
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

467 | P a g e

www.ijacsa.thesai.org

A Real-Time Algorithm for Tracking Astray Pilgrim

based on in-Memory Data Structures

Mohammad A.R. Abdeen
1
, Ahmad Taleb

2

Department of Computer Science

Faculty of Computer and Information Systems

Islamic University of Madinah

Madinah, Saudi Arabia

Abstract—Large crowd management presents a significant

challenge to organizers and for the success of the event and to

achieve the set objectives. One of the biggest events and with

largest crowd in the world is the Muslim pilgrimage to Mecca

that happens every year and lasts for five years. The event hosts

over two million people from over 80 countries across the world

with men, women, and children of various age groups and many

languages. One of the challenges that faces the authorities in

Saudi Arabia is that many of the pilgrims become astray during

the event due to the relative complexity of the rituals mainly

mountainous landscape and the language barrier. This result in

them being unable to perform the required rituals on the

prescribed time(s) with the possibility to invalidate the whole

pilgrimage and jeopardize their once-in-a-life journey. Last year

over 20,000 pilgrims went astray during the pilgrimage season.

In this paper we present a tracking algorithm to help track,

alarm, and report astray pilgrims. The algorithm is implemented

on a server that contains pilgrims’ data such as geolocations,

time stamp and personal information such as name, age, gender,

and nationality. Each pilgrim is equipped with a wearable device

to report the geolocations and the timestamp to the centralized

server. Pilgrims are organized in groups of 20 persons at

maximum. By identifying the distance of the pilgrim to its

group’s centroid and whether or not the pilgrim’s geolocation is

where it is supposed to be according to the pilgrimage schedule,

the algorithm determines if the pilgrim is astray or on a verge of

becoming astray. Algorithm complexity analysis is performed.

For better performance and shorter real-time time to determine

the pilgrim’s status, the algorithm employs an in-memory data

structure. The analysis showed that the time complexity is O(n).

The algorithm has also been tested using simulation runs based

on synthesized data that is randomly generated within a specified

geographical zone and according to the pilgrimage plan. The

simulation results showed good agreement with the analytical

performance analysis.

Keywords—In-Memory structure; real-time; tracking algorithm

for astray pilgrim; large crowd management

I. INTRODUCTION

Managing of large crowds represent significant challenges
to in numerous large-crowd events across the globe. One of the
largest, most noticeable and frequent of these events is the
Muslim pilgrimage to Mecca (Hajj). Every year around three
million pilgrim travel to perform their life duty of pilgrimage.
Several challenges face those millions of pilgrims including the
fact that they probably have never been to those places before
in addition to the lack of knowledge of the Arabic language,

the language of the land. Pilgrims also need to visit numerous
places as part of their Hajj rituals. The landscape of the
majority of those places are mountainous (Such as Mount
Arafat and Muzdalifah) or do not have street names but rather a
tremendous camp site of tens of thousands of tents (the region
on Mena). Those destinations have a relatively small area of a
few square kilometre which constitutes very high-density
population with many of elderly men, women and children.

A significant challenge that faces the authority is Saudi
Arabia is that many of these pilgrims go astray during their
once-in-a-lifetime journey which could mean they miss the
time window of the rituals thereby invalidating the whole
Pilgrimage and waste their lifetime saving. In fact, a published
study showed that around 70% of the male pilgrims are over 60
years old and 30% of them are illiterate [1]. In a previous year,
around 20,000 pilgrims were went astray during the trip [2].

Existing systems that help guide the lost pilgrims rely on
the pull model. In other words, if the authority locates an astray
person then they read his/her information that is barcoded on
wearable device, such as a bracelet. An authority personal then
guides that pilgrim to their destination/group/tent. There could
be much time wasted prior to locating an astray pilgrim which
increases the possibility that pilgrimage is invalid. In many
cases pilgrims are unable to use mobile phones due to poor
coverage given the large number of subscribers or due to an
empty battery and the unavailability of nearby charging
facilities.

A. Previous Work

Previous systems used in the kingdom of Saudi Arabia to
track and guide the astray pilgrims are mainly human based.
The kingdom has hired thousands of boy scouts during Haj
season for the purpose of guiding the lost Haj. But these
systems in place are poll-type systems, i.e. the pilgrim has to
actually reach to the center of lost Haji’s or they have to come
across one of the guides. It might be such time before the
pilgrim is guided. The guide uses the name tag – that includes
very limited information – to identify the pilgrim and their
group and/or tent location in Mena [3]. Last year, the Saudi
announce the launching of the “Electronic bracelet” project [4].
It includes information about the pilgrim but it is not equipped
with a facility to report that the pilgrim is lost neither with the
ability to send their location and information over a wireless
network. In another work by Mohandes [5] RFID tags were
used to store pilgrim information such as name, passport info,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

468 | P a g e

www.ijacsa.thesai.org

country. It was also suggested that the tags can be used to track
the pilgrims by placing an RFID reader in the vicinity.
Tracking of hundreds of thousands requires thousands of RFID
readers while the lost ones are in thousands only. The system
does not give the ability to the pilgrim to identify themselves as
lost but rather it attempts to detect a lost pilgrim by tracking all
of the pilgrim. This solution is an overkill and it also produces
many false alarms. In [6], the authors spoke about a smart
RFID system but the objectives of such a system was to store
the personal information about the pilgrim as well as their
medical information that will be of help in emergency
situations. The system does not use a GPS module to locate the
pilgrim and can only be used for location purposes in shorter
ranges (100 meters of so). This is not suitable for the whole
pilgrimage area which extends for several kilometers (10 km).
In [7], however, the authors introduced a GPS based tracking
system to locate each and every Haj and store their medical
information. This system requires powerful servers and are
implemented in discreet components. The proposed system
does not consider the size, cost, and the power consumption.
There are commercial products in the market that are designed
for children tracking [8]. Examples of those products are
AngelSense, hereO GPS, and AmbyGear. Those products
however are pricy (from $120 - $170 USD) and the battery life
is in around 40 hours. These devices are available as
independent devices with no existing intercorrelation with no
crowd management capabilities.

Traditional methods of creating databases in-disk suffer
from long delays and does not satisfy the real-time
performance requirements for many of today’s applications. As
an example, trading companies need to detect sudden changes
in trading processes and act upon this change “instantaneously”
(within few milliseconds). Such a targeted response time is
impossible to achieve using traditional disk-based
storage/processing systems. The solution is to keep the data in
the random-access memory (RAM) all the time.

In-memory database systems have been used in the
past [10, 11] but those techniques have been challenged by the
recent evolution in hardware [12]. Previous work on in-
memory data management and processing have focused on
several aspects such as indexing [13, 14], data layouts [15],
parallelism [16, 17], concurrency control and transaction
management [18, 19], query processing [20, 21, 22] and fault
tolerance [23, 24]. In this work we present an in-memory
database solution for the purpose of large-crowd tracking at
real-time.

II. THE SYSTEM ARCHITECTURE

In a previous work, we presented an overall architecture of
an astray pilgrim tracking system [9]. The architecture is
shown in Fig. 1. It consists of a client side and a server side.
The client is in the form of wearable devices that have a GPS
module to transmit the current geo-locations frequently (every
hour in normal situations). The devices are also connected to
the mobile network via a SIM card from sending the geo-
coordinated and receiving commands from the central station.
The server side consists of a database storing the pilgrim’s
information including their ID and their group ID, current (and
previous) GPS locations with the corresponding time stamps.

The database design with the tables is discussed in the
following section.

III. THE TRANSACTIONAL DATABASE DESIGN

At the operational or transactional level, the main target of
this work is to guide the astray pilgrim by sending them alert
messages as well as to their group leader and the authorities.
To achieve this objective the system design includes a
normalized relational database that supports an improved real
time operation. The main function of the central database is to
record the pilgrims’ geolocations and other necessary
information for possible future data analytics. Fig. 2 shows the
relational data that supports the storage of pilgrims’
information as well as their geolocations and status during the
Hajj period. The figure shows four tables; the Pilgrim, the
Group, the PilgrimTracking, and the ResponsibleAuthority
tables. The Pilgrim table, contains details about each pilgrim
while the PilgrimTracking table contains the PilgrimID
(GroupID and ID of pilgrim in the group), timestamp,
GPSLocation, status of pilgrim and distance between the
pilgrim and the centroid of the pilgrim's group. In addition, the
information about the groups such as their IDs, leaders, phone
numbers are stored in table Groups. Moreover, the table
ResponsibleAuthority contains information about the
authorities (managers, phone number and office location).
Each table in the relational database has a primary key (single
or compound). For instance, the primary key of table
PilgrimTracking is compound of three attributes. The
relationship between the tables are represented by using the
concept of foreign keys. For instance, the attributes
AuthorityID, PilgrimID, GroupID are foreign keys (FK) that
are used to connect the tables of the database together.

IV. A SERVER-SIDE REAL-TIME TRACKING ALGORITHM

As per the ministry of Haj in Saudi Arabia, a group leader
is assigned for every 20 pilgrims. Therefore, we assume that
the maximum number m of pilgrims in a group is 20. Each
tracking device stores the personal information of the pilgrim.
This includes the pilgrim ID which is composed of the original
group ID and the number of the pilgrim within the group
(maximum 20 pilgrims per group), Name, Date of Birth,
phone, spoken language, nationality and gender. The original
number of groups is calculated as follows:

Number of Original Groups = Total Number of Pilgrims /
Maximum Number of Pilgrims in a group

As per the official document of the Ministry of Haj in Saudi
Arabia, the total number of domestic and foreign pilgrims in
2017 was 2.4 Million. Therefore, the estimated number of
groups is 2.4 M /20 = 120,000 groups.

A. Tacking All Pilgrims using Two Dimensional Array as an

in-Memory Structre

Fig. 3 below depicts the processing steps for the server with
the numbered circles showing the flow. It is at this stage that
the in-memory structures are created and manipulated. Upon
system start, each tracking device sends the geolocations and
the timestamp to the centralized server via the RF interface. At
the receiving end of the server is a dispatcher process. The
dispatcher process receives the geolocation and the timestamp

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

469 | P a g e

www.ijacsa.thesai.org

information and then stores this information into one of the two
data structures, the PilgrimLocationRecord or the
LostPilgrimRecord. The PilgrimLocationRecord is a two-
dimensional array PilgrimLocationRecord[n, m] (where n is
the number of groups (equation 1) and m is the maximum
number of pilgrims in a group). Each element of this array is a
structure that contains the current geolocation, the current
timestamp, the status of the pilgrim (whether astray or not
astray) and the pilgrim’s distance from their group centroid. A
group centroid is calculated as in Equation 1. The
PilgrimLocationRecord array is created/updated every hour.
The geolocations and timestamps are sent to the centralized
server, however, the values of the status and distance from
centroid are calculated and updated during processing of the
received data. Algorithm 1 provides a concise overview of
tracking all pilgrims every hour.

The process of determining lost pilgrims every hour is
described as follows (Algorithm 1): Pilgrims move in groups.
Each group consists of a maximum of 20 persons. For each
group the group centroid is calculated using the GPS
coordinates of each member of the group. A group centroid at
any time is defined as the point in space where the sum of

distances of this point to all group members is minimum. The
centroid is given by Equation (1) below.

 ∑

 (1)

The average distance Dav of each group is also calculated
based on Equation (2) below

∑

 (2)

To determine if a pilgrim is astray it is hypothesized that if
its distance to the centroid is three or more times the average
distance Dav to his/her group, the an astray pilgrim status is
declared. The status value of each pilgrim is either normal (N)
if the pilgrim’s distance to the centroid is less than three times
Dav, or astray (L) if the distance is at least three times the Dav.

If a pilgrim’s status is N, then an alert signal is sent to the
wearable device to show a green color. If the status is L,
however, a continuous red light is shown on the wearable
device if L was persistent for three consecutive reads.
Otherwise, a flashing red light is shown on the wearable
device.

Fig. 1. The Astray Pilgrim Tracking System Architecture.

Fig. 2. The Centralized Database design.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

470 | P a g e

www.ijacsa.thesai.org

Fig. 3. The in-Memory Data Structures of the Server-Side Tracking Architecture.

The values of the status and the distance between the
centroid and each pilgrim's GPS coordinate are updated in the
PilgrimLocationRecord structure. If a pilgrim’s status indicated
a lost or is about to be lost (if the status is L for less than three
consecutive times) the values of the PilgrimLocationRecord
structure are flushed into the PilgrimTracking table in the
central database (Step 5 in Fig. 3). Tracking information for all
pilgrim is updated every hour. If a group has one or more lost
member, all pilgrims in that group are tracked more frequently
(every 10 minutes) to be able to determine the actual status of
the pilgrim within the hour. Algorithm 2 shows the key steps of
tracking lost pilgrims every ten minutes.

B. Hashing Structure

A hashing mechanism is used to map only the groups with
lost pilgrims using their original ID while utilizing sequential
places in memory for direct access and minimal memory size.
The hashing mechanism is implemented as a one-dimensional
array of n integers and is called HashTable (Fig. 3). This array
is used to store indexes of groups who have lost pilgrims. Fig.

3 shows an example of the HashTable structure with n integers
(where n is the number of original groups). A value of “0” in a
given hash location means that this specific group has no lost
members. A value other than “0” means there are nonzero lost
members and the specific value gives the cumulative sequence
number of this group in the lost pilgrims’ groups. As an
example, the HashTable[1] contains a value of zero and
therefore group “1” has no lost members. On the other hand,
the values of HashTable[2] and HashTable[3] mean that group
2 and 3 have lost pilgrims. The contents of the HashTable
structure in Fig. 3 illustrates that there are k groups (group 2, 3,
and n-1) with lost pilgrims. The HashTable structure ensures
O(1) conversion of the original group ID to the appropriate
index in the LostPilgrimRecord structure (A two dimensional
array to track lost pilgrims more frequently (e.g. every 10
minutes)). For instance, the original group “3” is stored in the
second row of the LostPLigrimRecord structure because
HashTable[3] = 2 (meaning that the third group has lost
pilgrim and will be stored in LostPilgrimRecord [2]).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

471 | P a g e

www.ijacsa.thesai.org

Algorithm 1 Tracking All Pilgrims (every hour)

1. Create a two-dimensional array PilgrimLocationRecord[n, m]

2. Receive GPS coordinates and timestamps of all pilgrims' IDs

3. for each pilgrimID (ID) with GPS coordinate G and timestamp TS do

3.1 Split the PilgrimID (ID) to get the group ID (x) and the ID (y) of the pilgrim within Group x

3.2 Update PilgrimLocationRecord [x, y].GPS = G

3.3 Update PilgrimLocationRecord [x, y].timestamp = TS

4. Create an array of integers HashTable [n], default value is 0

5. Create an integer variable Lost

6. Create a variable nbGroupLost and set it to 0 //number of groups with lost pilgrims

7. for each group , where i =1,2, …, n do

7.1 calculate the centroid of

7.2 Lost = 0

7.3 for each pilgrim j in group , where j =1,2, …, m do

7.3.1 calculate the distance d between PilgrimLocationRecord[i, j].GPS and
7.3.2 PilgrimLocationRecord[i, j].distance = d

7.3.3 if d > LostDistance then // LostDistance = 1000 Meters

7.3.3.1 send flashing signal to Pilgrim (i,j)

7.3.3.2 PilgrimLocationRecord[i, j].status = 1 // 1 means lost, 0 means Not lost

7.3.3.3 Lost = 1

7.4 If Lost = 1 then

7.4.1 Send request to the RFID tower to track the pilgrims in every 10 minutes

7.4.2 nbGroupLost = nbGroupLost + 1

7.4.3 HashTable[i] = nbGroupLost

8. Insert all values of PilgrimLocationRecord structure into table PilgrimTracking (PilgrimID, TimeStamp,

GPSLocation, Status, Distance)

9. Delete PilgrimLocationRecord structure from the main memory

C. Tracking Lost Pilgrims using Two-Dimensional Array as

an in-Memory Strcuture

Once the groups with astray members are identified and the
HashTable is constructed, an in-memory structure called
LostPilgrimRecord is created (Fig. 3). This structure is a two-
dimensional array with k rows and m columns (k represents the
number of groups with astray pilgrims and m is the maximum
number of pilgrims in a group). The LostPilgrimRecord array
is used to store information about lost pilgrims every 10
minutes. The HashTable is used to get the appropriate index of
each original group ID. For example, the information of
pilgrim ID 21 (where original group ID is 2 and the ID of the
ID of the pilgrim within group 2 is 1) is stored in
LostPilgrimRecord [1, 1]. The centroid of each group is
calculated and used to update the status and the distance
between a pilgrim and his/her group centroid. A two-
dimensional array LostCumulativeStatus[k, m] of integers is
created to track the consecutive lost status of each pilgrim.
Before sending any alert signal to the lost pilgrim, the
LostCumulativeStatus (a structure to track the consecutive lost
status of pilgrims) is checked to know how many consecutive
times a pilgrim is reported lost. The process is as follows (1) If
the status of pilgrim LostPilgrimRecord [i, j] is L (Lost), then
the value LostCumulativeStatus[i, j] is incremented (2) else if
the status of pilgrim LostPilgrimRecord [i, j] is N (Normal or
Not Lost), then the value of LostCumulativeStatus [i, j] is reset
to 0 and a green light is shown on the wearable device. There
are three types of light indicators shown by the wearable
device:

 A green light, which means everything is fine and the
status is N.

 A flashing red light, which means that the pilgrim has
been detected lost by the system for a number of
consecutive times less than three.

 A continuous red light, which means that the pilgrim
has been detected and confirmed lost.

For example, Fig. 3 shows that Pilgrim (21) has been
detected to have been astray for two consecutive sampling
times, whereas, Pilgrim (22) was detected lost for only one
time. Finally, the values of the LostPilgrimRecord are flushed
into PilgrimTracking table in the central database. Algorithm 2
shows the processing steps to track lost pilgrims every 10
minutes.

V. THEORETICAL ANALYSIS (SIZE AND PERFORMANCE)

In this section, we discuss the main memory storage
requirements and performance for the proposed in-memory
structures and algorithms to track astray pilgrims during the haj
period.

A. Size Complexity

The main memory storage requirements for the
PilgrimLocationRecord, HashTable, LostPilgirmRecord,
LostCumulativeStatus structure are quite impressive.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

472 | P a g e

www.ijacsa.thesai.org

Algorithm 2 Tracking lost Pilgrims (every 10 minutes)

1. Create a two-dimensional array LostPilgirmRecord [nbGroupLost, m]

2. Create a two dimensional array of integers LostCumulativeStatus [nbGroupLost, m]

3. Receive GPS coordinates and timestamps of the pilgrims who belong to the groups with lost pilgrim(s)

4. for each pilgrimID (ID) with GPS coordinate G and timestamp TS do

Split the PilgrimID (ID) to get the group ID (x) and the ID (y) of the pilgrim within Group x

z = HashTable[x] //convert the original group ID into the corresponding index

Update LostPilgirmRecord [z, y].GPS = G

Update PilgrimLocationRecord [z, y].timestamp = TS

5. Create an integer variable Lost

6. for each group , where i =1, 2, …, nbGroupLost do

calculate the centroid of

Lost = 0

for each pilgrim j in group , where j =1,2, …, m do

calculate the distance d between LostPilgirmRecord [i, j].GPS and
LostPilgirmRecord [i, j].distance = d

if d > LostDistance then // LostDistance = 1000 Meters

LostPilgirmRecord [i, j].status = 1

increment LostCumulativeStatus[i, j] by 1

if LostCumulativeStatus[i, j] > 2 then

send a continuous signal to Pilgrim (i, j)

else

send flashing signal to Pilgrim (i, j)

else

LostCumulativeStatus[i, j] = 0

Stop sending signal to Pilgrim (i, j), if any

7. Insert all values of LostPilgirmRecord structure into table PilgrimTracking (PilgrimID, TimeStamp,

GPSLocation, Status, Distance)

8. Delete LostPilgirmRecord structure from the main memory

9. Repeat step 1 to 9 every 10 minutes

We suppose that there are x pilgrims and m pilgrims per

group. The size of the pilgrim's GPS coordinate, timestamp,
status and distance is b bytes. The size of each structure in the
memory is calculated as follows:

 PilgrimLocationRecord: This structure contains the
tracking information (GPS coordinates, timestamp,
status and distance) of all pilgrims. It is created every

one hour. The size of this structure is ∑
 bytes,

where b number of bytes needed in each cell and x is
the total number of pilgrims.

 HashTable: This structure contains the index of all
groups with lost pilgrims. The size of this structure is

∑ ⌊ ⌋
 bytes, where n is the number of

original groups (x/m) and k is the total number of
groups with lost pilgrims.

 LostPilgirmRecord: This structure stores the tracking
information of groups who have lost pilgrims. It is
created and updated every 10 minutes. The size of this

structure is ∑
 bytes, where k is the total

number of groups with lost pilgrims and b is the size of
each pilgrim's tracking information and m is the m is
the maximum number of pilgrims per group.

 LostCumulativeStatus: This structure stores the
number of consecutive lost status. It is created and

updated evey 10 minutes. Each cell requires one byte
to store the number of lost status. The size of this

structure is ∑
 bytes.

Every hour the collective size of the existing memory
structures (PilgrimLocationRecord and HashTable) is:

 ∑
 + (∑ ⌊ ⌋

 (3)

Every ten minutes, the collective size of the existing
memory structures (HashTable, LostPilgirmRecord and
LostCumulativeStatus) is:

 ∑ ⌊ ⌋
 + ∑

) + ∑

(4)

In practice, the required memory capacity of the
aforementioned in-memory structure would likely be no more
dozen megabytes for huge number of pilgrims. As per the
ministry of haj report [reference], the number of haj in 2017
was 2.4 M and there were 20000 lost pilgrim during the five-
day haj period. In average, there were 4000 lost pilgrims every
day and 167 lost pilgrims every hour. The maximum size of
each pilgrim tracking information (GPS coordinate, timestamp,
status, distance) is 32 bytes.

The required memory capacity of the in-memory structures
every one hour is:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

473 | P a g e

www.ijacsa.thesai.org

 ∑
 + (∑ ⌊ ⌋

 = 76.8 Mbytes +

2.4 Mbytes = 79.2 Mbytes

The required memory capacity of the in-memory structures
every 10 minutes:

 ∑ ⌊ ⌋
 + ∑

) +

 ∑
 =

2.4 Mbytes + 0.11 Mbytes + 0.00334 Mbytes = 2.513 Mbytes

B. Performance Analysis

Algorithm 1 describes the process by which the central
server receives and stores the tracking information of all
pilgrims and identifies the lost pilgrims. The processing time
overhead to support real time detection of astray pilgrims
(Algorithm 1) can be estimated as follows:

 Time to create the two dimensional array
PilgrimLocationRecord[n, m] is O(n * m), where n is
the number of groups and m is the maximum number
of pilgrims in a group

 Time to receive and store the GPS coordinates and
timestamps of all pilgrims into PilgrimLocationRecord
is O(n*m). More specifically, the time to receive each
pilgrim's tracking information and to store it into the
PilgrimLocationRecord is O(1) because the pilgrim ID
is used to identify the corresponding group ID (row
index) and the ID of the pilgrim (column index) within
the group.

 Wost case time to calculate the centroid of all groups
and to identify the astray pilgrims and to update the
status of pilgrims in the PilgrimLocationRecord is O(m
* n)

 Time to crate the HashTable and to insert the indexes
of the groups with loast pilgrims is O(n)

The number of I/O required to flush the tracking
information of all pilgrims (PilgrimLocationRecord) into the

database disk storage is O((
∑

) , where x is the total

number of pilgrims (n * m), s is the size of disk block and b is
the number of bytes required to store the tracking information
of each pilgrim (GPS, timestamp, status and distance).
Collectively, the CPU processing time to detect astray pilgrims
is O(n * m) and the number of I/O to store the tracking

information into the disk storage is O((
∑

) I/O.

Algorithm 2 shows the steps by which the central server
receives and stores the tracking information of lost pilgrims
more frequently (every 10 minutes). The processing time
overhead to support real time detection of lost pilgrims more
frequently (Algorithm 2) can be estimated as follows:

 Time to create the LostPilgirmRecord and
LostCumulativeStatus is O(m * k), where m is the
maximum number of pilgrims in a group and k is the
total number of groups with lost pilgim(s).

 Time to receive and store the GPS coordinates and
timestamps of lost pilgrims into LostPilgirmRecord is
O(m*k).

 Wost case time to calculate the centroid of all lost
groups, to identify the astray pilgrims and to update the
status of pilgrims in the LostPilgirmRecord is O(m * k)

 Time to access the HashTable is O(k)

 Worst case time to access the LostCumulativeStatus
and update the consecutive lost status is O(m*k)

The number of I/O required to flush the tracking
information of lost pilgrims (LostPilgirmRecord) into the

database disk storage is O((
∑

), where k is the total

number of lost groups s is the size of disk block and b is the
number of bytes required to store the tracking information of
each pilgrim (GPS, timestamp, status and distance).
Collectively, the CPU processing time to detect astray pilgrims
is O(m * k) and the number of I/O to store the tracking

information into the disk storage is O((
∑

) I/O.

The aforementioned theoretical analysis of the size and
performance of the proposed architecture demonstrates that the
in-memory structure requirements are of an affordable size and
the processing overhead is within tolerated limits to support
real time detection of astray pilgrims.

VI. SIMULATIONS AND RESULTS

Actual pilgrimage data showing the path of pilgrims and
their geolocations are not currently available since the
proposed system is the first of its kind. Therefore, we have
used a synthesized data for the purpose of running simulation
of the proposed algorithm. A random geolocation data sets
were continuously generated within a specific geographical
region that correspond to those visited by the pilgrim. Pilgrims
were assigned to groups of a maximum of 20 person in each
group. At each time slot, a new set of geolocations are
generated for all the groups and are used to calculate the
group’s centroid. In order to simplify the simulation, it was
assumed that a pilgrim is considered astray if their distance
from the centroid is 1.5 kilometer. Simulation runs for various
values of the total number of pilgrims (from 500,000 to
3000,000 pilgrims) were performed and the time to calculate
the total number of pilgrims that actually went astray was
measured. Fig. 4 shows the variation of the algorithm
calculation time with the number of pilgrims. The results
showed linear performance which is a good agreement with the
analytical analysis.

VII. CONCLUSIONS AND FUTURE WORK

In this work we presented the design and implementation of
a distributed architecture and the research challenges of a
pilgrim tracking, guiding, and astray-pilgrim detection system.
The system consists of a client side that is a wearable device
built as a system-on-chip and a server that stores personal
information as well as the GPS coordinates and corresponding
time stamps during the full duration of the pilgrimage journey
(five days). The main objectives to be achieved in this work at

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

474 | P a g e

www.ijacsa.thesai.org

the client side is that the wearable device is compact, low cost,
and of low-power consumption to allow for a battery life to
extend for at least five days. This include employing a power-
efficient algorithm by properly selecting the inter-GPS fix
times. The designed system automatically determines if a given
pilgrim is potentially astray and is likely to miss one of the
important rituals of the pilgrimage. On the server side, the
entire pilgrimage model is stored including the geolocations of
the regions and paths. The system automatically reports any
lost or potentially lost pilgrims as well as alerts the pilgrim
him/herself and sends alarms to the authorities for timely
intervention. The in-memory structure used along with the
algorithms enables real-time performance to avoid lengthy
database queries. Simulation runs with synthesized data that is
randomly generated within a given geographical location was
performed. The simulation calculated the time to determine the
number of pilgrims at a specific time slot as the number of
pilgrims is varied. The simulation results showed a linear time
performance which is in a good agreement with analytical
analysis performed.

In future work and when real data is obtained, many useful
data analytics can be performed which will avail and reveal
new information that opens new door for better service and less
astray pilgrims.

Fig. 4. Algorithm Execution Time vs. the Total Number of Pilgrims.

REFERENCES

[1] “A study requesting to set upper age limits due to the spread of some
diseases of the elders” 2006. [Online]. Available:
http://www.alarabiya.net/articles/2006/12/28/30302.html [Accessed: 25
– Jan – 2018]

[2] Omar Elhalawy, “60% of pilgrims perform pilgrimage for the first time”
2017. [Online]. Available:
http://www.alittihad.ae/details.php?id=41778&y=2017 [Accessed: 25 –
Jan. – 2018]

[3] “The Origin and Activities of the ministry of Hajj and Umrah” 2014.
[Online]. Available:
http://www.haj.gov.sa/arabic/about/opendatapalteform/pages/ministrieor
igination.aspx. [Accessed: 25-Jan.-2018].

[4] Shrooq Hisham, “For the first time, applying the electronic bracelet
service in pilgrimage” 2016. [Online]. Available:
http://www.hiamag.com/ -السوار-خدمت-تطبيق-مرة-لاول-150091منوعاث/اخبار/

الحج-في-الالكتروني [Accessed: 25 – Jan. 2018]

[5] Mohandes, M., Turcu, C. “A Case Study of an RFID-based System for
Pilgrims Identification and Tracking” in Sustainable Radio Frequency

Identification Solutions, pp. 87–104. InTech, Dahran, Saudi-Arabia,
2010.

[6] Abeer Geabel, Khlood Jastaniah, Roaa Abu Hassan, Roaa Aljehani,
Mona Babadr, Maysoon Abulkhair “Pilgrim Smart Identification Using
RFID Technology (PSI)” International Conference of Design, User
Experience, and Usability DUXU 2014.

[7] KC Rajwade, DH Gawali “Wearable Sensors Based Pilgrim Tracking
and Health Monitoring system” International conference on Computing
Communication Control and automation (ICCUBEA), 2016.

[8] “The 15 Best GPS Kids Trackers for Parents with Young Kids” 2016.
[Online]. Available: https://www.safewise.com/blog/10-wearable-
safety-gps-devices-kids/. [Accessed: 25 – Jan. 2018]

[9] M. A. R. Abdeen, “A Distributed Architecture and Design Challenges of
an Astray Pilgrim Tracking System” The Fourth IEEE International
Conference on Big Data Intelligence and Computing (DataCom 2018),
Athens, Greece, August, 2018.

[10] H. Garcia-Molina and K. Salem, “Main memory database systems: An
overview,” IEEE Trans. Knowl. Data Eng., vol. 4, no. 6,pp. 509–516,
Dec. 1992.

[11] V. Sikka, F. F€arber, W. Lehner, S. K. Cha, T. Peh, and C. Bornh€ovd,
“Efficient transaction processing in SAP HANA database: The end of a
column store myth,” in Proc. ACM SIGMOD Int. Conf. Manag. Data,
2012, pp. 731–742

[12] Zhang, Hao, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui
Zhang. "In-memory big data management and processing: A
survey." IEEE Transactions on Knowledge and Data Engineering 27, no.
7 ,2015: pp. 1920-1948. D. B. Lomet, S. Sengupta, and J. J. Levandoski,
“The Bw-Tree:

[13] A B-tree for new hardware platforms,” in Proc. IEEE Int. Conf. Data
Eng., 2013, pp. 302–313.

[14] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: ARTful
indexing for main-memory databases,” in Proc. IEEE 29th Int. Conf.
Data Eng., 2013, pp. 38–49. Y. Li and J. M. Patel, “BitWeaving: Fast
scans for main memory data processing,” in Proc. ACM SIGMOD Int.
Conf. Manag. Data, 2013, pp. 289–300.

[15] Z. Feng, E. Lo, B. Kao, and W. Xu, “Byteslice: Pushing the envelop of
main memory data processing with a new storage layout,” in Proc. ACM
SIGMOD Int. Conf. Manag. Data, 2015.

[16] A. Pavlo, C. Curino, and S. Zdonik, “Skew-aware automatic database
partitioning in shared-nothing, parallel OLTP systems,” in Proc. ACM
SIGMOD Int. Conf. Manag. Data, 2012, pp. 61–72.

[17] W. Rodiger, T.Muhlbauer, P. Unterbrunner, A. Reiser, A. Kemper, and
T. Neumann, “Locality-sensitive operators for parallel mainmemory
database clusters,” in Proc. Int. Conf. Data Eng., 2014, pp. 592–603.

[18] V. Leis, A. Kemper, and T. Neumann, “Exploiting hardware
transactional memory in main-memory databases,” in Proc. Int. Conf.
Data Eng., 2014, pp. 580–591.

[19] Z. Wang, H. Qian, J. Li, and H. Chen, “Using restricted transactional
memory to build a scalable in-memory database,” in Proc. 9th Eur.
Conf. Comput. Syst., 2014, pp. 26:1–26:15.

[20] M.-C. Albutiu, A. Kemper, and T. Neumann, “Massively parallel sort-
merge joins in main memory multi-core database systems,” Proc.
VLDB Endowment, vol. 5, pp. 1064–1075, 2012.

[21] S. D. Viglas, “Write-limited sorts and joins for persistent memory,”
Proc. VLDB Endowment, vol. 7, pp. 413–424, 2014.

[22] O. Polychroniou and K. A. Ross, “A comprehensive study of main-
memory partitioning and its application to large-scale comparison-and
radix-sort,” in Proc. ACM SIGMOD Int. Conf. Manag. Data, 2014, pp.
755–766.

[23] A. Kemper and T. Neumann, “HyPer: A hybrid OLTP & OLAP main
memory database system based on virtual memory snapshots,” in IEEE
27th Int. Conf. Data Eng., 2011, pp. 195–206.

[24] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P.
C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J.
Abadi, “H-store: A high-performance, distributed main memory
transaction processing system,” Proc. VLDB Endowment, vol. 1, pp.
1496–1499, 2008.

0

500

1000

500 K 1 M 1.5 M 2 M 2.5 M 3.M

T
im

e
in

 m
il

li
se

co
n

d

Total number of Pilgrims

Algorithm execution

time v.s. the total

number of pilgrims

