[13]. Indeed, this method uses a fixed speculation algorithm
that is based on the classification of branch instructions in
some with a high probability of being taken and others that are
often or always not taken. An example of a static prediction
consists in classifying the instructions according to their nature:
conditional and unconditional. This way, the unconditional
branch will form the family of instructions whose prediction is
always "taken", while the conditional branch instructions will
always be predicted as "not taken". This heuristic based on
inaccurate criteria of instructions is not reliable enough because
a large number of conditional branches are often taken
specially those used for loop management. For this purpose
other more precise algorithms are used such as the BTFN
(Backward Taken Forward Not taken) which predicts that all
the backward jumps are taken. Thus, for the instructions related
to the loopback condition, the prediction is always correct as
large as the loop is going on and is false only when exiting it.
Although the performances enhancement, this algorithm is
unsuitable for the instruction sets that rarely use iterations.
Generally, the performance of the static prediction is limited
because it does not consider the application proprieties and the
instructions diversity.

B. Dynamic Prediction of the Branch Decision

An alternative the dynamic branch predictor can be use
instead of the static one. The different methods belonging to
this category are based on a real-time learning. In fact,
decisions history related to each branch instruction are saved
then used to better predict future decisions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

390 | P a g e

www.ijacsa.thesai.org

Fig. 2. One-Level Branch Predictor.

Fig. 3. FSM for the 2-Bits Saturation Counter.

The simplest dynamic predictor is based on the one-level
branch predictor [11][14]. As shown in Fig.2, this predictor
uses a cache memory called Branch Predictor Buffer (BPB) or
Branch history table, which is indexed by the least significant
bits of the branch instruction address. This table maps to each
address an n-bit saturation counter that functions as follows:

 Whenever a branch is taken, the counter increments
unless it is already at its maximum value.

 Whenever a branch is not taken, the counter decrements
unless it is already equal to zero.

The branch decision is deduced from the value of the
saturation counter. In fact, if its value is lower than , the
branch is predicted "not taken" otherwise it is “taken”.

Fig. 4. Correlation-based Branch Predictor.

In the case where a 1-bit saturation counter is used, the
predictor only takes into account the last taken decision (1 if
the last time the branch was taken, 0 otherwise). This method is
not very reliable because it causes errors even for branch
whose decision rarely changes. In fact, if we consider a branch
which follows this sequence of decisions: "taken nine
successive times, not taken once". In this example, the
predictor will commit two errors each time: at the beginning
and at the end of the sequence. For better performance, a 2-bit
saturation counter is associated with the branch address table
[11] [13]. In this case, the predictor operation scheme is
managed by the finite state machine illustrated in Fig.3. This
way, the prediction changes only if it is false twice
consecutively.

In some cases, the program may contain branch instructions
whose decision changes frequently and depends on decisions
of previous branch instructions. For such situations, it is
recommended to use more efficient prediction algorithms that
take into account these variations and dependencies. An
example is the two-level branching predictors [11][14][15]. To
this category belongs the correlation-based branch predictor.
This predictor uses a (m, n) BPB which considers the decisions
of the last m stored branches in an offset register to choose a
prediction among . Each one of these predictions is
controlled by a saturation counter n bits. Thus, the two-level
branching prediction consists of a column table, as shown
in Fig.4. For each branch instruction, its address is used for the
line selection while the sequence of m bits in the shift register
allows the column choice. The value of the counter contained
in the selected box allows predict whether the branch will be
taken or not. As for the one-level predictor, this value will be
updated as soon as the decision is calculated. Another two-level
prediction scheme is the adaptive algorithm whose structure is
illustrated in Fig.5. This algorithm saves the last m decisions
related to each branch instruction and matches each m bit
sequence with a n-bit saturation counter located in a table
named "Global pattern history" composed of lines
common to all branching instructions. Thus two branches can
be referenced on the same line if they have the same decision
history. The saturation counter allows, as for all other
methods, to predict the branching decision and its value is
changed according to the reliability of the prediction.

Fig. 5. Two-Level Adaptative Branch Predictor.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

391 | P a g e

www.ijacsa.thesai.org

The test of a benchmarks range on the various predefined
prediction methods shows that they have a variable reliability
rate depending on the nature of the different branches [11][13].
Hence the appearance of the hybrid branch prediction which
uses two or more independent prediction algorithms operating
in parallel [16]. A selection vector, whose value varies
according to the history of the branching decisions, allows
choose for each branch instruction the most adapted predictor.
Other specific predictors characterized by high levels of
reliability have been implemented [17][18][19]. Among them
there are "Multiple history length use"[20], "de-aliased
predictors"[21], etc.

Among these different branch predictors, the selected
solution in order to be implemented is the one-level predictor
using a 2-bit saturation counter. This choice is justified by the
fact that this predictor is frequently used, it is simple to
implement and it presents an acceptable error rate. These
factors are sufficient for a first implementation.

C. Branch Direction Prediction

Branch prediction minimizes the impact of late decisions
by injecting into the pipeline the instruction corresponding to
the decision prediction immediately after the branch
instruction. For this, the predictor must know the jump address
from the IF stage in the case where a branch is predicted as
"taken". However, this address is available only at the level of
the ID stage. In order to minimize the latency generated by this
address computing delay, a cache memory called "Branch-
Target Buffers" (BTB) is used[11][14]. Its structure is
described in Fig.6. Each line in this memory contains the
address of a branch instruction, the jump address, and the
corresponding prediction. Whenever a new instruction is
present in the IF stage, if its address does not appear in the first
column of the BTB, the instruction is not considered as a
branch and the execution processes normally. In this case, if
the decision corresponds to "taken", a jump to the address of
the branch is made. After the execution of a branch instruction,
if it is already registered in the BTB, then the prediction is
updated according to the decision. Otherwise, the instruction as
well as the jump address and the value of the prediction are
saved in a line of the BTB. Sometimes the BTB can be
saturated. In this case, some branches must be removed to give
place to others. As for cache memories, several management
algorithms are available. However, a judicious choice must be
made to not alter the performance of the predictor.

Fig. 6. Branch Target Buffer.

D. Proposed Prediction Algorithm

For the programmable processor, a prediction algorithm
that uses the one-level branch predictor and the 2-bit saturation
counter was selected for the decision prediction, and the
"Branch-Target Buffers" for calculating the branch address.
Diagram illustrated in Fig.7 details this algorithm.

Fig. 7. Prediction Algorithm.

V. PROPOSED SOLUTIONS FOR DATA HAZARDS

A. Data Hazards Analysis

The resolution of data hazards requires, at first, to study all
data-path situations presenting this kind of hazards. For this,
first the instructions involved in the happening of these hazards
are split into two classes: consumer instructions and producer
ones. The first category includes instructions that must use data
that is not yet available in the register bank. While the second
includes those responsible for calculating the missing results.

It should be noted that an instruction is considered as
consumer or producer regarding the pipeline stage in which it
needs to use the missing data or produces the required result.
For example, for an arithmetic addition instruction, if it needs
an operation which is not yet available at the register bank it is
"consumer instruction at the EXE stage". However, in the case
where a next instruction needs its computation result when it
has not yet reached the WB stage, it is considered as "producer
instruction at the EXE stage". In the rest of this study, the
producer and consumer instructions are respectively named Res
and Reg followed by the name of the stage of the concerned

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

392 | P a g e

www.ijacsa.thesai.org

pipeline (ResEXE, RegEXE ...). In order to identify all stages
that can host consumer instructions, we ask the question: "Does
this stage use a data retrieved from the register bank ". While
for producer instructions the question is "Does this stage
produce a result to the register bank?". Thus, the producer
instructions are ResEXE and ResMEM whereas the consumer
ones are RegID, RegEXE and RegMEM.

Following this classification, all data hazards that may
occur in the proposed processor pipeline are identified by
studying all possible scenarios from the point of view of
producer instructions. In other words, at the output of each
pipeline stage that may contain producer instructions this
question is asked: “which of the following instructions may
need to use the result of this stage before it reaches the
registers?”

A producer instruction i can belong either to ResEXE class
or ResMEM one depending on the pipeline stage that computes
its result. This produced data can only be used after it has been
saved in a register. Meanwhile, three subsequent instructions
will have passed the ID stage and have no longer read access to
the register bank. Each of these instructions may need to use
the result of instruction i in one of the pipeline stages ID, EXE,
or MEM. Thus, for each instruction category, nine cases of
hazards can occur. All these data hazards are summarized in
Fig8. The name of each of these hazards will include both
consumer and producer instructions names and their relative
position where the producer one is always considered as the
instruction i. For example, if an instruction must use in the ID
stage, the result of a previous one computed in the EXE stage,
then, it is the hazard named "ResEXE_RegID_i+1" .

Fig. 8. Data Hazards.

B. Solutions Discussions

In order to solve data hazards, the simplest way is to delay
the execution of the consumer instruction until the result of the
producer one is available in the register bank. However, the
frequent use of this solution degrades considerably the
processor performances. Therefore, architectural solutions are
proposed to limit as much as possible, pipeline stalling.

Fig. 9. Proposed Solutions form the First Category of Data Hazards.

Fig. 10. Proposed Solutions for the Second Category of Data Hazards.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

393 | P a g e

www.ijacsa.thesai.org

Since there is no common solution to all situations, hazards
are classified according to the availability and the position of
the result at the clock cycle it is claimed. Three categories are
identified:

 The result is not yet calculated.

 The result is ready and has not left the stage where it
has been calculated.

 The result is ready and left the stage where it has been
calculated but has not yet reached the register bank.

1) First category solutions: The requested data is not yet

ready. Therefore, the use of idle cycles is imperative until the

result computation ends. Then, a bypass is used to bring back

this result to the pipeline stage that requires it. All situations

belonging to this category and their proposed solutions are

summarized in Fig.9.

2) Second category solutions: In this case, the result is

available in the stage where il was calculated. A bypass is

simply added to send it back. The different solutions of this

hazards category are illustrated in Fig.10.

Fig. 11. Proposed Solutions for the Thired Category of Data Hazards.

3) Third category solutions: These hazards occur when

the producer instruction result has left its initial pipeline stage

but has not yet attained the register bank. Thus, it remains

unreachable by the consumer instruction. To solve these

hazards, the result must first be located in the pipeline. If the

consumer instruction reaches the stage where it need to use the

producer instruction result before the latter reaches the WB

stages, then, the use of bypass is enough. Otherwise, if the

result is already stored in the register bank then it becomes

inaccessible because only the instruction in the ID stage has a

reading access to the register bank. For such situations,

additional registers must be provided to save the result until

the consumer instruction requests it. Then, it is brought back

via bypass. Fig.11 presents solutions for each instruction

belonging to this category.

C. The Implementation of the Proposed Solution

A global solution, built from the specific ones proposed for
each hazard, is implemented. In fact, bypasses are inserted into
the pipeline architecture and multiplexers are used to select the
suitable data.

Besides these architectural modifications, the control of
stall cycles as well as multiplexers added to the global
architecture has to be insured. However, this management of
these parameters depends on several factors such as
instructions and hazard types. For this, the control of each
pipeline stage is analyzed separately. In the absence of hazards,
the data is directly extracted from the previous stage.
Otherwise, the requested data is either available on one of the
bypass paths, or it is still being processed. For this last situation
one or more waiting cycles must be inserted. Thus the analysis
concerns only stages which can host consumer instructions that
are ID, EXE and MEM.

D. Data Hazards Control

1) ID stage control: There are six hazards where a

consumer instruction is present in the ID stage. Three of them

belong to the first category therefore they require one or two

waiting cycles before reading the data from one of the bypass.

The other three are from the second and the third categories,

so the data is read immediately from one of the ID stages

inputs. Thus depending on the hazard, one of three following

solutions must be selected:

Fig. 12. ID Stage Control.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

394 | P a g e

www.ijacsa.thesai.org

 Insert 2 stall then read the data.

 Insert 1 stall then read the data.

 Read the date immediately.

These solutions are managed using the FSM presented by
the Fig.12. It is composed by five states:

 S0: Default status, it processes the immediate data
reading situations and corresponds to the first waiting
cycle if needed.

 S1: Used by the hazard ResEXE_RegID_i+1 needing
only one waiting cycle.

 S2a: It corresponds to the second waiting cycle for the
ResMEM_RegID_i+1 hazard needing two stall cycle.

 S2b: Used by the ResMEM_RegID_i+1 hazard.

 S3: Used by the hazard ResMEM_RegID_i+2 needing
only one waiting cycle.

Transitions from S0 to the other states are controlled by the
following conditions:

 C1: stage(i)=ID and TypeInst(i)=RegID and
RS(i)=RD(i-1) and TypeInst(i-1)=ResEXE.

 C2: stage(i)=ID and TypeInst(i)=RegID and
RS(i)=RD(i-1) and TypeInst(i -1)=ResMEM.

 C3: stage(i)=ID and TypeInst(i)=RegID and
RS(i)=RD(i-2) and TypeInst(i -2)=ResMEM.

2) Control of the EXE stage: Among the six hazards

including consumer instruction in the EXE stage, only one

belongs to the first category and requires a waiting cycle. In

the remaining cases, the missing data is available in one of the

bypass paths. Thus the control of the EXE stage is done either

by immediate reading of the data from the different inputs, or

by inserting one stall cycle before. Since there is not a single

common solution in all situations, the FSM illustrated in

Fig.13 is used. It has only two states:

 S0: Default status, it processes the immediate data
reading situations and corresponds to the first waiting
cycle if needed.

 S1: State that processes the ResMEM_RegEX_i+1
hazard requiring only one idle cycle.

The transition condition is:

C : stage(i)=EXE and TypeInst(i)=RegEXE and

((NbOpInstr(i)= 2 and (RS1(i)=RD(i-1) or RS2(i)=RD(i-
1))

or (NbOpInstr(i)= 1 and (RS1(i)=RD(i-1))) and

 TypeInst(i-1)=ResMEM.

Fig. 13. EXE Stage Control.

3) Control of the MEM stage: The remaining six hazards

present consumer instruction at the MEM stage. No waiting

cycles are needed for all these cases. Thus the control of this

stage consists only on the correct programming of the input

multiplexer to choose the suitable data.

VI. IMPLEMENTATION OF THE PROPOSED SOLUTIONS

The programmable processor as well as the proposed
hazards solutions are described in VHDL language. The
implementation and validation step were performed using
Mentor Graphics Questasim software tool. For this work, we
focus only on the validation of techniques we used to solve the
different types of pipeline hazards. We choose to study an
example of each type.

A. Branch Detection

To validate the branch predictor unit, a code sequence
including branch instructions is used. Simulation results are
illustrated in Fig.14. Pred is the 2-bits saturation counter used
by the branch predictor. Its initial value is “01”. Thus, the first
branch instruction is predicted as “not taken” and no jump is
made. When this instruction reaches the EXE stage, the branch
is “taken”. Then, the instruction at the jump address is injected
into the pipeline, Pred is incremented and the wrong
instructions are neutralized. If an branch instruction is fetched
again, then, it is predicted as “taken”.

B. Data Hazards Management

This following pseudo-code sequence is used to simulate
data hazards:

addi R2, R0, 100

lw R3 0(R2)

addu R4, R2, R3

S_OP1 and S_OP2 are the controllers of multiplexers at the
input of the EXE stage. 0 selects the ID stage data, while 1, 2
and 3 correspond respectively to the MEM and WB stages and
the additional register data. Analyzing the simulation of fig.15,
it should be noted that the controllers value depend on the
required data position. Sometimes, the use of a stall cycle is
imperative as for the last instruction.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

395 | P a g e

www.ijacsa.thesai.org

Fig. 14. Branch Detection Simulator.

Fig. 15. Data Hazards Control.

VII. CONCLUSION

The integration of the pipeline technique in the processor
architectures is essential to ensure high performances level able
to cope with nowadays technology challenges. However, a
wrong control of the pipeline stages can disturb instructions
execution and alter processor performances. Therefore a
precise analysis of hazards related to each pipelined processor
architecture, is necessary to be able to implement the suitable
control system.

In this paper, a detailed study of the different kinds of
hazards that can occur in the pipelined architecture of our
programmable processor is presented. Mainly, data and control
hazards are identified. Then, solutions for each category are
proposed. A prediction algorithm that uses the one-level branch
predictor with a 2-bit saturation counter associated to a
"Branch-Target Buffers" is used to solve control hazards while
for data hazards, bypasses are implemented and controlled
using FSMs. These different solutions are implemented and
validated using Mentor Graphics Questasim software tool.

In future work, the suitable compiler for this programmable
processor will be designed then its silicon implementation will
be performed.

REFERENCES

[1] P. Ienne, R. Leupers, “Automated processor configuration and
instruction extension” in Customizable embedded processors, design
technologies and applications, 1st ed. Elsevier Science, 2006, ch6,
pp.117-142.

[2] M.K. Jain, M. Balakrishnan, A. Kumar, “ASIP design methodologies:
survey and issues”, inproceedings of Fourteenth International
Conference on VLSI Design, Bangalore, India, 2001.

[3] C. Zhang, “Design of Coarse-Grained Reconfigurable Architecture for
Digital Signal Processing”, PhD thesis, Department of Electrical and
Information Technology, Lund University, Sweden, 2009.

[4] N. Vassiliadis, N. Kavvadias, G. Theodoridis, S. Nikolaidis, “A
RISC architecture extended by an efficient tightly coupled
reconfigurable unit”, in International journal of electronics, vol. 93, no.
6, pp. 421-438, 2006.

[5] M.O. Abdulfattah, “Architectural synthesis of a coarse grained run-time-
reconfigurable accelerator for DSP applications”, PhD thesis,
Technische Universität, Darmstadt, Germany, 2006.

[6] H.Najjar, R.Bourguiba, J.Mouine “A new programmable ALU
architecture for hard-core processor”, International IEEE Multi-
Conference on Systems, Signals and Devices, 2016.

[7] D. M. Harris, and S. L. Harris, “Microarchitecture” in Digital Design
and Computer architecture, 1st ed. Morgan Kaufmann, 2012, ch. 7, sec.
5, pp. 701-720.

[8] D. A. Patterson, and J. L. Hennessy, “Enhancing performance with
pipelining” in Computer Organization and Design, 3ed ed. Morgan
Kaufmann, 2007, ch. 6, sec. 2, pp.384-399.

[9] D. A. Patterson, and J. L. Hennessy, “Pipelining” in Computer
Architecture and Quantitative Approach, 2nd ed. Morgan Kaufmann,
2012, ch. 3, sec.3, pp. 139-146.

[10] D.A. Patterson and J.L. Hennessy. Computer Organization and Design:
The Hardware/Software Interface. The Morgan Kaufmann Series in
Computer Architecture and Design. Elsevier Science, 2011.

[11] John L. Hennessy and David A. Patterson. Computer Architecture (2nd
Ed.) : A Quantitative Approach. Morgan Kaufmann Publishers Inc.,
1996.

[12] D.M. Harris and S.L. Harris. Digital Design and Computer Architecture.
Engineering professional collection. Morgan Kaufmann, 2013.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

396 | P a g e

www.ijacsa.thesai.org

[13] L Gwennap. New algorithm improves branch prediction. MicroDesign
Ressources, 9(4), 1995.

[14] B. Lee. Dynamic branch prediction. http ://web.engr.oregonstate.edu/
benl/Projects/branch pred/. Accessed : 2018-01-25.

[15] Tse-Yu Yeh and Yale N. Patt. Two-level adaptive training branch
prediction. pages 51-61,1991.

[16] S McFarling. Combining branch predictors. Technical report, 1993.

[17] Andre Seznec and Pierre Michaud. A case for (partially) tagged
geometric history length branch prediction. J. Instruction-Level
Parallelism, 8, 2006.

[18] Andre Seznec. Analysis of the o-geometric history length branch
predictor. SIGARCH Comput. Archit. News, 33(2):394-405, May 2005.

[19] Daniel A. Jimenez and Calvin Lin. Dynamic branch prediction with
perceptrons. pages 197,2001.

[20] Andre Seznec, Stephen Felix, Venkata Krishnan, and Yiannakis
Sazeides. Design tradeoffs for the alpha ev8 conditional branch
predictor. SIGARCH Comput. Archit. News, 30(2) :295-306, May 2002.

[21] Pierre Michaud, Andre Seznec, and Richard Uhlig. Trading conflict and
capacity aliasing in conditional branch predictors. SIGARCH Comput.
Archit. News, 25(2) :292-303, May 1997.

