
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

513 | P a g e

www.ijacsa.thesai.org

Designing a Switching based Workflow Scheduling

Framework for Networked Environments

Hamid Tabatabaee
1

Department of Computer

Engineering,

Quchan Branch, Islamic Azad

University,

Quchan, Iran

Mohamad Reza Mohebbi
2

Department of Computer

Engineering,

Ferdows Institute of higher

Education,

Mashhad, Iran

Hosein Salami
3

Department of Computer

Engineering,

Ferdows Institute of higher

Education,

Mashhad, Iran

Abstract—Due to the dynamics of the power of resources in

non-dedicated computing environments such as Grid, and on the

other hand, the autonomy of these environments and,

consequently, the impossibility of repeating the operating

scenarios to compare the algorithms created in this context,

creating an environment by providing such conditions is

necessary. In this paper, a framework for evaluating workflow-

scheduling algorithms has been created, focusing on the

dynamics of the power of resources in distributed environments.

This framework based on a switching model that is capable of

considering the change in the processing power of resources with

high precision. Using the ability of this framework, the

effectiveness of several different workflow scheduling algorithms

has been evaluated.

Keywords—Scheduling framework; workflow scheduling; grid;

switching based framework

I. INTRODUCTION

The issue of finding suitable allocation of tasks to
resources, also referred to as scheduling, is one of the issues
that has long been considered by researchers, and so far many
studies have been done about it. These studies have often
presented several solutions considering different assumptions
regarding the characteristics and structure of tasks
(independent or heterogeneous [1]) or resources (homogeneous
or heterogeneous [2] proprietary or non-proprietary, with
complete or incomplete communication, etc.) and by pursuing
different goals (reducing run-time [3], minimizing cost [4] and
reducing energy consumption [2]). Due to the many
applications in various areas, the scheduling of the workflows
is still considered a matter of interest to researchers. Workflow
scheduling is a process in which resources are assigned to the
tasks included in the workflow. Grid is one of the most
important computational platforms for deploying and executing
workflows. Workflow management systems such as Pegasus,
DAGMan/Condor and Karajan/Globus manage the definition,
management, and execution of workflows on computational
resources [5]. These software systems perform these tasks
using the low-level services provided by the middleware of the
grid. In general, the workflow characteristics are generated by
the user using the workflow modeling tools. These attributes
define workflow activities (tasks) and the data and control
dependencies between them. At runtime, the grid workflow

engine controls the execution of the workflow using the
middleware of the grid.

For those who are not access to these platforms, creating
such platforms is expensive and time-consuming. However,
even those who have access to such platforms cannot use the
resources to the desired extent, and the experiment is usually
limited to a small number of resources. In addition, the use of
these platforms requires empirical skills in deployment, high
budget and long time to get results. It is also difficult to
provide specific experimental scenarios, and even in some
situations it is impossible, unrepeatable and uncontrollable. To
overcome such constraints, creating a simulation framework is
required. There are different simulators or frameworks for
supporting simulation-based studies in the grid environment. A
simulation framework is needed to accurately model the
behavior of the environment in order to obtain logical results.
One of the obvious features of the resources in the grid
environment is fluctuation of the amount of their shared
computing power for processing of the tasks assigned to the
Grid environment, however, in current simulators, these
resource fluctuations are not considered accurately. Given this,
the results provided by these simulators lack the precision
about the effect of the change in the power provided by the
resources on the performance of scheduling algorithms.

In this paper, a framework is developed that provides an
accurate assessment of the performance of work flow
scheduling algorithms in distributed platforms with non-
dedicated resources that are prone to encountering irregular
changes in processing power. Unlike other existing simulation
tools (Section 2), this framework is based on the theoretical
model [6], which is based on linear switching state space. This
model is able to represent and accurately describe the process
of executing tasks in a distributed platform with arbitrary
computing and communication properties and structures in the
desired time scales (Section 3). In this paper, by introducing
the above modeling method, we will discuss how to use it to
create a framework that is capable of considering the dynamics
of the power of the resources during the execution of
workflows. The Structure of this paper is as follows: In section
2, some of the frameworks and simulation tools in the grid and
cloud computing platforms are presented. In section 3, we
introduce the linear switching model and then present the
proposed simulator architecture based on this model. In section

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

514 | P a g e

www.ijacsa.thesai.org

4, the experiments are carried out and the results have been
discussed. Finally, in Section 5, the conclusion of this paper is
presented.

II. LITERATURE REVIEW

There are many different frameworks and simulators with
different objectives for distributed platforms, such as grid and
cloud .These tools have been created with the goals such as
facilitating common tasks or providing the ability to perform
experiments in a controlled and repeatable environment.

In general, the frameworks are seeking to facilitate the
accomplishment of some common tasks that are needed in a
field. For instance, in [7], the signac framework is proposed to
facilitate the integration of different formats of specialized
data, tools, and workflows. The signac framework provides all
basic components required to create a well-defined and thus
collectively accessible and searchable data space, simplifying
data access and modification through a homogeneous data
interface that is largely agnostic to the data source, i.e.,
computation or experiment. In recent years, due to the spread
of cyber attacks and the importance of providing strategies and
solutions for cyber-security, development and deployment of
intrusion detection systems has gained special attention. These
systems should permanently control ongoing operations in the
environment in order to identify potential attacks, thus
requiring high - power computational platforms to support this
volume of computation. In [8], a framework is presented which
provides the appropriate distribution of these calculations with
regard to the security requirements and variable availability of
the computational resources(including personal and enterprise
resources, as well as cloud services), and also keeping in mind
to minimize the cost associated with the use of external
resources (cloud services).

One of the objectives of the simulation tools is the study of
architecture, components and functionality of the simulated
platform. Bricks simulator [9] is a Java simulation framework
used to evaluate the performance of programs and scheduling
algorithms in Grid environments. The Bricks simulator
includes a discrete event simulator, simulation of computing
environment and grid data, as well as network components.
This simulator provides an analysis and comparison of
different scheduling algorithms on simulated grid settings,
taking into account the impact of network components on
overall efficiency. The GridSim simulator [10] is also a
simulation model for Grid and Grid applications. The simulator
consists of a network simulation component that is used to
simulate network topologies, connections and switches, as well
as resource failures in Grid applications simulation. GridSim
simulator lacks the direct support to schedule workflows. The
BeoSim simulator [11] is implemented with the purpose of
studying the scheduling algorithms of parallel tasks in the field
of multi-cluster computational Grid. This simulator can be
driven by real or artificial load. Simbatch simulator [12]
provides the ability to evaluate scheduling algorithms for batch
schedulers. The Monarc 2 simulator [13] is a simulation
framework designed to provide a design and optimization tool
for large-scale distributed computing systems. Although
Monarc 2 has provided two simple scheduling modules, its
main purpose is to provide a realistic simulation of distributed

computing systems designed to process physics data, and to
propose a flexible and dynamic environment to evaluate the
performance of a range of data processing architectures. The
GSSIM simulator [14] has been developed based on the
GridSim toolkit. The simulator provides a simple Grid
scheduling framework which capable of simulating a wide
range of scheduling algorithms in heterogeneous Grid
infrastructures in several levels. However GSSIM faces
problems such as slow execution and scalability.

None of the aforementioned simulators have direct support
for workflows, so in recent years several simulators have been
developed for such applications. TSM-SIM [15] is a simJava-
based simulator that supports the simulation of dynamic
resource grid and tasks and provides an interface for sending
workflow programs as a unit. The tGSF tool [16] extends the
Teikoku Grid scheduling framework, which provides a
platform for simulating the scheduling of workflows and
parallel tasks in the trace-based grid. Supporting workflow
scheduling is loosely coupled in which work, selection, and
assignment strategies are performed independently. Another
example of grid scheduling simulators is WorkflowSim [17].
The focus of this simulator is on failures and on cluster-based
scheduling algorithms. The WorkflowSim simulator is based
on the features and services provided by CloudSim [18].

Among the simulators above, only the TSM-SIM simulator
[15] explicitly considers the dynamics of resources by
employing a background load generator and taking into
account statistical distributions, while other simulators
considered the computing power of resources at a constant
value which is based on the average amount of resources
processing power. In the next section, the system is firstly
modeled using linear switching, and then the structure and
performance of the proposed simulator are discussed.

III. THE PROPOSED SIMULATOR

In this section, at first, the system modeling will be
introduced by the linear switching model that defines the basis
for the proposed framework and then we will look at the
structure and function of the proposed simulator components.

A. Modeling Task Scheduling problem in State Space

The problem of scheduling tasks in a heterogeneous
resource environment has a nonlinear nature, but it can be
transformed into a linear space switching model with a number
of nonlinear constraints on the input vector. Due to the nature
of the scheduling problem, there are complex and numerous
relationships for the space state form of the system that may
lead to complexity of design based on them, so the scheduling
problem is represented in the form of relation (1)(At each step
k).

 [] ([] [

]) (1)

In the following sections, we define variables used in the
above modeling of task scheduling problem.

1) Status Variable (X): The variable X is a vector whose

number of elements is equal to the number of task in input

workflow and the value of each element is a number between

0 and 1 that determines the amount of work remained for that

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

515 | P a g e

www.ijacsa.thesai.org

task in step k. The initial value of the state variable is usually

equal to one. The system state variable with n task is displayed

as follows:

 []

[

 -

]

 [] (2)

For example, suppose that state variable of a system with 5
tasks in step k is as follows:

 []

[

]

The values in the above state variable states that task 1 is
fully executed, tasks 2 and 4 have not yet been executed, and
40% and 80% of tasks 3 and 5 is remained respectively.

2) Control Vector(U): The control vector U is a matrix

with m rows (number of resources) and n columns (number of

tasks).

The element , ،
determine the amount of use of the resource for the task ,
which is a number between zero and one. In each step,
maximum number of none zero elements in each row of this
matrix is one, and the remaining elements of that row are all
zero. This restriction implies that at every step, each resource is
only able to perform one task.

3) Runtime Length Matrix (): is a matrix with n rows

and m columns, which its element specifies the execution

time of the task on the resource .(m is the number of

system resources and n the number of tasks in the workflow).

4) Example of problem solved by the proposed Model: In

Figure 1, a directed acyclic graph (DAG) for an application

and execution time of its tasks on two resources P0 and P1 are

provided. The aim is to schedule this application by the

controller. ()

Fig. 1. An Example of a DAG and the Corresponding Computational Cost

Table.

Figs 2 and 3 show an assignment of runtime matrix (θ) and
control vector (U) to clarify how a sample schedule can be
represented using linear switching state space for above DAG.
In Fig. 4, the Gantt chart corresponding to this schedule is
shown. As can be seen, DAG execution ends in time of 25.

Fig. 2. The U Matrix Generated based on the DAG Shown in Fig. 1.

Fig. 3. The θ Matrix Generated based on the DAG Showed in Fig. 1.

Fig. 4. Gantt Charts of Example Fig. 1.

5) Modeling the resource processing power uncertainty:

Processing power of each resource determines the duration of

each task's execution, therefore, uncertainty in the processing

power of a resource can be shown by changing the time

needed to execute tasks on that resource. Because this

information is stored in the θ matrix, the change in this matrix

corresponds to the change in the processing power of the

resources. Therefore, the proposed model is capable of

displaying uncertainty in processing power.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

516 | P a g e

www.ijacsa.thesai.org

B. Architecture of Proposed Simulator

Due to the ability of the representation and modeling of
uncertainty in the processing power of the resources available
in the environment by linear switching state space model
mentioned in previous section, we use it to create a tool to
simulate execution of workflows in networked environments.
To do this, we propose a simulator with layered loosely
coupled architecture which is shown in Fig 5. In following we
introduce each of the proposed simulator components.

Fig. 5. Architecture of the Proposed Simulator.

1) Event manager: The event manager is responsible for

recording, storing and reporting the occurrence of internal

events to other simulator components. The event manager uses

SimJava [19], which provides an inter threaded interfacing

framework that allows the sending of tagged events from one

entity to another in a Java process. SimJava entities are

connected through ports and can communicate with each other

by sending and receiving objects related to tagged events.

2) Resource manager: The resource manager is almost the

main component in the proposed simulator, which has several

important responsibilities. This component acts as task

acceptance manager by interacting with the higher layer of

itself, and by accepting the ready tasks and their related

mappings provides the conditions for executing them on the

resources. More precisely, the resource manager, according to

the amount of required processing of the tasks, and the current

computing power of the resources on which each of the tasks

is mapped, will determine the duration of their execution, and

will notify their execution termination event to the event

manager.

It is worth noting that in the proposed simulator, it is
assumed that each resource can only accept a task at any time.
On the other hand, this component is responsible for
monitoring and tracking changes in each resource and, if any
changes occur, will take appropriate action. One of these
changes could be the change in resource computing power,
resource failure, and resource release. Some of these events are
fully managed by the resource manager, while for other events,
after the necessary steps are taken, the event will be re-notified
to other interested simulator components.

3) Workflow management layer: Topmost layer of the

simulator is the workflow management layer which consists of

three components of the workflow manager, the workflow

engine and the scheduler.

The workflow manager is responsible for the interactions
with below layer and the coordination of other components in
this layer. The workflow engine operates similar to the
workflowSim [17] workflow engine component. This
component determines the ready tasks for execution, using the
existing dependencies between the tasks as well as the tasks
whose execution is completed, and then places them in the
ready tasks repository.

The scheduler is considered as an abstract component, so it
can be extended by user to schedule tasks in the desired
method. For this purpose, the necessary information has been
provided to the scheduler, which includes a ready- task
repository, input workflow structure, specification and current
status of the available resources in the environment. According
to this information, scheduler should create proper mapping.

4) Adaptation of the linear switching state space model

and proposed simulator: In the proposed simulator, the

process of simulating a workflow is divided into several

execution phases. In each execution phase, environment

conditions are assumed to be constant. From environment

conditions, we mean the resources computing power and the

mapping of tasks to resources. A new execution phase will

start with each event occurring. As mentioned before, the

resource manager is the main component in the proposed

simulator and a large part of the simulator function and

consequently the implementation of the Linear switching state

space model is implemented by it. One of the most important

tasks of the resource manager is the reflection of the required

changes in the model parameters at the end of each execution

phase. In the following, we will focus more precisely on the

functions of this component.

One of the responsibilities of the resource manager is
maintaining and keeping track of the status of the tasks.
According to the linear switching state space model, the
execution state of a workflow is shown at any time using the
status vector X, so, the resource manager in order to handle this
responsibility should update the values of this vector at any
time in accordance with the current status of the tasks.

Another responsibility of the resource manager is to take
appropriate actions in the face of changes in resource
conditions, such as computing power fluctuation and failure. In
the linear switching state space model, the matrix θ shows the
amount of time required to execute each task according to the
current processing power of each resource. As the change in
the processing power of a resource is considered to change the
amount of time required to execute the tasks on the resource,
therefore, in order to reflect the desired change in the switching
model, the elements related to the resource in runtime matrix
must be changed. Given the pursuit of changes in resource
computing power by resource manager, it will also be
responsible for maintaining and enforcing the necessary
changes to the θ matrix.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

517 | P a g e

www.ijacsa.thesai.org

Now, we deal with the resource failure and how it reflects
in the switching model. To do this, it should be noted that the
failure of a resource in addition to the change in the resource
condition (θ matrix) may also cause changes in the execution
status of the tasks (X vector) as well. In order to reflect the
failure of a resource, the resources manager set elements
corresponding to the resource in question in θ matrix to infinity
value. In addition, if the resource was executing a task, the
status of the task will also be changed to its original value
(value 1). If the failed resource is healed, the resource manager
resets the elements corresponding to the resource in θ matrix to
original processing power.

The third component of the switching model is the control
matrix U. As discussed in the previous section, the control
matrix determines the mapping of tasks to resources. Given
that the mapping of tasks on resources is assigned to the
scheduler, the determination of the values of this matrix will
also be carried out by the scheduler. However, the actual
maintenance of this matrix is carried out by the resource
manager; In fact, the scheduler creates only its intended

mapping and by providing this mapping to the resource
manager resource manager, the resource manager will create a
control matrix.

With these components, the resource manager at any time
will be able to determine the state of execution. For this
purpose, as state above, the resource manager needs to apply
any change in conditions in the corresponding components.
The resource manager at the end of each execution phase, with
respect to the stability of the environmental conditions in the
execution phase (values of the matrices θ and U) and given
duration of the execution phase (ΔT), calculates the processing
requirements of each task, and determine the new values of the
status vector (X). In fact, the resource manager at the end of
each execution phase determines the status vector values (X)
before the change occurs in the components of the switching
model (matrix θ or U). In Fig. 6, the function and role of each
of the simulator components are displayed in the process of
executing a workflow. It is necessary to express that in this
diagram only a part of the function of the simulation
components is shown.

Fig. 6. The Functions of Each Simulator Component in the Process of Executing a Workflow.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

518 | P a g e

www.ijacsa.thesai.org

Fig. 7. The Amount of Resource No. 1515 Load at the Notre Dame

University in the First Six Months of 2007.

IV. EXPERIMENTS AND RESULTS

In order to evaluate the proposed simulator, five different
scheduling algorithms, FCFS, MCT, MinMin, MaxMin and
BNCP have been tested under different conditions of resource
computing power. The NGB benchmark [20] has been used to
investigate the effect of power resource fluctuations on
different workflows. In the next section, a brief introduction of
this benchmark are given at first, and then data set used in
experiments to make changes in the conditions of the resources
including computing power changes and failures are
introduced. In the final section, the results of simulating the
execution of this benchmark by the mentioned algorithms are
presented and discussed.

A. NGB Benchmark

NGB benchmark, designed by NASA, is based on the NAS
parallel benchmark [20]. These benchmarks are defined as
dataflow diagrams, in which the nodes and edges respectively
represent computations and communications. The NGB
benchmark includes four families of problems include
Embarrassingly Distributed (ED), Helical Chain (HC),
Visualization Pipeline (VP) and Mixed Bags (MB)[15]. ED
presents a class of grid programs called the study of
parameters. HC models grid application with long chains of
repeating programs, such as a set of flow computations
executed in order. The VP models the workflow programs of
the grid that combine multiple chains of composite processing.
This benchmark, models Grid programs that the final step of
their repeating tasks are visualization/analysis. MB models grid
applications that combine their preprocessing tasks,
calculations, and calculations of visualization, but combine
with asymmetric communication.

B. Used scheduling Algorithms

Four scheduling algorithms have been used to evaluate the
performance of the proposed simulator: FCFC, MCT, MinMin,
MaxMin and BNCP.

 FCFC: The initial version of the scheduling algorithm
that used in this simulator. In this algorithm, each task
is assigned to the next available source in the order of
its entry, regardless of the expected completion time
required. If multiple resources are available, one of
them is selected at random.

 MCT (Minimum Completion Time): This algorithm
[21] assigns to each task a resource with the best
completion time in an arbitrary order.

 MinMin: This algorithm [22] initially begins with a set
of ready tasks and then arranges them in the order of
their completion time. In the following, a task with a
minimum completion time is selected and assigned to
its corresponding resource. Then, the task that has just
been mapped will be sent to the queue and the process
will be repeated until all ready tasks are scheduled. The
idea of this algorithm is to create an optimal path to
reduce the total runtime.

 MaxMin: Similar to the MinMin algorithm, the
MaxMin algorithm selects tasks with a maximum
completion time, and assigns it the best available
resource. The idea of MaxMin is to avoid long-term
tasks.

 BNCP: This algorithm [23] is a list-based algorithm
which similar to other list-based algorithms composed
from two steps include prioritizes tasks and assigning
them to nodes. In the task prioritization phase, a simple
mechanism is used in which critical tasks are selected
as soon as they are ready. At the node assignment
phase, in order to remove unnecessary delays that may
occur due to the slowness of communication, a
replication based mechanism is used, in which a
resource is selected for the current assignment, which
can significantly improve the execution time of the
current task by replicating the critical task parent.

C. Changes in Resource Status

To simulate changes in resource status, including changes
in processing power, and also failures and malfunctions, data
from the resources trace of the Notre Dame University in early
2007, which is part of the FTA dataset [24] has been used. This
trace includes the CPU load (percent) and the idle time
(seconds). In Figure 7, the loading rate in the first 6 months of
the resource number 1515 used in the experiments is shown. In
Figure 8, the percentage of this resource is shown in each of
the states in each month. It should be noted that in conducting
experiments, the availability of a resource in any of status other
than the Available status, is considered as non-Availability, in
other words, failure.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

519 | P a g e

www.ijacsa.thesai.org

Fig. 8. Proportion of Availability of Resource No. 1515 in Different

Situations.

D. Evaluation Results

In the experiments, the load for the second month of the
data set introduced in the previous section is used as the base
load. In order to simulate the low - load conditions of the
system, this base load is reproduced in different scales. For
example, to double the workload on resources, the load on the
base load is multiplied by 2. Additionally, a collection of each
NGB Grid application is generated by different types of
families (ED, HC, VP, and MB) and provided as input to the
simulator. The simulation environment is considered as a
collection of 10 processing resources in a fully connected
network. The power of each resource is determined by
MFLOPS (the number of floating point commands that run s in
one second, in millions). Table 1 shows the processing power
of each of these resources.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

520 | P a g e

www.ijacsa.thesai.org

TABLE I. THE COMPUTING POWER OF THE RESOURCES USED IN

SIMULATION

resource

Number

Processing Power

(MFLOPS)

1 9320

2 9320

3 10400

4 6400

5 6400

6 6400

7 12000

8 9320

9 12000

10 9320

Fig. 9. The Effect of the Load Change on the VP Workflow Class.

Fig. 10. The Effect of the Load Change on the MB Workflow Class.

In Figs 9 to 12, the results of the time required to complete
each class of input flow types under different load conditions
are shown with the five scheduling algorithms mentioned in the
previous section.

Fig. 11. The Effect of the Load Change on the ED Workflow Class.

Fig. 12. The Effect of the Load Change on the HC Workflow Class.

Regarding Figures 9 through 12, as expected, increasing the
amount of load in the resources will increase the time needed
to execute the workflow. However, among the scheduling
algorithms used, the BNCP and MaxMin algorithms exhibit the
best performance and MinMin's worst performance. According
to the obtained results, between different types of workflow,
HC and ED classes have demonstrated higher sensitivity to
increasing the load level of their resources so that by increasing
the load, the execution period of the work streams is
substantially increased. These results are similar to those
reported in [15].

0

2

4

6

8

10

12

14

16

18

20

0.250.50.7511.251.51.752

R
u

n
T

im
e(

se
c
)

workload Scale

FCFS

MCT

MinM

in

0

5

10

15

20

25

30

35

40

0.250.50.7511.251.51.752

R
u

n
T

im
e(

se
c
)

workload Scale

FCFS

MCT

MinMi

n

0

5

10

15

20

25

30

35

0.250.50.7511.251.51.752

R
u

n
T

im
e(

se
c
)

workload Scale

FCFS

MCT

MinMin

0

2

4

6

8

10

12

14

16

0.250.50.7511.251.51.752

R
u

n
T

im
e(

se
c
)

workload Scale

FCFS

MCT

MinMi

n

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

521 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION AND FUTURE WORK

In this paper, a simulator for evaluating workflows based
on linear switching model is presented. The linear switching
model used is capable of accurate representation of variation in
computational resources processing power, so the simulator
has been able to accurately assess the performance of workflow
scheduling algorithms in the face of variation in the power of
resources. By using this simulator, five workflow scheduling
algorithms were evaluated to execute workflows created on the
basis of the NGB benchmark. Due to the high rate of failures in
distributed environments, the issue of dealing with them has
been an important place in the recent researches, and
scheduling algorithms are introduced with the approach of
dealing with the failures. As the future work, we can also add
the possibility of supporting this kind of algorithms, which are
for instance the check-pointing algorithms.

ACKNOWLEDGEMENT

We are grateful to Islamic Azad University, Quchan branch
authorities, for their useful collaboration.

REFERENCES

[1] Q.Y. Chen, et al. “Research of Dependent Tasks Scheduling Algorithm
in Cloud Computing Environments,” InITM Web of Conferences 2016
(Vol. 7, p. 08001). EDP Sciences.

[2] Nesmachnow S, et al. “Energy-aware scheduling on multicore
heterogeneous grid computing systems,” Journal of Grid Computing.
2013 Dec 1;11(4):653-80.

[3] Dolkhani E, et al. “Assignment look-ahead HEFT for scheduling
workflows of communicating tasks,” InTelecommunications (IST), 2016
8th International Symposium on 2016 Sep 27 (pp. 649-653). IEEE.

[4] S. Selvarani, G.S. Sadhasivam. “ Improved cost-based algorithm for task
scheduling in cloud computing,” InComputational intelligence and
computing research (iccic), 2010 ieee international conference on 2010
Dec 28 (pp. 1-5). IEEE.

[5] J. Yu and R. Buyya, “A taxonomy of workflow management systems for
grid computing,” Journal of Grid Computing, vol.3, no. 3-4, pp. 171-
200, 2005.

[6] H.tabatabaee, "(static and Dynamic) Task scheduling Modeling by linear
switching state space ", PhD thesis, 2011.

[7] Carl S. Adorf, et al., “Simple data and workflow management with the
signac framework”, Computational Materials Science, 220–229, 2018.

[8] José Francisco Colom, et al., “Scheduling framework for distributed
intrusion detection systems over heterogeneous network architectures”,
Network and Computer Applications, S1084-8045(18)30041-9, 2018.

[9] A. Takefusa, et al. “Overview of a performance evaluation system for
global computing scheduling algorithms,” In High Performance

Distributed Computing, 1999. Proceedings. The Eighth International
Symposium on, pp. 97-104. IEEE, 1999.

[10] A. Sulistio, et al., “A toolkit for modelling and simulating data Grids: an
extension to GridSim,” Concurrency and Computation: Practice and
Experience, vol. 20, no. 13, pp. 1591-1609, 2008.

[11] W. M. Jones, et al., “Characterization of bandwidth-aware meta-
schedulers for co-allocating jobs across multiple clusters,” The Journal
of Supercomputing, vol. 34, no. 2, pp. 135-163, 2005.

[12] Y. Caniou and J.-S. Gay. “Simbatch: An API for simulating and
predicting the performance of parallel resources managed by batch
systems,” in European Conference on Parallel Processing. 2008.
Springer.

[13] C. Dobre, F. Pop, and V. Cristea. “A simulation framework for
dependable distributed systems,” in 2008 International Conference on
Parallel Processing-Workshops. 2008. IEEE.

[14] K. Kurowski, et al. “Grid scheduling simulations with GSSIM. in
Parallel and Distributed Systems,” 2007 International Conference on.
2007. IEEE.

[15] M.A. Belkoura and N. Lopez-Benitez, “TSM-SIM: A Two-Stage Grid
Metascheduler Simulator,” International Journal of Grid Computing &
Applications, vol. 2, no. 4, pp. 11, 2011.

[16] A. Hirales-Carbajal, et al. “A grid simulation framework to study
advance scheduling strategies for complex workflow applications,” in
Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on. 2010. IEEE.

[17] W. Chen and E. Deelman. “Workflowsim: A toolkit for simulating
scientific workflows in distributed environments,” in E-Science (e-
Science), 2012 IEEE 8th International Conference on. 2012. IEEE.

[18] R.N. Calheiros, et al., “CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms,” Software: Practice and Experience, vol. 41,
no. 1, pp. 23-50, 2011.

[19] F. Howell and R. McNab, “SimJava: A discrete event simulation library
for java,” Simulation Series, 1998. 30: p. 51-56.

[20] M. Frumkin and R.F. Van der Wijngaart, “Nas grid benchmarks: A tool
for grid space exploration,” Cluster Computing, vol. 5, no. 3, pp. 247-
255, 2002.

[21] T.D. Braun, et al., “A comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous distributed computing
systems,” Journal of Parallel and Distributed computing, vol. 61, no.6,
pp. 810-837, 2001.

[22] J. Blythe, et al. “Task scheduling strategies for workflow-based
applications in grids,” in CCGrid 2005. IEEE International Symposium
on Cluster Computing and the Grid, 2005. 2005. IEEE.

[23] A. Atef, et al. “Lower-bound complexity algorithm for task scheduling
on heterogeneous grid,” Computing. 2017:1-21.

[24] B. Javadi, et al. “The Failure Trace Archive: Enabling the comparison of
failure measurements and models of distributed systems,” Journal of
Parallel and Distributed Computing, vol. 73, no. 8, pp. 1208-1223, 2013.

