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Abstract—Due to the dynamics of the power of resources in 

non-dedicated computing environments such as Grid, and on the 

other hand, the autonomy of these environments and, 

consequently, the impossibility of repeating the operating 

scenarios to compare the algorithms created in this context, 

creating an environment by providing such conditions is 

necessary. In this paper, a framework for evaluating workflow-

scheduling algorithms has been created, focusing on the 

dynamics of the power of resources in distributed environments. 

This framework based on a switching model that is capable of 

considering the change in the processing power of resources with 

high precision. Using the ability of this framework, the 

effectiveness of several different workflow scheduling algorithms 

has been evaluated. 

Keywords—Scheduling framework; workflow scheduling; grid; 

switching based framework 

I. INTRODUCTION 

The issue of finding suitable allocation of tasks to 
resources, also referred to as scheduling, is one of the issues 
that has long been considered by researchers, and so far many 
studies have been done about it. These studies have often 
presented several solutions considering different assumptions 
regarding the characteristics and structure of tasks 
(independent or heterogeneous [1]) or resources (homogeneous 
or heterogeneous [2] proprietary or non-proprietary, with 
complete or incomplete communication, etc.) and by pursuing 
different goals (reducing run-time [3], minimizing cost [4] and 
reducing energy consumption [2]). Due to the many 
applications in various areas, the scheduling of the workflows 
is still considered a matter of interest to researchers. Workflow 
scheduling is a process in which resources are assigned to the 
tasks included in the workflow. Grid is one of the most 
important computational platforms for deploying and executing 
workflows. Workflow management systems such as Pegasus, 
DAGMan/Condor and Karajan/Globus manage the definition, 
management, and execution of workflows on computational 
resources [5]. These software systems perform these tasks 
using the low-level services provided by the middleware of the 
grid. In general, the workflow characteristics are generated by 
the user using the workflow modeling tools. These attributes 
define workflow activities (tasks) and the data and control 
dependencies between them. At runtime, the grid workflow 

engine controls the execution of the workflow using the 
middleware of the grid. 

For those who are not access to these platforms, creating 
such platforms is expensive and time-consuming. However, 
even those who have access to such platforms cannot use the 
resources to the desired extent, and the experiment is usually 
limited to a small number of resources. In addition, the use of 
these platforms requires empirical skills in deployment, high 
budget and long time to get results. It is also difficult to 
provide specific experimental scenarios, and even in some 
situations it is impossible, unrepeatable and uncontrollable. To 
overcome such constraints, creating a simulation framework is 
required. There are different simulators or frameworks for 
supporting simulation-based studies in the grid environment. A 
simulation framework is needed to accurately model the 
behavior of the environment in order to obtain logical results. 
One of the obvious features of the resources in the grid 
environment is fluctuation of the amount of their shared 
computing power for processing of the tasks assigned to the 
Grid environment, however, in current simulators, these 
resource fluctuations are not considered accurately. Given this, 
the results provided by these simulators lack the precision 
about the effect of the change in the power provided by the 
resources on the performance of scheduling algorithms. 

In this paper, a framework is developed that provides an 
accurate assessment of the performance of work flow 
scheduling algorithms in distributed platforms with non-
dedicated resources that are prone to encountering irregular 
changes in processing power. Unlike other existing simulation 
tools (Section 2), this framework is based on the theoretical 
model [6], which is based on linear switching state space. This 
model is able to represent and accurately describe the process 
of executing tasks in a distributed platform with arbitrary 
computing and communication properties and structures in the 
desired time scales (Section 3). In this paper, by introducing 
the above modeling method, we will discuss how to use it to 
create a framework that is capable of considering the dynamics 
of the power of the resources during the execution of 
workflows. The Structure of this paper is as follows: In section 
2, some of the frameworks and simulation tools in the grid and 
cloud computing platforms are presented. In section 3, we 
introduce the linear switching model and then present the 
proposed simulator architecture based on this model. In section 
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4, the experiments are carried out and the results have been 
discussed. Finally, in Section 5, the conclusion of this paper is 
presented. 

II. LITERATURE REVIEW 

There are many different frameworks and simulators with 
different objectives for distributed platforms, such as grid and 
cloud .These tools have been created with the goals such as 
facilitating common tasks or providing the ability to perform 
experiments in a controlled and repeatable environment. 

In general, the frameworks are seeking to facilitate the 
accomplishment of some common tasks that are needed in a 
field. For instance, in [7], the signac framework is proposed to 
facilitate the integration of different formats of specialized 
data, tools, and workflows. The signac framework provides all 
basic components required to create a well-defined and thus 
collectively accessible and searchable data space, simplifying 
data access and modification through a homogeneous data 
interface that is largely agnostic to the data source, i.e., 
computation or experiment. In recent years, due to the spread 
of cyber attacks and the importance of providing strategies and 
solutions for cyber-security, development and deployment of 
intrusion detection systems has gained special attention. These 
systems should permanently control ongoing operations in the 
environment in order to identify potential attacks, thus 
requiring high - power computational platforms to support this 
volume of computation. In [8], a framework is presented which 
provides the appropriate distribution of these calculations with 
regard to the security requirements and variable availability of 
the computational resources(including personal and enterprise 
resources, as well as cloud services), and also keeping in mind 
to minimize the cost associated with the use of external 
resources (cloud services). 

One of the objectives of the simulation tools is the study of 
architecture, components and functionality of the simulated 
platform. Bricks simulator [9] is a Java simulation framework 
used to evaluate the performance of programs and scheduling 
algorithms in Grid environments. The Bricks simulator 
includes a discrete event simulator, simulation of computing 
environment and grid data, as well as network components. 
This simulator provides an analysis and comparison of 
different scheduling algorithms on simulated grid settings, 
taking into account the impact of network components on 
overall efficiency. The GridSim simulator [10] is also a 
simulation model for Grid and Grid applications. The simulator 
consists of a network simulation component that is used to 
simulate network topologies, connections and switches, as well 
as resource failures in Grid applications simulation. GridSim 
simulator lacks the direct support to schedule workflows. The 
BeoSim simulator [11] is implemented with the purpose of 
studying the scheduling algorithms of parallel tasks in the field 
of multi-cluster computational Grid. This simulator can be 
driven by real or artificial load. Simbatch simulator [12] 
provides the ability to evaluate scheduling algorithms for batch 
schedulers. The Monarc 2 simulator [13] is a simulation 
framework designed to provide a design and optimization tool 
for large-scale distributed computing systems. Although 
Monarc 2 has provided two simple scheduling modules, its 
main purpose is to provide a realistic simulation of distributed 

computing systems designed to process physics data, and to 
propose a flexible and dynamic environment to evaluate the 
performance of a range of data processing architectures. The 
GSSIM simulator [14] has been developed based on the 
GridSim toolkit. The simulator provides a simple Grid 
scheduling framework which capable of simulating a wide 
range of scheduling algorithms in heterogeneous Grid 
infrastructures in several levels. However GSSIM faces 
problems such as slow execution and scalability. 

None of the aforementioned simulators have direct support 
for workflows, so in recent years several simulators have been 
developed for such applications. TSM-SIM [15] is a simJava-
based simulator that supports the simulation of dynamic 
resource grid and tasks and provides an interface for sending 
workflow programs as a unit. The tGSF tool [16] extends the 
Teikoku Grid scheduling framework, which provides a 
platform for simulating the scheduling of workflows and 
parallel tasks in the trace-based grid. Supporting workflow 
scheduling is loosely coupled in which work, selection, and 
assignment strategies are performed independently. Another 
example of grid scheduling simulators is WorkflowSim [17]. 
The focus of this simulator is on failures and on cluster-based 
scheduling algorithms. The WorkflowSim simulator is based 
on the features and services provided by CloudSim [18]. 

Among the simulators above, only the TSM-SIM simulator 
[15] explicitly considers the dynamics of resources by 
employing a background load generator and taking into 
account statistical distributions, while other simulators 
considered the computing power of resources at a constant 
value which is based on the average amount of resources 
processing power. In the next section, the system is firstly 
modeled using linear switching, and then the structure and 
performance of the proposed simulator are discussed. 

III. THE PROPOSED SIMULATOR 

In this section, at first, the system modeling will be 
introduced by the linear switching model that defines the basis 
for the proposed framework and then we will look at the 
structure and function of the proposed simulator components. 

A. Modeling Task Scheduling problem in State Space 

The problem of scheduling tasks in a heterogeneous 
resource environment has a nonlinear nature, but it can be 
transformed into a linear space switching model with a number 
of nonlinear constraints on the input vector. Due to the nature 
of the scheduling problem, there are complex and numerous 
relationships for the space state form of the system that may 
lead to complexity of design based on them, so the scheduling 
problem is represented in the form of relation (1)(At each step 
k). 

 [   ]     (   [ ]         [  

   
]    )          (1) 

In the following sections, we define variables used in the 
above modeling of task scheduling problem. 

1) Status Variable (X): The variable X is a vector whose 

number of elements is equal to the number of task in input 

workflow and the value of each element is a number between 

0 and 1 that determines the amount of work remained for that 
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task in step k. The initial value of the state variable is usually 

equal to one. The system state variable with n task is displayed 

as follows: 
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     [   ]                          (2) 

For example, suppose that state variable of a system with 5 
tasks in step k is as follows: 
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The values in the above state variable states that task 1 is 
fully executed, tasks 2 and 4 have not yet been executed, and 
40% and 80% of tasks 3 and 5 is remained respectively. 

2) Control Vector(U): The control vector U is a matrix 

with m rows (number of resources) and n columns (number of 

tasks). 

The element       ,           ،            
determine the amount of use of the resource   for the task  , 
which is a number between zero and one. In each step, 
maximum number of none zero elements in each row of this 
matrix is one, and the remaining elements of that row are all 
zero. This restriction implies that at every step, each resource is 
only able to perform one task. 

3) Runtime Length Matrix ( ):   is a matrix with n rows 

and m columns, which its element     specifies the execution 

time of the task   on the resource  .( m is the number of 

system resources and n the number of tasks in the workflow). 

4) Example of problem solved by the proposed Model: In 

Figure 1, a directed acyclic graph (DAG) for an application 

and execution time of its tasks on two resources P0 and P1 are 

provided. The aim is to schedule this application by the 

controller. (    ) 

 
Fig. 1. An Example of a DAG and the Corresponding Computational Cost 

Table. 

Figs 2 and 3 show an assignment of runtime matrix (θ) and 
control vector (U) to clarify how a sample schedule can be 
represented using linear switching state space for above DAG. 
In Fig. 4, the Gantt chart corresponding to this schedule is 
shown. As can be seen, DAG execution ends in time of 25. 

 

Fig. 2. The U Matrix Generated based on the DAG Shown in Fig. 1. 

 
Fig. 3. The θ Matrix Generated based on the DAG Showed in Fig. 1. 

 

Fig. 4. Gantt Charts of Example Fig. 1. 

5) Modeling the resource processing power uncertainty: 

Processing power of each resource determines the duration of 

each task's execution, therefore, uncertainty in the processing 

power of a resource can be shown by changing the time 

needed to execute tasks on that resource. Because this 

information is stored in the θ matrix, the change in this matrix 

corresponds to the change in the processing power of the 

resources. Therefore, the proposed model is capable of 

displaying uncertainty in processing power. 
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B. Architecture of Proposed Simulator 

Due to the ability of the representation and modeling of 
uncertainty in the processing power of the resources available 
in the environment by linear switching state space model 
mentioned in previous section, we use it to create a tool to 
simulate execution of workflows in networked environments. 
To do this, we propose a simulator with layered loosely 
coupled architecture which is shown in Fig 5. In following we 
introduce each of the proposed simulator components. 

 
Fig. 5. Architecture of the Proposed Simulator. 

1) Event manager: The event manager is responsible for 

recording, storing and reporting the occurrence of internal 

events to other simulator components. The event manager uses 

SimJava [19], which provides an inter threaded interfacing 

framework that allows the sending of tagged events from one 

entity to another in a Java process. SimJava entities are 

connected through ports and can communicate with each other 

by sending and receiving objects related to tagged events. 

2) Resource manager: The resource manager is almost the 

main component in the proposed simulator, which has several 

important responsibilities. This component acts as task 

acceptance manager by interacting with the higher layer of 

itself, and by accepting the ready tasks and their related 

mappings provides the conditions for executing them on the 

resources. More precisely, the resource manager, according to 

the amount of required processing of the tasks, and the current 

computing power of the resources on which each of the tasks 

is mapped, will determine the duration of their execution, and 

will notify their execution termination event to the event 

manager. 

It is worth noting that in the proposed simulator, it is 
assumed that each resource can only accept a task at any time. 
On the other hand, this component is responsible for 
monitoring and tracking changes in each resource and, if any 
changes occur, will take appropriate action. One of these 
changes could be the change in resource computing power, 
resource failure, and resource release. Some of these events are 
fully managed by the resource manager, while for other events, 
after the necessary steps are taken, the event will be re-notified 
to other interested simulator components. 

3) Workflow management layer: Topmost layer of the 

simulator is the workflow management layer which consists of 

three components of the workflow manager, the workflow 

engine and the scheduler. 

The workflow manager is responsible for the interactions 
with below layer and the coordination of other components in 
this layer. The workflow engine operates similar to the 
workflowSim [17] workflow engine component. This 
component determines the ready tasks for execution, using the 
existing dependencies between the tasks as well as the tasks 
whose execution is completed, and then places them in the 
ready tasks repository. 

The scheduler is considered as an abstract component, so it 
can be extended by user to schedule tasks in the desired 
method. For this purpose, the necessary information has been 
provided to the scheduler, which includes a ready- task 
repository, input workflow structure, specification and current 
status of the available resources in the environment. According 
to this information, scheduler should create proper mapping. 

4) Adaptation of the linear switching state space model 

and proposed simulator: In the proposed simulator, the 

process of simulating a workflow is divided into several 

execution phases. In each execution phase, environment 

conditions are assumed to be constant. From environment 

conditions, we mean the resources computing power and the 

mapping of tasks to resources. A new execution phase will 

start with each event occurring. As mentioned before, the 

resource manager is the main component in the proposed 

simulator and a large part of the simulator function and 

consequently the implementation of the Linear switching state 

space model is implemented by it. One of the most important 

tasks of the resource manager is the reflection of the required 

changes in the model parameters at the end of each execution 

phase. In the following, we will focus more precisely on the 

functions of this component. 

One of the responsibilities of the resource manager is 
maintaining and keeping track of the status of the tasks. 
According to the linear switching state space model, the 
execution state of a workflow is shown at any time using the 
status vector X, so, the resource manager in order to handle this 
responsibility should update the values of this vector at any 
time in accordance with the current status of the tasks. 

Another responsibility of the resource manager is to take 
appropriate actions in the face of changes in resource 
conditions, such as computing power fluctuation and failure. In 
the linear switching state space model, the matrix θ shows the 
amount of time required to execute each task according to the 
current processing power of each resource. As the change in 
the processing power of a resource is considered to change the 
amount of time required to execute the tasks on the resource, 
therefore, in order to reflect the desired change in the switching 
model, the elements related to the resource in runtime matrix 
must be changed. Given the pursuit of changes in resource 
computing power by resource manager, it will also be 
responsible for maintaining and enforcing the necessary 
changes to the θ matrix. 
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Now, we deal with the resource failure and how it reflects 
in the switching model. To do this, it should be noted that the 
failure of a resource in addition to the change in the resource 
condition (θ matrix) may also cause changes in the execution 
status of the tasks (X vector) as well. In order to reflect the 
failure of a resource, the resources manager set elements 
corresponding to the resource in question in θ matrix to infinity 
value. In addition, if the resource was executing a task, the 
status of the task will also be changed to its original value 
(value 1). If the failed resource is healed, the resource manager 
resets the elements corresponding to the resource in θ matrix to 
original processing power. 

The third component of the switching model is the control 
matrix U. As discussed in the previous section, the control 
matrix determines the mapping of tasks to resources. Given 
that the mapping of tasks on resources is assigned to the 
scheduler, the determination of the values of this matrix will 
also be carried out by the scheduler. However, the actual 
maintenance of this matrix is carried out by the resource 
manager; In fact, the scheduler creates only its intended 

mapping and by providing this mapping to the resource 
manager resource manager, the resource manager will create a 
control matrix. 

With these components, the resource manager at any time 
will be able to determine the state of execution. For this 
purpose, as state above, the resource manager needs to apply 
any change in conditions in the corresponding components. 
The resource manager at the end of each execution phase, with 
respect to the stability of the environmental conditions in the 
execution phase (values of the matrices θ and U) and given 
duration of the execution phase (ΔT), calculates the processing 
requirements of each task, and determine the new values of the 
status vector (X). In fact, the resource manager at the end of 
each execution phase determines the status vector values (X) 
before the change occurs in the components of the switching 
model (matrix θ or U). In Fig. 6, the function and role of each 
of the simulator components are displayed in the process of 
executing a workflow. It is necessary to express that in this 
diagram only a part of the function of the simulation 
components is shown. 

 

Fig. 6. The Functions of Each Simulator Component in the Process of Executing a Workflow. 
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Fig. 7. The Amount of Resource No. 1515 Load at the Notre Dame 

University in the First Six Months of 2007. 

IV. EXPERIMENTS AND RESULTS 

In order to evaluate the proposed simulator, five different 
scheduling algorithms, FCFS, MCT, MinMin, MaxMin and 
BNCP have been tested under different conditions of resource 
computing power. The NGB benchmark [20] has been used to 
investigate the effect of power resource fluctuations on 
different workflows. In the next section, a brief introduction of 
this benchmark are given at first, and then data set used in 
experiments to make changes in the conditions of the resources 
including computing power changes and failures are 
introduced. In the final section, the results of simulating the 
execution of this benchmark by the mentioned algorithms are 
presented and discussed. 

A. NGB Benchmark 

NGB benchmark, designed by NASA, is based on the NAS 
parallel benchmark [20]. These benchmarks are defined as 
dataflow diagrams, in which the nodes and edges respectively 
represent computations and communications. The NGB 
benchmark includes four families of problems include 
Embarrassingly Distributed (ED), Helical Chain (HC), 
Visualization Pipeline (VP) and Mixed Bags (MB)[15]. ED 
presents a class of grid programs called the study of 
parameters. HC models grid application with long chains of 
repeating programs, such as a set of flow computations 
executed in order. The VP models the workflow programs of 
the grid that combine multiple chains of composite processing. 
This benchmark, models Grid programs that the final step of 
their repeating tasks are visualization/analysis. MB models grid 
applications that combine their preprocessing tasks, 
calculations, and calculations of visualization, but combine 
with asymmetric communication. 

B. Used scheduling Algorithms 

Four scheduling algorithms have been used to evaluate the 
performance of the proposed simulator: FCFC, MCT, MinMin, 
MaxMin and BNCP. 

 FCFC: The initial version of the scheduling algorithm 
that used in this simulator. In this algorithm, each task 
is assigned to the next available source in the order of 
its entry, regardless of the expected completion time 
required. If multiple resources are available, one of 
them is selected at random. 

 MCT (Minimum Completion Time): This algorithm 
[21] assigns to each task a resource with the best 
completion time in an arbitrary order. 

 MinMin: This algorithm [22] initially begins with a set 
of ready tasks and then arranges them in the order of 
their completion time. In the following, a task with a 
minimum completion time is selected and assigned to 
its corresponding resource. Then, the task that has just 
been mapped will be sent to the queue and the process 
will be repeated until all ready tasks are scheduled. The 
idea of this algorithm is to create an optimal path to 
reduce the total runtime. 

 MaxMin: Similar to the MinMin algorithm, the 
MaxMin algorithm selects tasks with a maximum 
completion time, and assigns it the best available 
resource. The idea of MaxMin is to avoid long-term 
tasks. 

 BNCP: This algorithm [23] is a list-based algorithm 
which similar to other list-based algorithms composed 
from two steps include prioritizes tasks and assigning 
them to nodes. In the task prioritization phase, a simple 
mechanism is used in which critical tasks are selected 
as soon as they are ready. At the node assignment 
phase, in order to remove unnecessary delays that may 
occur due to the slowness of communication, a 
replication based mechanism is used, in which a 
resource is selected for the current assignment, which 
can significantly improve the execution time of the 
current task by replicating the critical task parent. 

C. Changes in Resource Status 

To simulate changes in resource status, including changes 
in processing power, and also failures and malfunctions, data 
from the resources trace of the Notre Dame University in early 
2007, which is part of the FTA dataset [24] has been used. This 
trace includes the CPU load (percent) and the idle time 
(seconds). In Figure 7, the loading rate in the first 6 months of 
the resource number 1515 used in the experiments is shown. In 
Figure 8, the percentage of this resource is shown in each of 
the states in each month. It should be noted that in conducting 
experiments, the availability of a resource in any of status other 
than the Available status, is considered as non-Availability, in 
other words, failure. 
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Fig. 8. Proportion of Availability of Resource No. 1515 in Different 

Situations. 

D. Evaluation Results 

In the experiments, the load for the second month of the 
data set introduced in the previous section is used as the base 
load. In order to simulate the low - load conditions of the 
system, this base load is reproduced in different scales. For 
example, to double the workload on resources, the load on the 
base load is multiplied by 2. Additionally, a collection of each 
NGB Grid application is generated by different types of 
families (ED, HC, VP, and MB) and provided as input to the 
simulator. The simulation environment is considered as a 
collection of 10 processing resources in a fully connected 
network. The power of each resource is determined by 
MFLOPS (the number of floating point commands that run s in 
one second, in millions). Table 1 shows the processing power 
of each of these resources. 
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TABLE I.  THE COMPUTING POWER OF THE RESOURCES USED IN 

SIMULATION 

resource 

Number 

Processing Power 

(MFLOPS) 

1 9320 

2 9320 

3 10400 

4 6400 

5 6400 

6 6400 

7 12000 

8 9320 

9 12000 

10 9320 

 
Fig. 9. The Effect of the Load Change on the VP Workflow Class. 

 
Fig. 10. The Effect of the Load Change on the MB Workflow Class. 

In Figs 9 to 12, the results of the time required to complete 
each class of input flow types under different load conditions 
are shown with the five scheduling algorithms mentioned in the 
previous section. 

 

Fig. 11. The Effect of the Load Change on the ED Workflow Class. 

 
Fig. 12. The Effect of the Load Change on the HC Workflow Class. 

Regarding Figures 9 through 12, as expected, increasing the 
amount of load in the resources will increase the time needed 
to execute the workflow. However, among the scheduling 
algorithms used, the BNCP and MaxMin algorithms exhibit the 
best performance and MinMin's worst performance. According 
to the obtained results, between different types of workflow, 
HC and ED classes have demonstrated higher sensitivity to 
increasing the load level of their resources so that by increasing 
the load, the execution period of the work streams is 
substantially increased. These results are similar to those 
reported in [15]. 
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V. CONCLUSION AND FUTURE WORK 

In this paper, a simulator for evaluating workflows based 
on linear switching model is presented. The linear switching 
model used is capable of accurate representation of variation in 
computational resources processing power, so the simulator 
has been able to accurately assess the performance of workflow 
scheduling algorithms in the face of variation in the power of 
resources. By using this simulator, five workflow scheduling 
algorithms were evaluated to execute workflows created on the 
basis of the NGB benchmark. Due to the high rate of failures in 
distributed environments, the issue of dealing with them has 
been an important place in the recent researches, and 
scheduling algorithms are introduced with the approach of 
dealing with the failures. As the future work, we can also add 
the possibility of supporting this kind of algorithms, which are 
for instance the check-pointing algorithms. 
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