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Abstract—Information over the Web is rapidly becoming 

event-centric with the next age of WWW projected to be an 

EventWeb in which nodes are inter-connected through diverse 

types of links. These nodes represent events having informational 

and experiential information and analysis of these events has a 

substantial semantic impact regarding enhancement of 

information search, visualization and story link detection. 

Information regarding semantics of EventWeb connections is 

also important for event planning and web management tasks. In 

this paper, we devise and implement an event algebra for 

detection and analysis of event connections. As compared to 

traditional solutions, we process both context-match operators 

and analytical operators, cater for all event information 

attributes, and define the strength of connections. We implement 

a tool to evaluate our algebra over events occurring in the 

academic domain. We demonstrate an almost perfect precision 

and recall for context-match operators and high precision and 

recall for analytical operators. 

Keywords—EventWeb; information processing; event algebra; 

operators; link detection; link analysis; information analysis; 

context-match 

I. INTRODUCTION 

The web of documents or web of information is now 
converging towards a web of events, which has been typically 
labeled as the EventWeb, in which each node represents an 
event which has both informational as well as experiential data, 
and which is connected to other nodes through different types 
of links, i.e., referential, structural, relational, and causal [1]. 
The information flow over the web is influenced by the 
experiences of the users instead of the reporting authorities or 
agencies. Hence, information over the web is now becoming 
more event-centric (as compared to document-centric) with 
events forming the crux of EventWeb. Moreover, detection and 
analysis of links between events, i.e., semantic extraction of 
EventWeb, is significant to users from two perspectives. 
Firstly, this information facilitates and enhances information 
search, information visualization and tasks related to story link 

detection. Secondly, semantic information of connections helps 
users in decisions related to planning, management and 
prioritization of events. The context of the events formulates 
these connections. Data such as location of the event, temporal 
information, event category, and participants of the event, 
formulates this context. Events occurring at the same place,  
time, date or having common participants or same category 
may have some type of inter-relations or inter-connections.  
These connections have different strengths depending upon the 
percentage of the context match and the granularity level of the 
contextual attributes at which the match takes place. A deeper 
analysis of the context-based connections is a target of current 
research in order to explore more connections. 

The focus of this paper is to enhance state of the art 
research in extracting semantic information from EventWeb.  
Our research objective is to process the contextual event 
information to detect linkages between events, based on the 
following three objectives: 1) detecting stories that exist along 
events but are unseen, 2) enhancing information search and 
visualization experience over the web, and 3) constructing a 
formal and extensible representation for representing linkages 
between events. 

To this end, we devise and implement an event algebra for 
representing and analyzing different connections between 
events over EventWeb. We generate useful information 
regarding these connections. Our motivation is to provide a 
more formal specification of information regarding event 
descriptions and connections as compared to other state of the 
art algebras. Our algebra caters for all five event information 
attributes, i.e., title, location, temporal attributes, participants, 
and category. It comprises a number of operators, each of 
which defines a possible connection between two or more 
events. These operators represent different types of connections 
and help in analyzing and producing important information 
(semantic meaning) from connections. Specifically, context-
match operators provide a match between the individual 
contextual attributes of events and analytical operators provide 
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an analytical view over  
the connections (described in Section 3). Our algebra also 
detects previously unexplored connections and defines 
the strength of connections that identifies connections at 
various levels of strength. Collectively, the aforementioned 
features are not available in previously existing algebras. 
Finally, our algebra can also be modeled through a relevant 
ontology or some other modeling technique. 

To evaluate our proposed event algebra, we developed a 
tool called EventWeb Connection Detector, abbreviated 
EConnDetect, which implements our algebra operators. We 
apply each operator to the collection of events to detect the 
connections existing between the events. For evaluation, we 
focused on events occurring in an academic (university) 
environment. Our research question is to determine the 
frequency of connections that EConnDetect is able to identify 
correctly from a given set of university events. For this, we 
initially extracted these events from email inboxes of 
several students and faculty members (with their consent). 
Using our previous technologies, we then extracted event 
information attributes by using finite state machines and then 
used an event classifier to tag the events with proper 
categories [1, 2]. We then provided these event attributes as 
input to EConnDetect, and calculated precision and recall 
for the identified connections as our evaluation metrics. We 
obtained an almost perfect precision and recall of 99% 
and 97% with context match operators, and a high precision 
and recall of 89% and 78% for analytical operators. 

II. RELATED WORK 

Detecting linkages between events has been addressed by 
researchers mainly from two perspectives: linking events 
on the basis of event information attributes (location, date/time, 
type etc.) [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and linking 
events on the basis of information related to events (pictures, 
news, posts etc.) [13, 14, 15, 16, 17, 18, 19]. For our 
literature review, we have considered the works that address 
linkage detection based on event attributes. 

To this end, we have classified the existing research 
broadly into two classes: ontology-based event representation 
and algebra-based event representation. Ontology-based 
solutions [3, 4, 5, 6] are generally aimed at modeling events 
so that the connections between events can be traced easily. 
The algebra-based solutions [7, 8, 9, 10, 11, 12] are 
largely focused on defining operators that represent possible 
linkages between events. In this paper, we are concerned 
with algebra-based solutions to linkage detection. 

The gap analysis over the existing research in this domain 
is shown in Table 1, which lists the features or characteristics 
of our proposed algebra, and mentions the status of existing 
research works with respect to these features or 
characteristics. Specifically, we indicate the extent to which the 
research literature addresses these features through 
three labels: Addressed (A), Partially Addressed (PA) and Not 
Addressed (NA). In general, most work in event link 
detection focuses on historical event analysis, which addresses 
the problem of detecting and analyzing links between 
events appearing in near future, along with the events that 
occurred in past. Also, most works in this area have targeted 

events appearing over news wires or articles etc. In our work, 
we target events appearing over social text streams and 
WWW in general. 

TABLE I. GAP ANALYSIS: A=ADDRESSED, PA=PARTIALLY 

ADDRESSED, NA=NOT ADDRESSED 

Research 

Work 

 

 

Features 

 

Linkage 

Generalization 

Linkage 

Analysis 

Identifying 

Inter-

relations 

of Linkages 

Linkage 

Strength 

 

[3] A PA NA NA 

[4,5] A PA NA NA 

[6] A NA NA NA 

[9] A A NA NA 

[12] NA PA NA NA 

[11] NA PA PA NA 

[7,8] NA PA PA NA 

[10] NA PA NA NA 

A. Ontology-based Approaches 

In [3], the authors present a Simple Event Model (SEM) for 
historical event analysis. They use graphs for event 
representation. The graphs capture four core event attributes 
(title, place, time, actors) along with several properties 
that help to identify the linkages between events. The core 
linkages identified through SEM are determined by the 
level of similarity with the core attributes. SEM also links the 
events based on event type. It identifies linkages using 
types of actors, places and events. However, the authors have 
not identified inter-relationships between linkages that 
would have helped them to generate more linkages. Moreover, 
they do not identify the strength of linkages that could 
have assisted in clarifying historical linkages. We, therefore, 
consider this handling of link analysis as partial. 

The works of Ilaria Corda et al. [4, 5] also use event 
ontology to analyze the historical event collection to unveil 
connections between events. Their objective is to represent 
essays describing the history of events. For this, they 
propose the concept of semantic trajectories which represent 
sequences of events. In a semantic trajectory, any two 
events which occur consecutively are linked to each other by 
some semantic link. This link is characterized by one 
or more attribute(s) that are common in both events. The 
authors tackle linkage generalization by using a set of 
different attributes. Moreover, the semantic links are sequenced 
in the trajectory based on chronological ordering of 
occurrence. The authors have dealt with analysis over temporal 
linkages but have not addressed any other linkage 
type or the strength of linkages. They have also not addressed 
the identification of inter-relationships of linkages. 

In [6], the authors developed the LODE model for 
representing events with an objective to perform historical 
event analysis. It covered the four W’s (when, where, who, and 
what) to represent and link events. However, the authors do not 
attempt to identify more linkages, or the inter-linkages between 
relationships, or the strength of relationships. 
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B. Event Algebra-based Approaches 

Allen presented a seminal work for defining relations 
between events through an algebra [20]. He defined thirteen 
temporal relations, i.e., the relations were defined based on 
temporal attributes of the events. Hence, Allen’s algebra 
only addressed one attribute of the event for representing 
linkages. Moreover, the event algebra by Chakravarthy et al. 
was developed for detecting composite events in active 
databases [11]. This algebra contained operators that could be 
applied over events to detect links between primitive events. 
Here, the authors identified only temporal linkages and 
do not address the identification of linkage strength. 

Nagargadde and Sridhar developed an algebra to identify 
links between events in the sport of Cricket [9]. Their 
objective was to link basic events to formulate a “meta” or 
derived event. The authors used three attributes, i.e., time, 
space and label to detect linkages between events. This work 
focuses on meta events like “Run Out” and “LBW” 
which refer to basic events like “ball hits the wicket” and “ball 
hits the player’s leg” respectively. . Hence, the authors 
use temporal and spatial attributes at a low granularity level. 
They perform linkage analysis to extract meta events; 
however inter-relations between linkages and the linkage 
strength have not been explored. 

The EVA algebra detects composite events related to a 
specific domain [7, 8]. At any time, an event is defined to 
be a transition in state of an object. Composite events are 
identified by linking the transition in a specific state of an 
object at that time. This algebra comprises sequence operators 
and operators that link primitive events on the basis of 
time and the attribute over which the transition has occurred. 
Hence, this algebra is focused over temporal attributes. 
The authors perform analysis to identify sequences of events 
and to further identify inter-relations among temporal 
linkages. However, the authors do not cater for the strength of 
the linkages. 

Uma and Aghila have proposed operators for identifying 
temporal patterns of events [12]. They have extended 
Allen’s algebra [20] by using an event as a reference for 
relation between two other events. The events are linked based 
on the temporal attributes only. The authors have modeled the 
temporal info using hand-coded rules for identifying 
the linkages and have suggested that these rules can be fed to 
ontology for detecting event linkages. Finally, Rink et 
al. use textual graph patterns for detecting casual relationships 
between events [10]. These patterns facilitate analysis 
over the relationships but do not cater for inter-relationships or 
the strength of linkages. 

A. Major Contributions Compared to Related Work 

As compared to the related work, our algebra has the 
following major contributions: 

 Our algebra uses five attributes for linking events which 
haven’t been used collectively in any work, i.e., title, 
location, temporal attributes, participants and category 

 Our algebra captures all possible connections that may 
exist between two events, while each related work 
identifies only a specific type of linkage, e.g., 
composition, dependency, or temporal sequence 

 Our algebra contains operators that provide an 
analytical view over linkages between events; this 
feature is not offered by any related work 

 Our algebra defines the criteria for identifying the 
strength of event connections and provides definitions 
of the operators for various strength levels. Both of 
these features haven’t been proposed or implemented in 
any related work. 

III. EVENT ALGEBRA FOR DETECTION AND ANALYSIS OF 

CONNECTIONS 

In this section, we detail our proposed algebra for detecting 
and analyzing connections between events. As mentioned in 
Section 1, our algebra has two types of operators, i.e., context 
match operators and analytical operators. In Table 2, we give 
the complete list of these operators and describe them later on 
in this section. These operators identify inter-event connections 
and also provide an analytical view over these connections. 
This view aids in determining the strengths of connections and 
the prioritization of events. 

The analytical operators are composite operators and are 
defined with two or more simple (context-match) operators. 
For example, co-location, homology, analogy, concurrency and 
title-alike are simple operators that check for 
matches over location, participants, event category, time/date 
and title respectively. Duplication is a composite operator that 
comes into a “true” state if the events are collocated, 
homologous, analogous, concurrent, and have the same 
title. Figure 1 depicts the composition of all analytic operators 
in our algebra. Here, composite (analytical) operators 
are shown in the column on the left, and the simple operators 
defining these composite operators are shown in the right 
column. The arrows represent the “definition” relationship, 
e.g., M-Participation is defined by Co-location, Analogy 
and Participation. An analytic operator can be used to produce 
event recommendations for a user or to provide the 
prioritization aspect. For example, consider that two events E1 
and E2 are sub-events of an event E and a user’s 
(U1) previous event participation history shows that she always 
attends events similar to E1. Now, if U1 has another 
event E3 that is overlapping with event E2, a recommendation 
system can recommend U1 to attend E2 instead of E3 
in order to avoid missing E1. Similarly, suppose that U1’s 
participation history shows she mostly attends events in 
which another user U2 is also present. Now for U1, all the 
events in which U2 is participating are of high priority. 
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TABLE II. EVENT ALGEBRA OPERATORS 

Operator Name Symbol  Operator Type Description Operator’s effect 

Concurrency <<>>l Simple The time interval or point is same Context Match 

Precedence < Simple One after another Context Match 

Temporal Subset Ξ Simple  
[Start time(E1)>start time(E2) and 

(End time (E1)<End time (E2) 
Context Match 

Analogy <<>>e Simple Same Type or category Context Match 

Co-location <<>>s Simple Same Place Context Match 

Homology <<>>p Simple  Same participants Context Match 

Title-Alike <<>> l Simple Same title Context Match 

Participation ∋ Simple A person participating in an event  Context Match 

Duplication ≡ Composite All attributes are same Context Match 

Overlap ∞ Composite Time interval overlaps Analytical 

Dependency ⇒ Composite Dependent over an event Analytical  

Sub Event  ∋ Composite Part of mega event  Analytical  

Periodic ⊂ Composite Repeated after specific intervals Analytical  

M-Participant ∋M Composite 
Participation in two or more related 
events  

Analytical  

 
Fig. 1. Composition of Analytical Operators. 

Since the operators represent various connections, therefore 
the strength of an operator is actually the strength of the 
connection that is represented by the specific operator. As 
discussed above, the granularity level of the contextual 
attributes helps in identifying the strength of the operators. 
Here, the granularity level means the level of detail (or depth) 
for an attribute. For example, in case of location, we assume 
that city, area in city and the (exact) spot may be available; 
however the attributes country, region, and continent may also 
be taken into account. In our algebra, we have considered five 
levels of granularity for any attribute, but some attributes may 
have more depth. The change in granularity will not affect the 
algebra or the analysis process and hence, any level of 
granularity can be used for any attribute. 

We assume an event title to have at most three words, i.e., a 
granularity level of 3. We will perform the match for 
these words and the strength of the match will depend upon the 

level of granularity at which the match is achieved. For 
location, we have defined three levels of granularity as 
mentioned above, i.e., city, area and spot. In case of temporal 
attributes, since the events are real-world events and not real-
time events, therefore we will only provide time in hours 
and minutes. For describing the date of an event, we have used 
year, month and day of the month. Yet, our own event 
extraction component extracts dates from various types of 
phrases and converts them to a canonicalized format. While 
producing the definitions of the connection operators and 
defining the strength criteria, we have ignored those cases 
in which the connection cannot exist or may occur rarely. 

For applying the algebra operators, we have devised a 5-
Tuple description of an event. An event E is described as 
E = (L; S; T;C; P) where L, S , T, C and P represent title, 
location, temporal attributes, event category and participants 
respectively. L, S and T are composite elements. L is further 
composed of three sub-elements and is defined as a 
3-tuple < w1; w2; w3 >, where w1, w2 and w3 are the labels 
depicting the granularity levels. For example, in a 
title “Bubble-up Cricket Tournament”; w1 = “Bubble-up”, w2 
= “Cricket” and w3 = “Tournament”. Similarly, S is 
defined as a 3-tuple < s1; s2; s3 >, where s1, s2 and s3 
represent city, area and spot respectively. T is also defined by a 
3-tuple < dts; dt f; ts; t f >, where dts, dt f , ts and t f represent 
start date, end/finish date, start time and end/finish 
time of an event respectively. The terms dts and dt f are further 
composed of the triplet (y; m; d) where y, m and d 
represent year, month and day respectively. Similarly, ts and t f 
are defined by a pair (h; m) where h and m represent 
hour and minutes respectively. We represent the relationship 
between an event and its attributes with question mark 
(?), and between an element of the event description and its 
sub-elements by dot (.). For example, for an event E1, the 
location is represented as E1?S and S:s1 represents the city 
name. 
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We now move towards a formal description of our 
operators. Each operator has its own criteria for strength. The 
symbols for the operators have superscripts and subscripts. The 
superscript contains the symbol representing the event 
attribute and the subscript contains the symbols representing 
the strength of the operator. Attribute symbols, l, s, p, 
t, and c stand for title=label, location=site, participants, time 
and eventtype=category respectively. For strength, we 
have used three symbols, , χ and φ, representing the levels of 
strength of operator in descending order respectively. 
We need to specify that the notation used for representing our 
algebra is our own selection. Specifically, we use 
mathematical symbols to represent the algebra operators. 
While choosing a symbol to represent an operator, we have 
tried to select a symbol which, in mathematics, is used to 
represent a similar relationship. For example, we use ≺ for 
representing the precedence relationship. In mathematical 
equations, the same symbol is used to represent precedence. 
Also, the matching of string operators is done using an equality 
operator. 

A. Event Algebra-based Approaches 

We have defined eight context-match or simple operators. 
These operators provide a match between the individual 
contextual attributes of events. The definitions provided below 
for these operators are obvious and clearly represent the 
semantics of the operators. 

1) Analogy: An event E1 is analogous to another event E2 

if E1 has same type or category as E2. The strength of the 

connection is either at the highest level when the types of the 

events match, or it’s null, i.e., there is no analogy connection 

when the events’ types are different. This connection is 

represented by Equation 1. 

E1 <<>>c E2            (1) 

2) Homology: An event E1 is homologous to another 

event E2 if E1 and E2 have same or common participants. The 

homologous connection has two strength levels. In case all 

participants are the same in both events, the events are 

completely homologous. Otherwise, if the participants of one 

event are a proper subset of the other event then the homology 

is weak. 

E1 <<>>p
 φ E2 if(E1 → p = E1 → p)         (2) 

E1 <<>>p χ E2 if(E1 → p ≈ E1 →p)         (3) 

E1 <<>>p φ E2 if(E1 → p  E1 →p)          (4) 

3) Co-Location: An event E1 is co-located to another 

event E2 if E1 and E2 occur at the same location. The strength 

of the connection depends upon the granularity level at which 

the match takes place. A match at only the top level of 

granularity means a lower level of strength, and a match at the 

lowest granularity level means highest strength or an exact 

match. The co-location connection is represented by Equation 

5, Equation 6 and Equation 7, representing high, average and 

low levels of strength for co-location connection respectively. 

E1 <<>>s E2 if(E1 → S:s1 = E1 → S:s1) ^  

(E1 → S:s1 = E1 → S:s1) ^ 

(E1 → S:s1 = E1 → S:s1)            (5) 

E1 <<>>s χ E2 if[f(E1 → S:s1 = E1 → S:s1) ^  

(E1 → S:s3 = E2 → S:s3)g _ f(E1 →S:s1 = E2 → S:s1) ^  

(E1 → S:s2 = E2 → S:s2)g]          (6) 

E1 <<>>s φ E2 iff(E1 → S:s1 = E2 → S:s1)_(E1 → S:s2 = E2 

→ S:s2) _ f(E1 → S:s3 = E2 → S:s3)g  (7) 

4) Concurrency: The definition of concurrency between 

two events E1 and E2 is separately given for different 

granularity levels as we have extended the actual definition of 

concurrency for our purpose. Specifically, if E1 and E2 occur 

in the same day, month, and year and the time interval also 

overlaps, or matches exactly, then the events are concurrent 

with high strength; this strong concurrency is represented by 

Equation 8. Equation 9 represents concurrency with average 

strength. The reason for a lower level of strength is that the 

time does not match exactly and the duration of one event falls 

within the duration of other event. The lowest level of 

concurrency is represented by Equation 10 that captures the 

case where only year and month or month and day match for 

two events. 

E1 <<>>t E2 if (E1 → T:dts = E1 → T:dt f )^  

(E1→T:dts = E2→T:dts)^ [f(E1 → T:ts = E2→T:ts) ^  

(E1→T:t f = E2→T:t f )g_f(E1 → T:ts < E2→T:ts) ^  

(E1→T:t f > E2→T:t f )g_ f(E1 → T:ts > E2 → T:ts) ^  

(E1→T:t f < E2→T:t f )g]           (8) 

E1 <<>>t χ E2 if(E1→T:dts = E2 → T:dts) ^  

f(E1→T:dt f < E2→T:dt f ) _ (E1 → T:t f > E2→T:ts)g 

             (9) 

E1 <<>>t φ E2 if[f(E1 → T:dts:y = E2 → T:dts:y) ^  

(E1→T:dt f:y = E2→T:dt f:y)g_f(E1 → T:dts:m = E2 

→T:dts:m) ^ (E1→T:dt f:m = E2 → T:dt f:m)g_f(E1→T:dts:d 

= E2→ T:dts:d) ^ (E1→T:dt f:d = E2→T:dt f:d)g]   

        (10) 

5) Temporal Subset:Two events E1 and E2 are temporal 

subsets of an event E′, if the time intervals of E1 and E2 fall 

within the time interval of E′. Equation 11 represents the 

temporal subset connection. 

E′Ξt E1jE2 if[(E′ → T:dts = E1 → T:dt = E2 → T:dt) ^ f(E′ → T:ts ≤ 

min(E1 → T:dts; E1 → T:dts))g^f(E′ → T:ts ≥ max(E1 → T:dt f; E2 

→ T:dt f ))g]         (11) 

6) Precedene: Two events E1 and E2 are temporal subsets 

of an event E′, if the time intervals of E1 and E2 fall within the 

time interval of E′. Equation 11 represents the temporal subset 

connection. 

E1 ≺t E2 if[f(E1 ! T:dt f ≤ E2 ! T:dts)g _ f(E1 ! T:dt = E2 ! 

T:dt) ^ (E1 ! T:t f ≤ E2 ! T:ts)g]        (12) 
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7) Title-Alike: The titles of two given events E1 and E2 

may match exactly or partially. The exact match does not 

mean that the events are same, as two events with the same 

name may occur at different locations with different time 

intervals. Specifically, if the title of E1 and E2 match at all 

three levels of granularity, i.e., spot, area and city match 

exactly, then it means that the title of the events match exactly 

(Equation 13). In all other cases, where the titles match at any 

granularity level, the events are said to have a Title-Alike 

connection with a low strength (Equation 14). 

E1 <<>>l E2 iff(E1 ! L:l1 = E2 ! L:l1) ^ (E1 ! L:l2 = E2 ! 

L:l2)g ^ (E1 ! L:l3 = E2 ! L:l3)g         13) 

E1 <<>>s 

φ E2 if[f(E1 ! L:l1 = E2 ! L:l1) ^ (E1 ! L:l2 = E2 ! L:l2)g_ 

f(E1 ! L:l1 = E2 ! L:l1) ^ (E1 ! L:l3 = E2 ! L:l3)g_ 

f(E1 ! L:l3 = E2 ! L:l3) ^ (E1 ! L:l2 = E2 ! L:l2)g]           (14) 

8) Participation: The participation operator represents the 

link between a person and an event. A person P is said to have 

a connection with an event E, if P is in the participants’ list of 

E. Participation operator is a simple operator and is 

represented by Equation 15). 

E ∋ A             (15) 

B. Analytical Operators 

Analytical operators provide analytical perspective to the 
connections. We have defined six analytical operators. 
As illustrated in Figure 1, the definitions of these operators 
depend on context-match operators for providing the 
analytical view. We formalize these definitions as follows. 

1) Duplication: Two events are duplications of each other 

or related to each other through the duplication operator, if 

they have the same values for all event attributes. Given two 

events E1 and E2, the rule for the duplication operator is given 

by the Equation 16. 

E1 ≡ E2 iff(E1 <<>>l E2) ^ (E1 <<>>t E2) ^ (E1 <<>>p E2) ^ 

(E1 <<>>c E2) ^ (E1 <<>>s E2)g        (16) 

2) Overlap: Two events E1 and E2 are said to overlap if 

they are homologous, analogous, concurrent and co-located. 

The strength of the connection varies with respect to various 

combinations and strengths of context match operators. 

Equation 17, Equation 18 and Equation 19 describe these 

dynamics of the overlap operator. 

E1 on E2 if[(E1 <<>>c E2) ^ f(E1 <<>>p E2) _ (E1 <<>>χp 

E2)g^ 

f(E1 <<>>t E2) _ (E1 <<>>tχ E2)g ^ (E1 <<>>s E2)]    (17) 

E1 on 

χ E2 if[f(E1 <<>>φp E2) _ (E1 <<>>χp E2)g^ 

f(E1 <<>>t E2) _ (E1 <<>>tχ E2)g^ 

f(E1 <<>>s E2) _ (E1 <<>>χs E2)g]       (18) 

E1 on E2 if[(E1 <<>>c E2) ^ f(E1 <<>>φp E2) _ (E1 <<>>χp 

E2)g^ 

f(E1 <<>>t E2) _ (E1 <<>>tχ E2)g ^ (E1 <<>>φs E2)]  (19) 

3) Dependency: A dependency between two events E1 

and E2 may exist due to various reasons. The reason for 

occurrence of this dependency relates to its strength. The 

dependency operator checks for the existence of precedence, 

homology and co-location connections and based on their 

existence (or non-existence), defines its own existence. It also 

considers the strengths of its three simple operators. If 

precedence, homology, and co-location connections have high 

strengths, then dependency also exists with high strength. If 

the events are not co-located but have high precedence, and 

are homologous with an average strength, then the 

dependency exists with an average strength. The same scheme 

is applied for low dependency with a homology with low 

strength. Equation 20, Equation 21 and Equation 22 represent 

these dynamics of the dependency operator. 

E1 ) E2 iff(E1 ≺t E2) ^ (E1 <<>>s E2) ^ (E1 <<>>p E2)g 

          (20) 

E1 ) 

χ E2 iff(E1 ≺t E2) ^ (E1 <<>>χp E2)g                    (21) 

E1 ) 

φ E2 iff(E1 ≺t E2) ^ (E1 <<>>p E2)g                              (22) 

4) Sub-Event: Two events E1 and E2 are said to be sub-

events of a mega-event EM under 3 conditions: i) E1 and E2 

have common participants such that the union of both sets of 

participants equals the participant set of the mega-event, ii) 

E1 and E2 are of the same type as the mega-event, and iii) the 

time intervals of E1 and E2 fall within the time interval 

of the mega-event. Equation 23 mathematically describes 

these definitions: 

EM ∋ E1jE2 if[(E1 onc φ E2) ^ (EM <<>>c E1) ^ 

fEM <<>>p (E1 [ E2)g ^ (EMΞt E1jE2)]       (23) 

5) Periodic: If two events E1 and E2 have a similar title, 

similar type, and similar dates then the events are strong 

candidates for being incidences of a same event E+ that occurs 

periodically. We represent this mathematically in Equation 24. 

E+ @ E1jE2 iff(E1 <<>>l E2) ^ (E1 <<>>c E2) ^ (E1 <<>>tφ 

E2)g           (24) 

6) M-Participation: If a person P is participating in two 

events E1 and E2 and the events have a connection between 

them, then P is said to have M-Participation with E1 and E2. 

The strength of M-Participation depends upon the strength of 

the eventevent connection. If E1 and E2 have the same type, 

or are held at the same location, then the connection between 

the events and the participant is good, but if E1 and E2 have 

the same type and the same location, then the connection has a 

higher strength. These dynamics are represented in Equation 

25 and Equation 26. 

fE1; E2g ∋χM P if[(E1 ∋ P) ^ (E2 ∋ P) ^ f(E1 <<>>s E2) _ 

(E1 <<>>c E2)g]          (25) 

fE1; E2g ∋M P if[(E1 ∋ P) ^ (E2 ∋ P) ^ f(E1 <<>>s E2) _ (E1 

<<>>c E2)g]                      (26) 
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IV. DESCRIPTION OF ECONNDETECT 

As mentioned in Section 1, we have implemented a Java-
based tool called EConnDetect which inputs a set of 
events that are provided through a text file, and outputs event 
connections along with the strength of connections. The tool’s 
GUI offers two primary functions, i.e., analysis and viewing of 
events. The analysis function detects connections in input data, 
and outputs connection details in an interactive tabular form. 
Figure 2 shows an EConnDetect snapshot of the collection of 
events used in our evaluation (described in next section). Here, 
column names represent event attributes, e.g., title, location, 
participants etc. Also, Figure 3 presents a snapshot of the 
output produced by EConnDetect. Here, the output comprises 
the ID of the linkage, IDs of the two linked events, the linkage 
found between the events and the strength of the identified 
linkage. All information shown in Figure 2 and Figure 3 is self-
explanatory and hence we do not describe it in detail. 

 

Fig. 2. Collection of Events used for Evaluation of Proposed Event Algebra. 

 
Fig. 3. A Snapshot of Connections found by EconnDetect. 

V. ALGEBRA EVALUATION WITH ECONNDETECT 

We evaluated EConnDetect over events occurring in the 
academic (university) domain. Our data set of university 
events contains professional and social events; however some 
events also fall in the category of personal events. This work 
accomplishes the development of one of the components of our 

context-based event detection model. Therefore, we have 
sampled the event email data set constructed for our two 
previously developed components [21, 2]. Our motivation for 
sampling the university data set is: 

 The email data set contains an extensive variety of 
event related communications. 

 Three general classifications, i.e., Personal, Professional 
and Social, categorize all types of events in the email 
data set (social, educational, formal, personal, 
friendship, family and official events).  

 The email data set provides a diverse user base. 

We identified two types of users, i.e., Type A (Students) 
and Type B (Faculty). We categorized the interaction between 
these users into four types: 

 T ype-I: A to A (Personal/Social interaction from 
Students to Students)  

 T ype-II: A to B (Professional/Social interaction from 
Students to Faculty) 

 Type-III: B to A (Personal/Professional/Social 
interaction from Faculty to Students) 

 T ype-IV: B to B (Personal/Professional/Social from 
Faculty to Faculty). 

The selection of our dataset towards the university email 
corpus itself posed some interesting problems such as 
the categorization of the variety of event types, spanning from 
one-one lunch invitations to faculty meetings, office 
meetings, discussions with the supervisor, wedding invitations, 
educational and social seminars, conferences, picnic,  and sport 
events etc. that were covered in our dataset [2]. 

We sampled approximately 100 university events for 
evaluation of our proposed algebra. This event data was 
extracted from email inboxes of six students and four faculty 
members with their consent. The emails were collected in a 
time span of about six months. The data was extracted using an 
Event Information Extraction System (EIES) that uses 
part of speech (POS) based Finite State Machines (FSM) for 
extraction of event information (title, location, temporal 
information and participants) from emails [21]. We then used 
our event email classifier to label the extracted events 
with an event category (Social, Professional, or Personal) [2]. 
Finally, the collected contextual event information is 
stored in CSV format, and fed as input to EConnDetect. 

EConnDetect applies our algebra operators to input data. 
For each operator, we have developed a simple function. 
Each function outputs a Boolean value that depicts the 
existence or non-existence of connection, and strength value 
that depicts the strength of the relationship, in case the 
connection exists. The function L represents the relationship 
between the operator, event pairs and the output obtained as a 
result of the application of the operator over the event. 
The domain and range for L are given by Equation 27. 

L : OS × ES → OS × B × S t        (27) 
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When an operator o 2 OS is applied to events (E1; E2) 2 ES 
,the output is a triplet (o; bool; str), where o 2 
OS , bool takes values from (true; f alse) and str represents the 
strength ( ; χ; φ) of the connection. The algorithm 
representing the process of identifying connections is provided 
in Algorithm 5.1 and sample pseudo codes for colocation and 
dependency operators are provided in Algorithm 5.2 and 
Algorithm 5.3 respectively2. These pseudo codes are 
implementations of equations that represent the connection 
operators. For detecting the existence of a connection between 
two events, the events are fed as input to the operator’s 
function. The conditions, represented by the operator’s 
equation, that indicate the existence of the connection are 
applied over the event attributes. The functions return Boolean 
values to indicate the existence or non-existence of a particular 
connection. If a connection is found to exist between two 
events, then the strength of the connection is also returned by 
the function. 

Algorithm 5.1: ConnectionDetection(ES; OS ) 

for each Oi 2 OS comment: Simple Operators are applied first 

followed by Composite ones 

do{ 

for each Ej 2 ES j Flag(Ej) , processed 

 do{ 

 for each Ek 2 ES ; j , k 

  do{ 

   Apply Oi to (Ej; Ek) 

} 

Flag(Ej) = processed 

comment: An event is marked as it is 

processed for link detection } } 

Algorithm 5.2: Co-Location(E1; E2) 

comment: {E1; E2} 2 ES  

if {(E1 → S:s1 = E2 → S:s1) ^  

(E1 → S:s2 = E2 → S:s2) ^ (E1 → S:s3 = E2 → S:s3)} 

then return (1;Co - Location; High)    

else if {[{({(EE11→→SS:s:s11==EE22→→SS:s:s1) 

1)^^((EE11→→SS:s:s23==EE22→→SS:s:s2) 3)}]}_ 

then return (1;Co - Location; Average)   

else  if  {(E1 → S:s1 = E2 → S:s1) _ (E1 → S:s2 = 

E2 → S:s2) _ (E1 → S:s3 = E2 → S:s3)}  

then return (1;Co - Location; Low)   

else return (0;Co - Location) 

Algorithm 5.3: Dependency(E1; E2) 

comment: {E1; E2} € ES 

if{ 

[( {(Co precedence - Location (E1(;EE12) ; E=2) 

(1 =;(1 Precedence ;Co - Location ; High;)) High ^ )) _ 

(Homology(E1; E2) = (1; Homology; High))}] 

} 

then return (1; Dependency; High) 

else if {{(precedence(E1; E2) = (1; Precedence; High)) ^ 

(Homology(E1; E2) = (1; Homology; Average))} 

then return (1; Dependency; Average) 

else if {{(precedence(E1; E2) = (1; Precedence; High)) ^ 

(Homology(E1; E2) = (1; Homology; Low))} 

then return (1; Dependency; Low) 

else return (0; Dependency) 

The co-location operator, provided in Algorithm 5.2, 
matches the location attributes of the two events that are 
fed as input. The location attributes are matched at each 
granularity level. As defined in a previous section, we have 
assumed 3 levels of granularity for the location attribute and 
therefore the location attribute S comprises of a 3-tuple 
< s1; s2; s3 >. Hence s1, s2 and s3 for E1 are matched with s1, 
s2 and s3 for E2. If any of the three tuple variables 
is matched, the function returns 1, indicating the existence of 
co-location connection. The strength of the connection 
is determined based on number of tuple variables that match 
for both events. For a complete and single match, the 
strength is designated as high and low respectively, and for a 
two-tuple variable match, the strength is designated as 
average. 

The dependency operator in Algorithm 5.3 is a composite 
operator and it requires the output of three other operators; 
precedence, homology and co-location. The precedence 
operator indicates that ending of one event before or along with 
the beginning of another event. Homology and co-location 
operators define same participants and same 
location respectively. The dependency operator checks for the 
existence of precedence, homology and co-location 
connections and based on their existence or non-existence 
announces it’s on existence. It also considers the strengths 
of the three simple operators that are involved in the process. If 
precedence, homology, and co-location connections 
are found with high strengths then the dependency is also 
found to exist with high strength. If the events are not 
co-located but have high precedence and are homologous with 
an average strength then the dependency exists with an 
average strength. The same scheme is applied for low 
dependency with a homology with low strength. For rest of the 
cases, 0 is returned indicating no dependency. 

C. Results of Evaluation over University Events 

As mentioned in Section 1, our research question is to 
determine the frequency of events which EConnDetect is 
able to identify correctly. For this, we calculate the precision 
and recall parameters, for both context-match and analytic 
operators. Our collected email dataset comprised social events 
like sporting events, Mela (a type of celebration event), quiz 
competition, and farewell dinner. It also comprised several 
professional events like conference, seminars, and meetings. 
Finally, personal events like “lunch” or “tea” were also found 
in the collection. 
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TABLE III. SAMPLE EVENTS FROM OUR COLLECTED EVENTS 

Event 

ID 
Event Title Location  Date  Time Participants Category 

E-1 Meta 2013 

Main Campus 

FAST-NU 

Karachi 
10 January 2013 

9:00 AM – 

4:00PM 

Faculty –CS Students-CS Faculty-EE 

Student-EE 
Social 

E-2 Seminar 

City Campus 

FAST-NU 

Karachi 
1 January 2012 

1:00PM -

2:00PM 
Faculty BBA Students BBA Professional 

E-3 
Gaming 

Competition  

Main Campus 

FAST-NU 
Karachi 

10 January 2013 
1:00PM -

2:00PM 
Faculty-CS Students-CS Students-EE 

Social 

 

E-4 
Robocup 

Competition  

Main Campus 

FAST-NU 
Karachi 

10 January 2013 
10:00 AM-

1:00PM 
Faculty-EE Students-EE Students-CS Social 

E-5 Cricket Match 

Main Campus 

FAST-NU 

Karachi 
3 March 2013 

1:00 PM -

4:00PM 
Faculty-CS Students-CS Social 

E-6 Lunch 

Main Campus 

FAST-NU 

Karachi 

2 January 2013  2:00 PM 
Shaukat, Imran, Hammad, Tariq Jawwad, 

Zubair 
Personal  

E-7 Procom 

Main Campus 

FAST-NU 

Karachi 
20 January 2012 

9:00 AM – 4:00 

PM 

Faculty-CS Students-CS Faculty-EE 

Students-EE Director Campus 
Professional 

E-8 
MS Thesis 

Evaluation  

City Campus 

FAST-NU 
Karachi 

15 June 2012 
9:00AM-

2:00PM 
Faculty-CS Faculty-EE Professional 

E-9 Procom 

Main Campus 

FAST-NU 
Karachi 

20 June 2013 
9:00 AM-4:00 

PM 

Faculty-CS Students-CS Faculty-EE 

Students-EE Director Campus 
Professional 

Out of approximately 100 events, we manually assigned 
Professional tag to 55 events, Personal tag to 18 events, and 
Social tag to remaining 27 events. Although 100 events 
indicate a limited data set, EConnDetect discovered more than 
10000 connections for this dataset. This number is large 
because there were many repeated connections; most 
connections are commutative and were counted from both 
sides. All the context match operators produced good results 
except concurrency and temporal subset operators; some 
concurrent events with a high strength of concurrency were 
identified by the system as concurrent with a lower level of 
strength. For analytical operators, EConnDetect failed 

to identify several connections and this was either because of 
misidentification of concurrency and temporal subset 
operators, or on our own choice of strength level of the simple 
operator used in the definition of a given analytical 
operator. 

In Table 3, we show some sample university events from 
our event collection with their attributes, and in Table 4, we 
show connection information for a few connections found by 
applying algebra operators over pairs of events shown in Table 
2. Here, columns Event 1 and Event 2 represent the pairs of 
events. 

TABLE IV. SAMPLE EVENT CONNECTIONS RELATED TO PAIRS OF EVENTS (SHOWN IN COLUMNS EVENT 1 AND EVENT 2) FOUND BY APPLYING VARIOUS 

ALGEBRA OPERATORS SHOWN IN TABLE 2 

Event 1 ID Event 2 ID Connections  Strength 

E3 E1 E3 is a sub-event of E1 High 

E4 E1 E4 is sub-event of E1 High 

E2 E7 Analogous Co-Located High Average 

E7 E8 
Homologous Analogous              Co-
Location 

Low  

High 

Average                               

E7 E9 Periodic Events  High 

E3 E4 Overlapping Events High 

E1 E5 

Homologous 

Analogous 

Co-Location 

Low 

High 

High 
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Fig. 4. Precision and Recall for Context-Match and Analytical Operators. 

For instance, E3 (a gaming competition) and E4 (robocup 
competition) is connected to E1 (Mela) as a sub-event because 
both competitions were part of the Mela3. Through manual 
activity, we determined that our university event log contained 
a total of 1300 event connections. Out of these, EConnDetect 
identified 1267 connections giving an 
overall recall of 97.5%. Amongst 1267 connections, 
EConnDetect failed to identify only 44 connections giving 
an overall accuracy of 96.5%. Out of 1300 connections, 1227 
were context matches while the remaining 73 were 
analytical matches. In Figure 4, we show the precision and 
recall values for both context-match and analytic operators. 

Our system achieved high precision values, i.e., almost 
100% for context-match and around 90% for analytic 
operators. We also achieved a recall of almost 100% for 
context matches but relatively less for analytic operators 
(around 80%). This comparatively reduced performance 
because identification of connections that require an analysis 
is more complex as compared to those that require context 
matches. In Figure 5, we show the number of connections 
detected through each operator of our proposed algebra. As 
compared to other operators, the analogy, co-location, and 
homology operators detected most connections (around 300) 
followed by the precedence operator (around 150). The 
reason is that the attributes forming the base of these 
connections are common among various events. For example, 
all events held in a university premises are linked based on the 
common location attribute, even if the events have no other 
inter-relationship. We can apply similar arguments for the 
analogy and homology operators. 

 
Fig. 5. Frequency of Connections detected through each Operator of 

Proposed Event Algebra. 

VI. PRACTICAL AND THEORETICAL IMPLICATIONS AND 

LIMITATIONS 

Our proposed algebra provides a chronological chain of 
events with respect to common location(s), participant(s), 
or categories through context match operators. It also identifies 
a set of spatial, temporal or categorical linkages 
between events at a more granular level through analytical 
linkage operators. In our opinion, these results can be 
useful in three practical situations. Firstly, they can provide the 
extra information required to effectively detect unseen 
stories from a stream of events in a First Story Detection 
scenario [22, 23]. Secondly, our results can be used to 
effectively recommend future events and also assign priorities 
to events in an event-based recommendation scenario [24, 25]. 
Thirdly, the chronological events and analytical linkages 
together provide a visualization dimension in the contextual 
representation of the events (which is our proposed future work 
direction). 
[26]. 

With respect to theoretical implication, we have provided a 
formal method of representing linkages between 
events through an event algebra. Our algebra has a rich, formal 
vocabulary of operators representing linkages. We 
can extend it to support new types of event information 
attributes and event linkages. We can also use it to represent 
events occurring in any application domain or appearing in any 
textual media. The core requirement is only to extract 
the event attributes for the specific domain and identify the 
possible linkages. Since we have selected the symbols for 
linkage operators from the set of mathematical operators based 
on similarity in semantics, therefore it is not difficult 
to find a meaningful symbol for a new operator. Our context 
match operators form the primitive group of operators 
that define any new spatial, temporal or categorical linkage. 
Finally, we have defined all existing complex analytical 
operators in our algebra using the primitive context match 
operators. 

Our work has limitations with respect to the size of the 
processed data. If the data size exceeds the Megabyte level, 
then we will need to use big data analytics techniques to 
process our event algebra. For this, we plan to use MongoDB, 
a world-renowned database for big data as our backend 
storage. Through the Python programming language, we will 
encode the EventWeb queries to run over MongoDB by using 
PyMongo API. If the data is growing exponentially, we can 
also use the clustered version of MongoDB to store data over a 
distributed cluster. Another limitation of our work is that we 
cannot claim our proposed event algebra to function in any 
selected domain. It is possible that there are domains where we 
may need to propose more operators. This can only be done at 
application time. 

VII. CONCLUSIONS AND FUTURE WORK 

Extracting important information regarding connections 
between events appearing over EventWeb is an existing 
requirement of the Web community. In this paper, we have 
developed an event algebra that extracts semantic information 
from EventWeb by identifying potential connections between 
events. We were unable to locate any related research work 
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that collectively incorporates all features of our algebra for 
information extraction. Specifically, we consider all five event 
information attributes (title, location, temporal attributes, 
participants, and category) and we detect previously 
unexplored connections. We also provide an analytical view 
over the connections through analytical operators, and we 
define the strength of connections. We have implemented a 
tool to implement the operators proposed in our algebra. We 
applied these operators to a set of detected events in the 
university domain to extract information regarding connections 
between these events. Out of 1300 connections that existed 
among 100 events, our tool correctly identified 1267 linkages. 
Hence, we achieved a precision and recall of 99% and 97% 
respectively for context match operators. Similarly, the 
precision and recall values for analytic operators were found to 
be approximately 90% and 80% respectively. We believe that 
these results validate the effectiveness of our algebra. 

Our research has addressed the task of information 
processing in EventWeb, by linking events from multiple 
unique dimensions. Firstly, we address the two-fold objective 
behind linking events: 1) assistance in event planning and 
management, and 2) enhancing the experience of information 
search, visualization and story link detection over EventWeb. 
Secondly, in order to meet these objectives significantly, we 
attempt to identify all possibly existing connections. Moreover, 
we also cater for connections that required an analysis, along 
with the simple connections. We formulate all this through a 
robust event algebra that can is extensible for other domains. 
Finally, we develop a tool with simple user interface and 
validate our algebra effectively. 

As future work, we are currently working to develop a 
contextual representation of event information components and 
connections. We also aim to extend our algebra to identify 
chains of connections. Moreover, we plan to use the analytical 
view provided by our operators in conjunction with the 
previous event participation history of the user for tagging 
events with priorities and generating recommendations. This 
will be part of a recommendation system attached to the link 
detection component, and that will deliver recommendations 
over event participation to support planning and management 
of events. We also aim to assign priorities to events by using 
the analytical operators along with the event participation 
history. In this context, we can use a participation history and a 
weightage feature-based approach for identifying the 
prioritized events. Finally, we intend to evaluate our algebra 
with events of other domains in the future. 
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