
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

A New Steganography Technique using JPEG
Images

Rand A. Watheq, Fadi Almasalha, and Mahmoud H. Qutqut
Faculty of Information Technology
Applied Science Private University

Amman 11931 Jordan

Abstract—Steganography is a form of security technique that
using ambiguity to hide a secret message within an ordinary
message between senders and receivers. In this paper, we propose
a new steganography technique for hiding data in Joint Photo-
graphic Experts Group (JPEG) images as it is the most known
type of image compression between the lossy type compressions.
Our proposed work is based on lossy compression (frequency
domain) in images. This type of compression is susceptible to
change even for the smallest amount of change which raises a
difficulty to find a proper location to embed data. This should be
done without affecting the image quality and without allowing
anyone to notice the hidden message. From the senders side,
first, we divide the image into 8*8 blocks, then apply a Discrete
Cosine Transform (DCT), Quantization, and zigzag processes
respectively. Second, the secret message is embedded at the end
of each selected zigzag block array using the best method of
our experimental results. Third, the rest of the code applies
the Run Length Code (RLC), Different Pulse Code Modularity
(DPCM) and Huffman encoder to obtain the compressed image
that includes the embedded message. From the receiver’s side, we
will reverse the previous steps to extract the secret message using
an encrypted shared key via a secure channel. Our experimental
results show that the best array content size of zigzag computed
coefficients are between 1 to 20. This selection allows us to utilize
more than half of the image blocks to embed the secret message
and the difference between the cover image that holds the secret
message and the original cover image is very minimal and hard
to detect.

Keywords—Steganography; hide secret message; JPEG image;
lossy compression; frequency domain; zigzag

I. INTRODUCTION

We live in the era of technology, which involves in growing
use of the Internet; so we need a secure transfer for a secret
message through the Internet. Data hiding techniques have
lately become important in several application fields. The
importance of data hiding techniques stems from the trans-
mission medium is being not secure. Hence, some methods are
needed to make it difficult for the unauthorized user to extract
information from the images. The primary motivations to hide
data are to protect personal, sensitive and private confidential
data [1].

A data hiding technique is an innovative type of secret
communication technologies. It is a form of embedding data
into digital media (image, video, audio, text) with a minimum
amount of perceivable degradation to the host signal, for the
aim of identification, control access to digital media and copy-
right. The techniques used for data hiding differ depending
on two factors; the quantity of data needs to be hidden, and

the required invariability of these data to manipulation [2].
Any loophole to fill data in a host signal, either statistical
or perceptual are possible targets for removal by lossy signal
compression [2]. The answer to a successful data hiding is
to find holes that are suitable for utilization by compression
algorithms. There are different techniques of data hiding like
watermarking, steganography, and cryptography.

To this end, we propose a new steganography technique
for hiding data in JPEG images. Our proposed work is based
on lossy compression (frequency domain) images; which raise
a difficulty to find a proper location to embed data without
affecting image quality and without allowing anyone to notice
the hidden message. Our work focuses on how to embed
and extract secret data without affecting the original image.
After a comprehensive study of the JPEG encoding process,
it was found that the best location to embed data is in a
zigzag order based on several experiments. From the senders
side, the work of this paper firstly divides the image into 8*8
blocks. Then, we apply the Discrete Cosine Transform (DCT),
Quantization, and zigzag processes in order to calculate the
required blocks for the secret message. After that, the process
of embedding the data in the selected blocks will start based on
a specific range. The rest of the code applies the Run Length
Code (RLC), Differential Pulse Code Modulation (DPCM) and
Huffman encoder as before to obtain the compressed image
that includes the embedded message. During the previous
process, the secret message is embedded at the end of each
selected zigzag block array using the best method of our
experimental results. The sender sends the compressed image
to a communication channel, and the receiver will reverse the
previous steps to extract the hidden data using a Shuffled Block
Candidate Array (SBCA) array that has been sent via a secure
channel. However, the receiver can use the shared private
key to generate the same SCBA generated on the sender.
Sharing the private keys allows both sender and receiver to
exchange messages without the need to send the SCBA of
each embedding process. In this paper, we choose to share the
SCBA array for the sake of simplicity and to focus more on
the proposed embedding technique.

The remainder of this paper is organized as follows. In
Section II, we overview the background topics of steganog-
raphy and image compression. Section III overviews related
work of our paper. In Section IV, we introduce and describe
our proposed technique and its procedures. Our experiments
and results are presented in Section V. Section V describes the
conclusion of the paper.

www.ijacsa.thesai.org 751 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

II. BACKGROUND

In this section, we provide background topics of steganog-
raphy and image compression.

A. Steganography

The word steganography derived from the Greek language
and means ”covered writing” [1]. Steganography is a science of
hiding message, file, image or other data types within another
data file, in a way to prevent anyone to know if there is
message hiding in the original message. Fig. 1 shows the
steganography steps. In the following, we describe the different
types of steganography.

1) Steganography based on Protocols: There are three
main types of steganographic protocols as shown below [3].

• Pure Steganography: This type assumed the sender and
receiver must have access to the process of embedding
and extraction.

• Secret Key Steganography: In this type, the sender and
the receiver use the same key to hide and extract the
secret message in a cover media.

• Public Key Steganography: The sender and the re-
ceiver use the different key to hide and extract the
secret message in a cover media.

2) Steganography based on Cover Media: There are five
types of Steganography based on the carrier object that
is used for hiding the secret data. These types are Audio
Steganography, Text Steganography, Image Steganography,
Video Steganography, and Network Steganography [4].

3) Steganography based on Domain: Steganography tech-
niques can be divided into two domain types as described
below.

• Spatial Domain: In this type, the secret message bits
are embedded in a cover image by directly changing
the pixel’s color values. An example of this type is
the Least Significant Bit (LSB) technique.

Fig. 1. Steganography steps overview (reproduced from [4]).

• Frequency Domain: In this type of techniques is tries
to embed the secret message bits in the frequency
domain coefficient of the cover image. An example
of this is the Discrete Cosine Transform (DCT) tech-
nique.

B. Image Compression

Image compression is the science/art of efficiently encoding
digital images to minimize the number of bits that are required
to represent an image [5]. Image compression divided into two
types as follows [6].

• Lossy Compression: The concept of this type is that
when data is compressed, it loses a portion of itself.
Therefore, there became a slight difference between
the image before compression and the image af-
ter decompression. In this type of compression, the
amount of loss can be adjusted to achieve the desired
compression ratio. Examples of this type are Joint
Photographic Experts Group (JPEG), Moving Picture
Experts Group (MPEG), and Moving Picture Experts
Group Layer-3 Audio (MP3).

• Lossless Compression: The concept of this type is that
when the data is compressed, it does not lose any
data. In other words, the reconstructed data after the
compression is identical to original data. The most
common techniques of this type are Huffman coding,
RLC, and Lempel–Ziv–Welch (LZW).

An image compression process contains two phases [7];
encoder and decoder.

1) Encoder: In this phase, we take an original image
and apply some steps to obtain a compressed image.
It contains multi-steps as shown in Fig. 2.

2) Decoder: In this phase, we use the result from the
encoder phase and apply inverse the steps (the steps
that applied in the encoder phase) to obtain a decom-
pressed image. It contains multi-steps as shown in
Fig. 3.

III. RELATED WORK

There are many research work on data hiding techniques
in multimedia data. We overview the latest research work
related to our paper in this section. H. Lu et al. propose an
algorithm for binary images that can embed a watermark in DC
component [8]. They combine the embedding watermarks in
the DC components of DCT and employing a biased binariza-
tion threshold. The results show that the embedding algorithm
provides some degree of robustness against conventional image
processing. M. Kaur et al. [9] propose a method using two
watermarks in a cover image. They embed the first watermark
in the middle frequency of the blue component. The second
watermark is embedded into magnitude coefficients of the
Discrete Fourier transform (DFT) in the form of local peaks.
They concluded that the Red Green Blue (RGB) model is
more suitable in case of repeating watermark than the YCbCr,
and the blue component is more suitable for embedding the
watermark. The work in [10] proposes a method using a secret
data and Laplacian sharpening method. The author compresses
the secret data using Huffman coding. After that, she embeds

www.ijacsa.thesai.org 752 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

it in a cover image using Laplacian sharpening method to
determine the useful hiding places based on a threshold value.
S. Sujatha et al. [11] propose a method to generate watermark
from the original image. First, they used low frequency, a
rescaled version with the help of Arnold transform to generate
a watermark. Second, they used a high frequency of Discrete
Wavelet Transform (DWT) to embed the watermark. This
method provides good robust against attacks such as JPEG
compression, scaling and rotation.

R. Preda proposes a method for image authentication using
a semi-fragile watermark in [12]. In this method, the author
used a semi-fragile watermark to detect malicious tampering in
the image and embedded a bit of watermark in the coefficient
by means quantization. He selected wavelet coefficient with
random permutation using a secret key to provide a higher level
of security. This method achieved decent image quality and
tampering detection resolution with a low watermark payload.
In work [13], the authors propose a method to embed a binary
watermark in a compressed color image. They embedded a
binary watermark in middle bands of (Y) luminance. This
method provided good watermark in colored images. M. Khan
et al. [14] propose a method that combined between DWT
and DCT. They applied DWT to an original image after that
applied DCT to High-High (HH) band to obtain matrix H.
They converted H matrix into four quadrants using zigzag.
Finally, they applied Singular Value Decomposition (SVD) in
each quadrant to embed the watermark. In research work [15],
the authors propose a method using DCT. They applied DCT
to a middle frequency of B plane and selected DCT (4, 3),
DCT (5, 2) to embed the watermark. This method provides fair
robust against different types of attack. M. Mundher et al. [16]
they propose a method using the preprocessing stage and
Discrete Slantlet Transform (DST). They used a preprocessing
stage to find the best channel. After that applies DST to the
selected quadrant to find the best frequency sub-band to embed
the watermark in the best frequency. This method employed
to ensure the imperceptibility and robustness of watermarked
images.

In the research work [17], the authors propose a method

Fig. 2. JPEG Encoder Compression (reproduced from [7]).

Fig. 3. JPEG Decoder Compression (reproduced from [7]).

using DWT in Hue, Saturation, and Intensity (HSI) color
space. First, selecting I plane from the original image (in HSI
form). Then, they apply DWT to it and select low-frequency.
Second, dividing the watermark image into 8*8 blocks. Fi-
nally, comparing both images based on entropy values, then
multiply the scaling factor. This method provides fair, robust
watermark to noise attacks. In [18], the authors propose a
method using 3D chaotic cat map, DWT and lifting scheme.
The irregular output of the chaotic cat map is used to embed
the secret message in a cover image. Then, they embedded
the secret message in the mean coefficient of DWT. Finally,
they applied lifted scheme to guarantee lossless extraction of
hidden information. The method provides good performance
and imperceptibility according to two measures (Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index (SSIM)).
The work in [5] proposes a method called Compressed En-
crypted and Embedded Technique (CEET). In this method,
they compressed a secret image using JPEG compression to
reduce the size of a secret image. After that, they selected
key randomly and applied encryption to the secret image
to increase security. Finally, they embedded a secret image
in a cover image using LSB by inserting at least 2 bits.
This method collected different techniques to reach the goal
of steganography which is embedding highest possible rate
while remaining undetectable to steganalysis. J. Mazumder et
al. [19] propose a method using DWT and optimized message
dispersing. They used a high frequency of all color components
(R, G, B) to embed a secret message. They start from the last
column of each of the components from top to bottom based
on the length of the message. Finally, they used Mean Squared
Error (MSE) and PSNR to measure the imperceptibility of the
method that shows it is acceptable compared to other methods.

G. Swain in [20] proposed a method using the LSB but in
new method Group of Bits Substitution (GBS). Firstly, they
appends length of message in the beginning of the binary
message, after that embedding one bit of the secret message
in the cover image if size of cover image ≥ size of secret
message or embedding two bits of secret message in one
byte of the cover image if size of cover image size of

www.ijacsa.thesai.org 753 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

Fig. 4. Overview of Our Proposed Technique.

secret message divided by 2. Finally, this method provides the
security to a higher level. In [21], the authors propose a method
using ”LSB substitution” and ”Arnold transform”. They used
”Arnold transform” to encrypt the secret images using different
keys. Then, embedding the first Most Significant Bit (MSB)
(in secret image 1) in last three LSB once using red pixel
of the cover image, again using green pixel and a blue pixel.
Results reveal that the method successfully secures the high
capacity data keeping the visual quality of transmitted image
satisfactory. S. Kumar et al. [22] propose a method using
index based on a chaotic mapping. They used a chaotic map
to generate pseudo-random numbers (index). The index is
used as a position to embed a message in a cover image,
and they used LSB substitution to embed bit pixels in the
cover image. In [23], the authors propose a system using
three methods Huffman, zigzag and Pptimal Pixel Adjustment
Process (OPAP). They used Huffman to compress the secret
message to reduce the size of the secret message and to provide
high embedding capacity then, used Zigzag scanning to select
the pixels that the secret message be hidden in them and used
OPAP to enhance the quality of the Stego-images to keep
minimizing embedding error.

We test the effect of modification in the zigzag order using
three methods then selected the best method that was adopted
in this paper to hide data; the selected method provides better
security with high embedding capacity and a better Stego-
image quality than the existing system.

IV. OUR PROPOSED TECHNIQUE

The visual quality of Stego-image (imperceptibility), the
security level (robustness) and embedding capacity are three
basic principles that are used to evaluate the performance of
the steganographic scheme. This section presents our proposed
solution illustrated in Fig. 4, which provides a new method
for embedding and extracting secret messages in zigzag order
using JPEG image format. Our proposed technique consists

Fig. 5. Random number generation phase (reproduced from [24]).

Algorithm 1 Generating Shuffled Candidate Block Array
Input:
Cover Image M.
Private key K.
Zigzag array threshold value ZT

1: Create empty Candidate Block Array (CBA).
2: Create empty array Shuffled Candidate Block Array

(SCBA).
3: Get No of Micro Blocks N from cover Image M.
4: for each B of N Blocks do
5: Retrieve Zigzag Array Z of B Block.
6: if Index of last Coefficient value of Z >= ZT then
7: Save the location of this block into CBA.
8: else
9: Skip it

10: end if
11: end for
12: SCBA = PRNG Shuffle(CBA) [24].
Output: Shuffled Candidate Block Array (SCBA)

three phases; namely, 1) Random Number Generator phase, 2)
Generating the Shuffling Array phase, 3) Embedding or Ex-
tracting Secret message in cover image phase. In the following
subsections, we will describe our proposed technique phases
in details.

Phase 1: Random Number Generator

A Random Number Generator (RNG) is a computational or
physical device or a piece of software code which is designed
to generate a sequence of numbers or symbols that cannot
be reasonably predicted better than by a random chance. The
input range for generating every random number depends on
the bit length of the keys and nature of data and operation to
be performed on data. We use a Chaotic based random number
generator proposed by [24] to shuffle the secret message
location within the cover image. We use a 256 key to increase
the security level.

www.ijacsa.thesai.org 754 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

Phase 2: Shuffle Array Generation

In this phase, we generate an array to represents the secret
message in order to build a corresponding location inside the
cover image. Firstly, the secret message is converted to a
sequence of ASCII codes. Then, we store the ASCII code
into a binary representation. The size of the latter array is
divided by 3 bits to calculate the required Number of image
micro-Blocks (NOB). Second, the cover image is decoded to
find the locations of the micro-blocks that passes the validity
condition which will be discussed in later sections. Third, we
initiate the Candidate Block Array (CBA) array (where its
size equals to NOB) that contains the micro-blocks locations
obtained from the previous step. Finally, we pass the CBA
array into the Pseudo-Random Number Generator (PRNG) to
obtain the Shuffled Candidate Block Array (SCBA). Fig. 5
illustrates the process of shuffling the CBA.

Algorithm 1 represents the generation of the SCBA. The
algorithm receives the cover image, secret key and a threshold
value of the maximum number of non zero coefficients in
the zigzag array. Steps 1 to 3 initialize the arrays CBA and
SCBA. Steps 4 to 11 iterate through each block to examine the
threshold value condition. After step 11, the CBA will contain
the sequence location of each zigzag array that passes the
threshold condition which selected to hold the secret message.
In step 12, the CBA array is passed to the proposed shuffler
in order to shuffle the location. Step 12 will randomize the
location of the data which makes the possibility of assembling
the secret message very hard without the availability of the
SCBA.

Example: Generating SCBA for the secret message ”Com-
puter” using the image of Fig. 6.

• Cover image: Lena

• Secret massage: Computer

• Data array: 01000011 01101111 01101101 01110000
01110101 01110100 01100101 01110010 00100000

• Total blocks in image: (512*3*512)/64=12288 blocks.

• Using blocks that contain values between 1 to 20

• NOB = 24

• Initialize CBA

• CBA = {1,2,4,7,10,13,16,19,21,22,23,28,29,31,34,
37,40,43,46,49,52,55,58,61}

• SCBA = {13,21,55,52,31,22,2,43,49,46,61,4,19,
16,7,34,23,37,40,29,1,10,28,58}

Phase 3: Embedding secret message in JPEG Image

This phase works to embed the secret message in the
cover image; without affecting the compressed image. This
phase is delicate as JPEG image format (lossy compression),
and the frequency domain is complicated and hard to find a
location to embed the secret message without affecting the
compression process. We present in this paper two different
proposed methods to be evaluated based on the following two
targets before giving the final algorithm.

Fig. 6. Lena Cover Image

1) We need to find the maximal number of bits to be
embedded at the end of each selected blocks in the
cover image. Our experiments include 2 bits, 3 bits,
and 4 bits chunks.

2) We need to find how to add the data chunks to the last
value in the selected block in a way that guarantee
minimal effects on the encoding process.

In order to achieve our goals, we proposed a set of
experiments using two different methods of adding the data
chunks at the end of the zigzag array. First, it worthy to
explain the structure of the zigzag order to better understand
the proposed methods. As we see in Fig. 7, the 2d array of the
calculated coefficients is converted into a 1D array in a way
that accumulates the zero value coefficient at the end of the
array. This structure allows us to add our data chunks after the
last non-zero coefficient value without affecting the encoding
or decoding process. Now, based on the structure of the zigzag
order we proposed the following two methods in order to find
the best way to add our data chunks without affecting the final
compressed image and obtaining the most available space to
hide the data in.

1) First Method: The first method puts the secret data after
the last non-zero coefficient using three data chunk sizes as
follows.

1) We divide the binary form of the secret message into
a group of 2 bits and represent each group with a
decimal value of -1, 0, 1, and 2. The corresponding

Fig. 7. Zigzag scan process in JPEG [7].

www.ijacsa.thesai.org 755 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

decimal values are then embedded after the last value
of the non-zero coefficient.

2) We divide the binary form of the secret message
into a group of 3 bits and represent each group with
a decimal value from -4 to 4 excluding the zero.
The corresponding decimal values are then embedded
after the last value of the non-zero coefficient.

3) We divide the binary form of the secret message
into a group of 4 bits and represent each group with
a decimal value from -8 to 8 excluding the zero.
The corresponding decimal values are then embedded
after the last value of the non-zero coefficient.

2) Second Method: The second method adds the value of
the data chunk to the last non-zero coefficient value also using
the same previous three data chunk sizes as follows.

1) We divide the binary form of the secret message into
a group of 2 bits and represent each group with a
decimal value of -1, 0, 1, and 2. The corresponding
decimal values are then added to the value of the last
value of the non-zero coefficient.

2) We divide the binary form of the secret message into
a group of 3 bits and represent each group with a
decimal value from -4 to 4 excluding the zero. The
corresponding decimal values are then added to the
value of the non-zero coefficient.

3) We divide the binary form of the secret message into
a group of 4 bits and represent each group with a
decimal value from -8 to 8 excluding the zero. The
corresponding decimal values are then added to the
value of the non-zero coefficient.

After the evaluation process explained in Section V, we found
that the second case in the first method is the best approach
in term of minimal effect on the final compressed image and
the larger space to hide data.

Algorithm 2 shows the process of embedding the secret
message in a cover image while Algorithm 3 shows the steps
of extracting the secret message.

At this point, an example is always good to illustrate the
process of our proposed algorithms. The following example is
divided into two parts. The first part will illustrate the process
of embedding a secret message. The second part illustrates the
process of extracting the same message from the cover image.

Algorithm 2 Embedding secret message in a cover image.
Input:
Cover Image M.
Hidden data size in each block N
Secret Message SM.
Shuffled Candidate Block Array(SCBA)

1: Convert SM into Binary Representation B
2: Initialize counter to Zero
3: for each D of size N from B do
4: Location = SCBA[counter].
5: Retrieve Zigzag Array Z of M[Location].
6: Insert the D value after the last value in Z.
7: end for

Output: Steganographic Image

A) Embedding the secret data in the 8*8 block pointed with
a rectangle in Fig. 8: .

The secret message in this example is ”OLA”. The com-
pression algorithm will generate the quantized DCT coeffi-
cients shown in Fig. 9 A of the selected blocks. The later 2D
array is then converted into a 1D array using the zigzag order
as shown in Fig. 9 B.

The binary representation of our secret message is:
O = (01101111)
L = (01101100)
A = (01100001)

The groups of binary representation using the 3 bits data
size chunks will be as follow:
Group 1 = 000
Group 2 = 001
Group 3 = 010
Group 4 = 011
Group 5 = 100
Group 6 = 101
Group 7 = 110
Group 8 = 111

The previous group is mapped to each decimal values as
follows:
Group 1 = -4
Group 2 = -3

Algorithm 3 Extracting secret message in a cover image.
Input:
Steganographic Image M
Shuffled Candidate Block Array(SCBA)

1: Initialize B array
2: Initialize counter to Zero
3: for each I from SCBA do
4: Retrieve Zigzag Array Z of M[I].
5: Extract the D value from the last value in Z.
6: Insert D to B
7: end for
8: Convert B from Binary to ASCII representation SM

Output: Secret Message (SM)

Fig. 8. Lena’s image in Y sub-band

www.ijacsa.thesai.org 756 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

Fig. 9. A) Quantization of DCT coefficients, B) zigzag order.

Group 3 = -2
Group 4 = -1
Group 5 = 1
Group 6 = 2
Group 7 = 3
Group 8 = 4

Now, using the first three bits of the letter O. We place
the corresponding decimal valuec (-1) after the last non-zero
value within the zigzag array showed in Fig. 9 B). The resulted
Zigzag array will be:
32 6 -1 -1 0 -1 0 0 0 -1 0 0 1 -1 0 0 0 . . . 0 0 0

Finally, the processed of encoding will continue as usual
by applying RLC on DC component and DPCM on AC value
then to Huffman encoding.

B) Extracting the secret message from the cover image:
At the receiver side, the last value in the Zigzag array of
the retrieved block based on the SCBA will be extracted and
mapped back to the original bit representation. The extracted
value will be added to a buffer that accumulates the binary
representation of the completed secret message. The receiver
will obtain the SCBA array through a secure channel.

V. PERFORMANCE EVALUATION AND RESULTS

In this section, we show and discuss the results of our
experiments to illustrate the impact of hiding the secret mes-
sage based on our proposed technique. We first provide a brief
description of the experiment setup followed by the conditions
and results of the experiment.

A. Implementations

Our proposed algorithm is implemented entirely using Java
Eclipse. We calculate the difference between the cover image
and cover image after embedding the secret message using
MATLAB to measure the effect of the embedding method on
the compression process. We also developed a Graphical User
Interface (GUI) that allows the user to input a secret message
to be embedded in a cover image using the proposed technique.

B. Experiments

In order to choose the best zigzag array of the cover image
blocks, we need to answer the following questions.

1) Does the number of elements in the zigzag array be-
fore the last non-zero coefficient tolerate the inserted
data chucks differently?

2) Does the size of the inserted chucks affects the
compression process differently?

3) Which proposed method of adding the data chunk
affect the compression process and what is the best
threshold to use?

The first information we need is to find how many blocks
are available in each image of our test data set and for
each block how many are the coefficient values in the zigzag
array. Our data set includes four popular images that many
researchers use in order to compare the results. In TABLE I, it
shows the maximum number of blocks in each range using 17
different intervals based on the number of coefficient values in
each zigzag array before the last non-zero values of each image
block. The results in TABLE I show the following information.

1) The number of blocks in each image.
2) The average number of the block in each range.
3) The ratio between the number of blocks in each

interval, and the number of blocks in each image.

Based on TABLE I, we can observe that the number of
blocks is higher on the 1-30 and 1-20 intervals. All the other
intervals have less than 30% average which limits the size
of the secret message to be embedded. Now, the question
of which interval is better to use in term of less impact on
the compression process. To answer the latter question, we
generated 1000 different secret messages that occupy at least
50% of the selected blocks and measured the difference of
pixel values before the embedding and after the embedding
process. The results lead that using the interval 1-20 of non-
zero coefficient values before the last non-zero coefficient
value always resulted in less difference. Thus, we continue
our experiments using the interval 1-20; although it has 7%
fewer blocks than the 1-30 interval. This results answered the
first question of our experiments cause.

Now to answer question two and three, we used the
previous interval as our threshold value to choose which
zigzag array to embed our data in. In TABLE II we show
the experiments of each of our proposed methods in order to
find the best method and the best size of the inserted data
chunk. TABLE II shows the following information:

1) The used method and case.
2) The number of pixels changed during the embedding

process with a value greater or equal to 50.
3) The average of difference using all values pixel.

The reason for showing the number of pixels changed with
values equal or larger to 50 is to emphasize what human can
detect. Usually, human eyes cannot detect changes on pixels
with values less than 50. Thus, the less no of changed pixels
means that human eyes will not notice any changes on the
picture after the embedding process. This test is not enough,
as most of the detection tools are computerized. In this case,

www.ijacsa.thesai.org 757 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

TABLE I. NUMBER OF BLOCKS BASED ON THE NUMBER OF COEFFICIENTS UNTIL THE LAST NON-ZERO VALUE

Number of blocks

Total blocks 12288 6500 108000 108000 17856 30720

Zigzag array
contents in-
terval

gg
(1024*633)

r (510*737) Flower
(1920*1200)

Girl
(1920*1200)

Animal
(512*512)

Lena
(512*512)

Average

1 - 30 (29%) 8783 (46%) 8253 (53%) 56968 (52%) 55854 (48%) 3142 (47%) 5783 23130

1 - 20 (25%) 7806 (42%) 7459 (48%) 51945 (44%) 48013 (43%) 2809 (40%) 4886 20486

1 - 15 (21%) 6349 (26%) 4721 (38%) 40747 (26%) 27808 (36%) 2348 (33%) 4061 14339

1 - 10 (20%) 6222 (25%) 4469 (36%) 38714 (22%) 23703 (34%) 2248 (32%) 3886 13207

10 - 30 (8%) 2561 (21%) 3784 (17%) 18254 (30%) 32151 (14%) 894 (15%) 1897 9923

15 - 30 (8%) 2434 (20%) 3532 (15%) 16221 (26%) 28046 (12%) 794 (14%) 1722 8791

10 - 20 (5%) 1584 (17%) 2990 (12%) 13231 (23%) 24310 (9%) 561 (8%) 1000 7279

30 - 60 (6%) 1778 (27%) 4771 (12%) 2359 (14%) 14725 (14%) 922 (9%) 1081 4772

20 - 40 (5%) 1567 (9%) 1607 (6%) 6868 (14%) 15010 (11%) 716 (14%) 1703 4578

30 - 50 (5%) 1635 (25%) 4435 (2%) 2348 (13%) 14308 (12%) 771 (9%) 1081 4096

20 - 30 (3%) 977 (4%) 794 (5%) 5023 (7%) 7841 (5%) 333 (7%) 897 2644

40 - 60 (4%) 1188 (22%) 3958 (0.48%) 514 (7%) 7556 (8%) 539 (2%) 275 2338

40 - 50 (3%) 1045 (20%) 3622 (0.47%) 503 (7%) 7139 (6%) 388 (2%) 275 2162

30 - 40 (2%) 590 (5%) 813 (2%) 1845 (7%) 7169 (6%) 383 (7%) 806 1934

30 - 45 (4%) 1213 (17%) 3079 (2%) 2314 (11%) 12314 (10%) 691 (9%) 1068 1394

45 -60 (2%) 565 (9%) 1692 (0.04%) 45 (2%) 2411 (4%) 231 (0.11%) 13 826

50 - 60 (0.004%) 143 (2%) 336 (0.01%) 11 (0.39%) 417 (2%) 151 (0%) 0 176

the number of the pixel value has no effect of the detection
process. Thus, the second information which is the average
difference is introduced to fulfill this test. As we see in TABLE
II, using the first method and 2-bits data chunk size has the
less average of difference. However, the first method using the
3-bits data chunk size also have the same average difference.
In this case, using larger data chunk will provide more space
to hide the secret message. Thus, we can conclude that using
Method 1 is always better than Method 2. Also, using case 2
is better for the sake of space availability for hiding the data.

TABLE II. RESULTS OF ALL CASES OF RANGE FROM 1 TO 20 ZIGZAG
VALUE

Number of non-black points (≥ 50)

No. of
method

Case
No.

Animal Flower gg Girl Lena r Avg.

Method 1
Case 1
(2 bits)

1 0 1 0 0 0 0.33

Case 2
(3 bits)

1 0 1 0 0 0 0.33

Case 3
(4 bits)

1 0 1 0 4 1 1.16

Method 2
Case 1
(2 bits)

5 0 76 3 0 3 14.5

Case 2
(3 bits)

462 34 0 43 30 22 98.5

Case 3
(4 bits)

454 28 0 49 22 28 96.83

C. Results

In this section, we present the results based on the ex-
periments that we discovered in the previous subsection. The
following examples show the cover images in JPEG format
as input, the cover image after embedding a secret message
and the difference image between the cover image and the
cover image after embedding the secret message. We use the
following values for the following examples:

1) The specific range is from 1 to 20.
2) The secret message embedded in the selected block

by using the second case of the first method (3 bits
from the secret message).

3) The pixel value is greater than or equal to 50.

Example One: Using the animal image in Fig. 10 (a) as a
cover image, the number of non-black points that represent the
difference between Fig. 10 (a) and Fig. 10 (b) is illustrated in
Fig. 10 (c) and is equal to 1. The MSE is 9.88, and the PSNR
is 38.22.

Example Two: Using the flower image Fig. 11 (a) as a
cover image, the number of non-black points that represent the
difference between Fig. 11 (a) and Fig. 11 (b) is illustrated in
Fig. 11 (c) and is equal to 0. The MSE is 1.89, and the PSNR
is 45.41.

Example Three: Using the Lena image Fig. 12 (a) as a
cover image, the number of non-black points that represent the
difference between Fig. 12 (a) and Fig. 12 (b) is illustrated in

www.ijacsa.thesai.org 758 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

(a) (b)

(c)

Fig. 10. A) Animal cover image, B) Animal cover image after embedding
the secret message, C) The difference image between A and B.

(a) (b)

(c)

Fig. 11. A) Flower cover image, B) Flower cover image after embedding
the secret message, C) The difference image between A and B.

Fig. 12 (c) and is equal to 0. The MSE is 4.86, and the PSNR
is 41.36.

Example Four: Using the the girl image Fig. 13 (a) as a
cover image, the number of non-black points that represent the
difference between Fig. 13 (a) and Fig. 13 (b) is illustrated in
Fig. 13 (c) and is equal to 0. The MSE is 6.45 and the PSNR
is 40.07.

The last four examples show that the difference between
the cover image and the cover image containing the secret
message is hard to be detected by human eyes. However, in
our proposed algorithm we assume that the attacker cannot
obtain the original image. Thus, finding the locations of the
secret message cannot be detected without the use of SCBA
or the secret message.

(a) (b)

(c)

Fig. 12. A) Lena cover image, B) Lena cover image after embedding the
secret message, C) The difference image between A and B.

(a) (b)

(c)

Fig. 13. A) Lena cover image, B) Lena cover image after embedding the
secret message, C) The difference image between A and B.

VI. CONCLUSION

In this paper, we proposed a new technique to hide data in
JPEG images using zigzag coefficients array to embed secret
messages. The aim of using this method is to insert a secret
message within a JPEG image without affecting the image
quality and compression ratio. Therefore, nobody can detect
or reveal the secret message hidden in the image. In this
paper, we proposed two methods to embed the secret data
using three sizes of data chunks that will be embedded within
the zigzag coefficients array. Our experiments show that our
proposed method one utilizing 3-bits data size outperform the
other proposed second method in term of secret message space
availability and the minimal difference after embedding the se-
cret message. Based on our proposed selected method, we can
utilize the use of almost 40% to 50% out of the total number of

www.ijacsa.thesai.org 759 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

blocks to hide the secret message. The sender and the receiver
can either share the SCBA or the private key to embed or reveal
the secret message securely. We implemented the concept of
shuffling the location of the embedded data using a chaotic
based random number generator for each embedding process
to increase the security level in our proposed algorithm. The
algorithm was implemented entirely using JAVA libraries to
produce an application that is used to run our experiments and
to evaluate the proposed algorithm performance.

ACKNOWLEDGMENT

This work made possible by financial support from Applied
Science Private University in Amman, Jordan.

REFERENCES

[1] R. Gupta, S. Gupta, A. Singhal, Importance and techniques of infor-
mation hiding: a review, International Journal of Computer Trends and
Technology (IJCTT), vol. 33, pp. 260–265, Mar 2014.

[2] W. Bender, D. Gruhl, N. Morimoto, A. Lu, Techniques for data hiding.
IBM System Journal, vol. 35, pp. 313–336, Feb 1996.

[3] Z. AL-Ani, A. Zaidan, B. Zaidan, H. Alanazi, ”Overview: Main Funda-
mentals for Steganography”, Journal of Computing, Vol. 2, pp. 158-165,
Mar 2010.

[4] M. Jain, S. Lenka, ”A Review of Digital Image Steganography using LSB
and LSB Array”, International Journal of Applied Engineering Research,
Vol. 11, pp. 1820-1824, 2016.

[5] P. Mahajan, A. Koul, ”CEET: A Compressed Encrypted and Embedded
Technique for Digital Image Steganography”, IOSR Journal of Computer
Engineering (IOSR-JCE), vol. 16, pp. 44-52, Apr 2014.

[6] U. Shankar, ”Image Compression Techniques, International Journal of
Information Technology and Knowledge Management, Vol. 2, pp. 265-
269, Dec 2010.

[7] A. Raid, W. Khedr, M. El-dosuky, W. Ahmed, ”Jpeg Image Compression
Using Discrete Cosine Transform-A Survey”, International Journal of
Computer Science and Engineering Survey (IJCSES), Vol. 5, pp. 39-47,
Apr 2014.

[8] H. Lu, X. Shy, Y. Shit, et al., Watermark embedding in DC components
of DCT for binary images, In Proc. of IEEE Workshop on Multimedia
Signal Processing, St.Thomas, VI, USA, Dec 2002, pp. 300-303.

[9] M. Kaur, Robust watermarking into the Color Models based on the
Synchronization Template, In Proc. of International Conference on
Information and Multimedia Technology, Jeju Island, South Korea, Dec
2009, pp. 296-300.

[10] M. Lafta, ”Image Watermarking based on Huffman Coding and Laplace
Sharpening”, Journal of the college of education for women, vol. 22, pp.
173-184, 2011.

[11] S. Sujatha, M. Sathik, ”A Novel DWT Based Blind Watermarking for
Image Authentication”, International Journal of Network Security, vol.
14, pp. 223-228, July 2012.

[12] R. Preda, ”Semi-fragile watermark for image authentication with sen-
sitive tamper localization in the wavelet domain”, Journal of the inter-
national Measurement Confederation (IMEKO), vol. 46, pp. 367-373,
2013.

[13] M. Yesilyurt, Y. Yalman, A. Ozcerit, ”A new DCT based watermarking
method using luminance component”, Elektronika ir Elektrotechnika, vol.
19, pp. 47-52, 2013.

[14] M. Khan, M. Rahman, M. Sarker, ”Digital Watermarking for Image Au-
thentication Based on Combined DCT, DWT and SVD Transformation”,
International Journal of Computer Science Issues, vol. 10, pp. 223-230,
May 2013.

[15] J. Jeswani, T. Sarode, ”Improved Blind Color Image Watermarking
using DCT in RGB Color Space”, International Journal of Computer
Applications (IJCA), vol. 92, pp. 50-56, Apr 2014.

[16] M. Mundher, D. Muhamad, A. Rehman, et al., ”Digital watermarking
for images security using discrete slantlet transform”, International
Journal of Applied Mathematics and Information Sciences, vol. 8, pp.
2823-2830, Jan 2014.

[17] M. Haribabu, H. Bindu, V. Swamy, ”A Secure and Invisible Image
Watermarking Scheme Based on Wavelet Transform in HSI Color
Space”, Computer Science Journal, vol. 93, pp. 462-468, 2016.

[18] M. Ghebleh, A. Kanso, ”A robust chaotic algorithm for digital image
steganography”, Communications in Nonlinear Science and Numerical
Simulation, vol. 19, pp. 1898-1907, June 2014.

[19] J. Mazumder, K. Hemachandran, ”Color Image Steganography Using
Discrete Wavelet Transformation and Optimized Message Distribution
Method”, International Journal of Computer Sciences and Engineering,
vol. 2, pp. 90-100, July 2014.

[20] G. Swain, ”Digital image steganography using variable length group of
bits substitution”, Procedia Computer Science, vol. 85, pp. 31-38, 2016.

[21] P. Das, S. Kushwaha, M. Chakraborty, ”Multiple embedding secret key
image steganography using LSB substitution and Arnold Transform”, in
Proc. 2nd International Conference on Electronics and Communication
Systems (ICECS), 2015, pp. 845-849.

[22] S. Kumar, S. Kumari, S. Patro, et al., ”Image Steganography using
Index based Chaotic Mapping”, IJCA Proc. on International Conference
on Distributed Computing and Internet Technology (ICDCIT), Jan 2015,
pp. 1-4.

[23] K. Bhaskar, M. Bakale, P. Chaure, P. Shirke, ”Image Steganography
for data hiding Using Huffman code, Zigzag and OPAP”, International
Journal of Emerging Trends and Technology in Computer Science
(IJETTCS), Vol. 4, pp. 91-93, Dec 2015.

[24] F. Almasalha, R. Hasimoto-Beltran, A. Khokhar, ”Encryption of
Entropy-Coded Video Compression Using Coupled Chaotic Maps”,
Entropy, Vol. 16, pp. 5575-5600, Oct 2014.

www.ijacsa.thesai.org 760 | P a g e


