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Abstract—Until now, several approaches such as evolutionary 

computing and heuristic methods have been presented to 

optimize the traveling thief problem (TTP). However, most of 

these approaches consider the TTP components independently, 

usually considering the traveling salesman problem (TSP) and 

then tackling the knapsack problem (KP), despite their 

interdependent nature. In this paper, we investigate the use of a 

hybrid genetic algorithm (GA) and tabu search (TS) for the TTP. 

Therefore, a novel hybrid genetic approach called GATS is 

proposed and compared with the state-of-the-art approaches. 

The key aspect of GATS is that TTP solutions are considered by 

firmly taking into account the interdependent nature of the TTP 

subcomponents, where all its operators are simultaneously 

implemented on TSP and KP solutions. A comprehensive set of 

TTP benchmark datasets was adopted to investigate the 

effectiveness of GATS. We selected 540 instances for our 

investigation, which comprised five different groups of cities (51, 

52, 76, 100 and 150 cities) and different groupings of items, from 

50 to 745 items. All types of knapsack (uncorrelated, 

uncorrelated with similar weights and bonded strongly 

correlated) with all different knapsack capacities were also taken 

into consideration. Different initialization methods were 

empirically investigated as well. The results of the computational 

experiments demonstrated that GATS is capable of surpassing 

the state-of-the-art results for various instances. 

Keywords—Combinatorial; hybrid approaches; genetic 

algorithm; optimization; tabu search; TTP  

I. INTRODUCTION  

The traveling thief problem (TTP) is a benchmark problem 
recently introduced by [1]. It is an abstraction of real-world 
problems that consist of multiple components, such as vehicle 
routing problems and supply chain management. TTP has 
recently drawn researchers’ attention, as its definition 
represents various aspects of real-world complexities. TTP 
combines two well-known problems, the traveling salesman 
problem (TSP) and the knapsack problem (KP). The 
underlying definition of the problem is that a thief has to visit a 
set of cities and pick some items from these cities and pack 
them in a knapsack, where each item has its own weight and 
value [1]. The challenging aspect of the problem is that the 
knapsack has a certain capacity, and the total weights of the 
picked items must not exceed this capacity; the thief also must 
pay rent for using the knapsack, the rent depending primarily 
on the total traveling time. Because the two problems (TSP and 

KP) are interdependent, the speed of the thief decreases when 
the knapsack gets heavier, which results in an increased total 
travel time and requires the paying of a higher rent. Therefore, 
the main objective of TTP is to maximize the total profit of the 
thief, comprising the total value of the picked items minus the 
rent of the knapsack. 

Despite the TTP only recently being introduced, it has been 
rigorously considered. Various approaches have been 
introduced into the literature, adopting different types of 
techniques and algorithms. For instance, heuristics strategies 
are among the widely adopted methods for solving TTP, as 
seen in [2-6]. Searching for the best solutions in such 
approaches typically involves using classical greedy routines 
where an initial solution is generated and is iteratively 
improved. However, adopting heuristics to solve TTP can be 
computationally complex, especially with a large number of 
instances [7]. Evolutionary approaches such as genetic 
algorithms (GAs) and genetic programming have also been 
adopted for roughly solving the TTP, as in [6, 8-14]. The 
majority of these approaches try to improve TTP solutions by 
considering each subproblem (i.e., TSP and KP) independently, 
despite the interdependence between the subcomponents. 
Evolutionary operators such as crossover and mutation are 
normally implemented on tours, and then one of the known 
packing heuristics is implemented to obtain the best packing 
plan for the best tours. However, the shortest tours do not 
necessarily guarantee that the optimal TTP solution will be 
achieved, due to the nonlinear relationship in the solution’s 
objective function [15]. Other approaches that have 
occasionally been adopted in the literature to solve TTP 
include swarm intelligence approaches, such as the ant colony 
or the artificial bees colony [16, 17]. 

It has not yet been proven which type of approach is most 
applicable for solving TTP. Several local search algorithms 
such as those presented in [18, 19] have been introduced. Most 
importantly, Packing Routine and PACKITERATIVE, 
presented by [20], have become key strategies in the literature. 
The former starts by sorting items according to their weight 
and then picks the most profitable items. The latter approach is 
considered an enhanced version of the former, working in the 
same way but in an iterative manner with some exponent 
values. Bitflip and Insertion are two local search operators that 
are also regularly adopted for solutions generated by the 
previous two methods, to achieve optimal solutions.  
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TABLE I. MATHEMATICAL REPRESENTATION OF TTP 

Equation No Description 

               (1) 
The speed (velocity) of the thief, where C is a constant value calculated using Equation 2, and     is the weight 

of the knapsack at the current city 

  
(         )

 
 (2)      is the maximum velocity ,      minimum velocity, W is the total wieght of the knapsack  

 ( )  ∑  
 

     (3) 

The total value of the collected items, where    is the profit of the item and    is a binary value indicating 

whether the item is available at a particular city (0 denotes that the item is unpicked. while 1 indicates that it is 

picked) 

 (   )  ∑        

   

   

        (4) The total travel time from city    to      

 (   )   ( )     (   ) (5) The objective value (i.e., the total profit gained by the thief) 

 
          

        
   

 
 

(6) The travel time between two cities, where          is the distance between city    and       

In this paper, we introduce a hybrid GA [21, 22], called 
GATS, using one of the well-known local search methods, tabu 
search (TS) [23-25]. GA has been proven powerful in 
optimizing various types of problems in different domains, 
such as machine learning [26], network traffic control [27] and 
industry [28]. Similarly, TS has also been successfully adopted, 
both alone and hybridized with other approaches, for solving 
different problems in various fields, as in [29-31]. In fact, to 
our knowledge, TS has been hybridized with GA for solving 
various optimization problems, but the hybridization has not 
been adopted for TTP. 

The contribution of this article to the literature is therefore 
twofold. First, it introduces a novel hybrid approach developed 
specifically for TTP. The key aspect of this approach is that 
TTP solutions are considered by firmly taking into account the 
interdependent nature of the TTP subcomponents. The adopted 
operators of the proposed approach are simultaneously 
implemented on tours and packing plans in the process of 
solution generation; specifically, GA operators, such as 
crossover and mutation, are implemented to modify tours, 
while TS is devoted to seeking the best corresponding packing 
plan. Second, the paper also presents a wide-ranging study 
taking into account different aspects of TTP, where the 
performance of the proposed approach was investigated on 540 
datasets. These datasets differed in aspects such as size, 
knapsack capacity and type of knapsack. For instance, the 
number of cities in these datasets ranged from 51 to 150 cities, 
and the number of items ranged from 50 to 745 items. All types 
and capacities of knapsack were tested in this study, and the 
results were compared with the state-of-the-art approaches. 

The rest of the paper is organized as follows. Section II 
briefly presents the definition of the TTP. In section III, a 
detailed description of the proposed approach is presented. The 
experimental design is discussed in section IV, and the 
proposed approach is tested on various instances and the 
experimental results are discussed in section VI . The paper 
concludes in section VII and directions for future work are 
outlined. 

II. THE TRAVELING THIEF PROBLEM 

The definition of TTP and its mathematical representation 
have been well introduced in the literature, for example in [1, 
5, 20, 32]. Table 1 shows the mathematical representation of 
TTP, and we briefly summarize its underlying concept as 
follows: 

 A thief has to travel among a set of cities  , visiting 
each city only once. 

 The tour   of the thief must start and end at the same 
city. 

 The tour has a length that can be calculated from the 
distance   *   + between cities. 

 Each city contains some items   where each item has 
weight    and value    . 

 The thief holds a knapsack that has a specific capacity 
  and a rent  . 

 The thief is required to pick the most profitable items 
from cities during his tour, where the total weight of 
the picked items must not exceed the knapsack 
capacity. 

 The knapsack rent   is based on the time unit. 

 The speed of the thief depends on the knapsack weight, 
where the thief gets slower when the knapsack 
becomes heavier. 

 The total profit gained by the thief is the total value of 
the picked items minus the rent. 

 The ultimate objective is finding a tour   and a 
packing plan   that maximize the total profit gained by 
the thief 

III. DEVELOPMENT OF THE PROPOSED APPROACH 

The aim of this paper is to empirically investigate the use of 
the GA to solve the TTP. Specifically, the hybridization of the 
GA with one of the well-known metaheuristic search 
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algorithms, TS, is investigated. Therefore, a hybrid GA with a 
TS approach, called GATS, is proposed. Figure 1 shows the 
flow chart of this proposed approach. Its key modules are 
described in detail in the following sections. For instance, 

Section A shows the adoption of GA and its operators, while 
Tabu Search C shows how TS was employed in the proposed 
approach to the TTP. 

 
Fig. 1. GATS Flow Chart. 

A. Genetic Algorithm for TTP  

1) Coding 
Tours are encoded directly, with integer numbers indicating 

city indices in sorted enumeration, starting from a city and 
ending with the same city. Figure 2 shows an example of a tour 
consisting of five cities, starting from city 4, traveling to cities 
1, 3, 5 and 2 and then returning to the starting city. 

                    

4 1 3 5 2 4 

Fig. 2. Tour Representation. 

Similarly, a packing plan is encoded with an integer 
enumeration, where the length of the chromosome indicates the 
number of items, and the integer value in each position 
represents the number of the city from which the item was 
picked. Unpicked items are denoted by zero. Figure 3 shows a 
knapsack solution with 10 items (2 items per city), consisting 
of three picked items, 2, 3 and 9, at cities 1, 3 and 5, 
respectively. 

                               
0 1 3 0 0 0 0 0 5 0 

Fig. 3. Packing Plan Representation. 

   9 2 3 8 4 5 6 1 7 9 

   4 5 2 1 8 7 6 9 3 4 

Step 1 

    0 0 0 1 8 7 6 0 0 0 

    0 0 0 8 4 5 6 0 0 0 

Step 2 

   {9,2,3,4,5}    

    9 2 3 1 8 7 6 4 5 0 

   {2, 1,7,9,3}    

    2 1 7 8 4 5 6 9 3 0 

Steps 3 and 4 

    9 2 3 1 8 7 6 4 5 9 

    2 1 7 8 4 5 6 9 3 2 

Step 5 

Fig. 4. An Example of Crossover. 

2) Initialization 
GA starts with sets of routes and their corresponding 

packing plans, which are considered to be the initial candidate 
solutions (i.e., population). Various strategies of initialization 
were adopted and tested for this paper. Tours were either 
randomly or using the Chained Lin-Kernighan heuristic (CLK) 
[33]. The impact of each method was tested, and the results 
will be discussed in Section VI. The knapsack plan, on the 
other hand, was initialized using of one the well-known 
heuristics of TTP, which is PACKITERATIVE [20]. 

3) Crossover  
An order crossover (OX) operator [34] was applied on 

tours to generate new solutions throughout the algorithm 
iterations. OX is one of the operators successfully used in 
combinatorial optimization problems, especially with TSP. In 
OX, a part of one parent is copied to the child. In GATS, two 
candidate solutions (tours) are selected using the well-known 
roulette wheel selection [35] method, which depends mainly on 
fitness values. Then OX is implemented as follows: 

1) Two random positions in each tour are selected that 

would be considered the starting and end of the part that will 

be copied to the new offspring.  

2) The selected part in the first tour    is copied to the 

second offspring    , while the sub-tour in    is copied to 

the first offspring    . 
3) Cities in    that do not exist in     are recorded in 

the same order in which they occur in   . 
4) Blank positions in     are filled, in order, with the 

cities recorded from   . 
5) The last city of     is updated to be the same as the 

first one. 

6) Steps 3–5 are repeated for    . 

Figure 4 shows an example of new offspring generation 
using the OX crossover. Positions 4 and 7 are selected. 
Accordingly, then, the sub-tour {8, 4, 5, 6} from    is copied 
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to the second offspring    , while     contains the sub-tour 
{1, 8, 7,6} from   . Blank positions in     are filled with 
cities {9, 2, 3, 4, 5}, in that order, because they occur in that 
order in   . Finally, the last city in     is updated to be the 
same as the starting city of the tour. Similarly, blank positions 
in     are filled with cities {2, 1, 7, 9, 3}, in that order, as they 
occur in  

 
Fig. 5. OX Crossover Pseudocode. 

  , and then the last city is updated to be the same as the 
starting city of the tour. Figure 5 shows the pseudocode of the 
implemented OX. 

4) Mutation 
Opt-Mutation or insertion [34] was applied on the tours in 

GATS. Here, a predefined mutation probability determines the 
number of candidate solutions (tours) that will undergo the 
mutation process. Let us say, for example, that the mutation 
probability was set at 0.1, and the population (number of 
candidate solutions) is 100. Then insertion will only be 
performed on 10 tours, selected randomly. A randomly 
selected city is inserted into a randomly selected position in the 
tour. Figure 7 shows an example of insertion mutation on   . 
Notice that city 8 (   ) was selected to be moved to be the 
third city (    ), and subsequent cities are shifted. 
Consequently,    is obtained. Figure 6 shows the insertion 
pseudocode. 

B. Item Packing 

In each iteration, after the crossover and mutation operators 
have performed on tours, the well-known PACKITERATIVE 
routine [20] is performed on each tour to generate its 
corresponding packing plan. PACKITERATIVE is well 

documented in [20], demonstrating good performance results. 
The main idea behind it is to pack the most profitable items 
into the pack by sorting them based on a score calculated based 
on the items’ weights. Items are sorted based on their scores, 
and the algorithm sequentially checks whether adding an item 
increases the total profit obtained by the thief. After the 
generation of packing plans for all tours, the proposed GA 
calculates the objective value of each candidate solution using 
equation 5. 

 
Fig. 6. Insertion Pseudocode. 

   4 5 2 1 8 7 6 9 3 4 

   4 5 8 2 1 7 6 9 3 4 

Fig. 7. An Example of Insertion. 

C. Tabu Search  

Tabu search is one of the known metaheuristic algorithms 
that has been efficiently employed in solving various 
optimization problems, especially combinatorial ones. For 
instance, it has been extensively used to solve classical job-
shop scheduling, as in [36] [37], as well as various 
environmental problems, such as power system planning [38] 
and transportation [39]. It has also been adopted in optimizing 
different aspects of recent technology trends such as big data 
[40]. The main idea of TS is to generate new solutions from the 
neighborhood of a current solution. Similar to other 
metaheuristic algorithms, a certain number of iterations are 
performed to generate new solutions. However, TS selects the 
best of these. The most important feature of TS is the tabu list, 
which is used to store subsets of solutions that are not allowed 
to be visited again, as they would bring the search to areas that 
have already been visited. This feature helps the algorithm to 
avoid cycling and getting trapped by local optima. In our 
proposed GA, TS was adopted on packing plans for each tour 
to ensure that the best items were picked for the tour. In each 
iteration of the GA, after performing the crossover and 
mutation operators, the TS method is called for each tour. The 
current tour and the initial packing plan are passed to this 
method. The length of the tabu list is randomly initialized 
based on the number of items, and the method terminates when 
it reaches the maximum number of iterations value where the 
best packing plan (i.e., with highest objective value) is 
returned. The Bitflip routine introduced by [20] was adopted in 
the proposed algorithm as a method for searching the 
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neighborhood (new packing plans). However, it was modified 
to adapt to the proposed algorithm, where all items in the pack 
are checked in order, and the status of each item is flipped 
where picked items become unpicked and vice versa. After 
flipping each item, the resulting packing plan is returned to the 
TS, and the objective value is calculated. Figure 8 shows the 
algorithm of TS. 

 
Fig. 8. TS Pseudocode. 

TABLE II. INSTANCE CHARACTERISTICS 

Parameters Description 

Number of cities Ranged from 51 to 85900 

Type of knapsack problem 

- Uncorrelated (U) 

- Uncorrelated with similar weights (USW) 

- Bounded strongly correlated (BSC) 

Items per city (F) 1, 3, 5 and 10 

Knapsack Capacity ( C) Ranged from 1 to 10 

TABLE III. BEST OBJECTIVE VALUES OBTAINED USING THE RANDOM AND 

CLK INITIALIZATIONS 

 U USW BSW 

C Random CLK Random CLK Random CLK 

1 4195 2251 -2770 1323 25033 3714 

2 7718 1342 -3674 3410 22479 4639 

3 5432 9111 -7162 3587 13055 6999 

4 7143 1052 -5433 2260 10199 8866 

5 19972 3892 -21274 884 -2714 5448 

6 -19612 3737 -3674 1409 -28883 7678 

7 -21893 4764 -3674 1478 -27672 9147 

8 -19245 6019 -7162 2105 -33525 8607 

9 -19611 6922 -21274 3609 -38895 8336 

10 -21833.6 3965 -23798 5451 -35153 12386 

IV. EXPERIMENTAL DESIGN 

In order to perform an investigation on a TTP, the set of 
instances defined by [4] should be considered for performance 
evaluation. These instances were developed in such a way that 

the two sub-problems (i.e., TSP and KP) were considered. The 
total number of instances in this set is 9720, and the instances  

have different characteristics based on different parameters, 
for example, the numbers of cities and items. Most of these 
characteristics are derived from the TSP library dataset [41]. 
Table 2 highlights the characteristics of the TTP instances. 
Because of the complexity of performing an experiment on the 
entire set of instances, a collection of 540 instances was 
selected for our investigation. These instances consisted of five 
different groups of cities, 51, 52, 76, 100 and 150 in number, as 
well as three different numbers of items per city (F), 1, 3, and 
5. The selected instances also consisted of the three types of 
KPs (uncorrelated [U], uncorrelated with similar weights 
[USW] and bounded strongly correlated [BSC]) and all 
varieties of knapsack capacity (C). Our implementation was 
conducted using MATLAB R2014a, and all computations were 
performed on machines using an Intel Core i7-4790S 3.20 GHz 
processor and 12 GB RAM, running Windows 8.  

Before performing the experiment, several parameters were 
determined. For instance, the maximum running time for an 
instance was 10 minutes. In addition, due to the randomization 
of evolutionary approaches, each instance would be tested 10 
independent times. The results obtained from our experiment 
were compared with the best objective values obtained in the 
literature. At the beginning of the experiment, several 
variations on the proposed approach were empirically tested; 
for example, we tested the effect of the random initialization of 
tours and investigated the performance of GA with CLK 
initialization. The aim of these investigations was to adopt the 
best obtained methods in our approach. Then the proposed 
approach was tested, and the results were compared with some 
of the state-of-the-art approaches.  

V. INITIALIZATION METHOD 

In order to investigate the effect of the tour initialization 
method on the quality of the obtained solutions, two methods 
were tested, the basic random tour initialization and the CLK 
heuristic. These methods were implemented within a classic 
GA for solving TTP. The performance of the two methods was 
compared on 30 instances with relatively small numbers of 
cities and items. Surprisingly, the basic random method 
obtained higher objective values in some instances when 
compared with CLK, especially with a small knapsack capacity 
ranging from 1 to 3 and particularly with U and BSC 
knapsacks (see Table 3). In order to obtain an accurate result, a 
normalized objective value was calculated for each method in 
all instances, taking into consideration the values obtained 
from each run. This normalized value was calculated by taking 
the ratio between the best objective value for an instance and 
the average of the objective values for all runs for this instance. 
Figure 9 shows the results of the comparisons for the three 
types of knapsack (U, USW and BSC). It is clear that the CLK 
used for tour initialization is significantly better than the basic 
random method. Figure 10 also shows an example of a tour 
generated for an optimal solution obtained by each method; the 
obtained tour using CLK was significantly (more than 50%) 
shorter than that obtained by random means.  
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(a)                                                          ( b)                                                                        (c) 

Fig. 9. Normalized objective values for random and CLK initializations in a) U, b) USW and c) BSW. 

 
(a)                                                                                (b) 

Fig. 10. Tours of an optimal TTP solution obtained by a) random and b) CLK initializations. 

TABLE IV. BEST OBTAINED OBJECTIVE VALUES FOR U KNAPSACK AND F=1 

Instance   m 
C 

 1 2 3 4 5 6 7 8 9 10 

eil51 51 50 

GATS 2251 13420 9111 1596 3892 3737 3965 4764 6019 6922 

EA 1720 3983 4162 1444 2997 3313 3201 3929 5297 6130 

RLS 1533 3983 4162 1444 2963 3313 3201 3929 5297 6130 

berlin52 52 51 

GATS 1354 2261 4335 3934 4265 5582 6280 6944 7752 7545 

EA 2330 3220 4748 3963 4141 5372 6541 7532 8060 7979 

RLS 2003 3220 4748 3963 4141 5356 6541 7532 8060 7979 

eil76 76 75 

GATS 4528 6101 4467 4663 6355 7425 7161 7134 9013 9457 

EA 3727 5173 4176 3958 5292 6175 5968 6078 7768 8825 

RLS 3412 5012 4114 3958 5292 6150 5968 6061 7768 8825 

kroA100 100 99 

GATS 2790 6180 6246 10318 11362 12001 12508 14712 15662 16725 

EA 1410 4437 5359 8104 8255 9069 9560 12084 13072 14141 

RLS 1193 4409 5357 8104 8255 9069 9560 12084 13072 14141 

pr124 124 123 

GATS 1953 7410 11031 14092 13299 16996 16329 17096 18470 19378 

EA 2180 7214 11406 15324 14092 16766 15436 16316 17659 18544 

RLS 2180 7175 11406 15315 14092 16766 15406 16316 17659 18546 

ch150 150 149 

GATS 3007 8645 11335 10207 12107 14304 15926 17621 18860 20595 

EA 5033 10805 12964 10972 12402 14767 16182 17475 18271 20171 

RLS 4982 10805 12890 10972 12393 14767 16182 17475 18271 20171 
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TABLE V. BEST OBTAINED OBJECTIVE VALUES FOR USW KNAPSACK AND F=1 

Instance   m 
C 

 1 2 3 4 5 6 7 8 9 10 

eil51 51 50 

GATS 1323 3490 3864 2354 1281 1726 2183 3060 4114 5909 

EA 1238 3318 3890 2531 1373 1933 2133 2977 3894 5420 

RLS 473 2035 3182 2486 1373 1933 2097 2977 3894 5404 

berlin52 52 51 

GATS 1356 2605 3502 2890 3647 3623 4345 5927 5785 6676 

EA 1350 2516 3254 2763 3975 3847 4817 6716 6678 7231 

RLS 754 1503 1831 2663 3965 3796 4817 6716 6674 7226 

eil76 76 75 

GATS 1344 1574 2212 2481 3556 1468 3960 5496 7687 8166 

EA 1227 1717 1847 2449 3560 1601 3722 5276 7360 7807 

RLS -27.9 1470 1847 2284 3545 1601 3722 5282 7360 7807 

kroA100 100 99 

GATS 2247 5784 7538 8276 7821 10097 11778 12903 14490 15607 

EA 1642 5066 6994 7855 7904 9925 11187 11675 13146 1642 

RLS 482 4510 6994 7775 7893 9915 11187 11675 13146 482 

pr124 124 123 

GATS 4151 6669 6594 8507 10743 12619 14325 16519 16814 17950 

EA 3833 6474 6224 8725 10622 12852 14533 16566 17010 17942 

RLS 2717 6174 6152 8661 10593 12845 14533 16566 17002 17942 

ch150 150 149 

GATS 3187 3893 4680 6380 10005 11523 12555 16806 17504 19475 

EA 2786 4033 5110 6973 10034 12104 12919 16638 17048 18445 

RLS 696 4033 4914 6954 10019 12112 12919 16638 17048 18445 

TABLE VI. BEST OBTAINED OBJECTIVE VALUES FOR BSC KNAPSACK AND F=1 

Instance   m 
C 

 1 2 3 4 5 6 7 8 9 10 

eil51 51 50 

GATS 7046 5705 6210 5633 5763 7752 9209 8619 8431 12604 

EA 3669 5076 4918 5528 3920 5701 7120 5980 5576 9613 

RLS 2077 3922 4383 5037 3918 5497 7103 5978 5576 9574 

berlin52 52 51 

GATS 3257 4063 4206 6421 8785 6834 8944 11481 13777 10591 

EA 3927 5634 5393 7419 9884 7900 9706 9048 11131 7875 

RLS 3104 5319 4978 7014 9524 7524 9325 9035 11131 7868 

eil76 76 75 

GATS 2505 5591 9698 8990 6082 10586 9868 12179 9773 12999 

EA 3353 6220 9750 8517 5469 9961 9779 11001 9238 10033 

RLS 2965 4891 9216 7855 5410 9678 9757 10973 9009 9920 

kroA100 100 99 

GATS 3519 8510 12545 16345 21823 24768 27075 27222 27545 27733 

EA 2936 7607 8463 10024 13983 14752 15548 14710 14665 14740 

RLS 3185 7233 7632 9824 13636 14728 15285 14456 14631 14762 

pr124 124 123 

GATS 5279 9868 15891 22874 26369 27065 31564 31509 31748 28895 

EA 4918 5977 8981 12518 15501 16410 21540 22435 23838 21770 

RLS 4610 5584 8744 11769 14618 16237 21517 22434 23838 21748 

ch150 150 149 

GATS 6003 9361 14416 19712 21516 21474 26198 30004 28441 21983 

EA 7060 9930 13363 17123 18267 17915 22443 25924 23967 17133 

RLS 5540 7890 13138 16969 18205 17915 22446 25736 23898 17139 
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TABLE VII. BEST OBTAINED OBJECTIVE VALUES FOR U KNAPSACK AND F=3 

Instance 
  C 

      1 2 3 4 5 6 7 8 9 10 

eil51 51 150 

GATS 12757 6862 10408 11631 10125 11404 12407 14898 18978 20940 

EA 5866 8190 9496 6704 7405 9110 10039 12848 15883 18783 

RLS 5644 8224 9548 6706 7367 9110 10039 12848 15883 18783 

berlin52 52 153 

GATS 5653 6243 11573 13346 14434 12841 14244 15958 16055 18265 

EA 9550 9446 14467 15717 15453 13783 16367 18420 18479 20755 

RLS 9550 9446 14467 15717 15453 13783 16367 18420 18479 20755 

eil76 76 225 

GATS 9885 10755 9793 12910 15712 18468 20719 21363 26461 26235 

EA 11215 11577 10285 13518 14881 18011 19134 21004 25645 25696 

RLS 11153 11567 10285 13518 14881 18011 19135 21004 25645 25696 

kroA100 100 297 

GATS 5958 15285 22481 25766 29504 31782 34282 40355 40065 45303 

EA 10305 19318 25500 26306 26622 28964 32229 38375 37576 41997 

RLS 10294 19318 25500 26306 26622 28959 32229 38375 37576 41997 

pr124 124 369 

GATS 9438 15284 25219 30209 36136 39723 42801 47099 51937 57657 

EA 16303 23105 29438 37560 42888 42589 43700 49025 52550 56691 

RLS 16303 23068 29462 37572 42899 42589 43700 49029 52550 56691 

ch150 150 477 

GATS 5086 17325 26264 28929 31472 37347 40510 46622 51966 55714 

EA 16721 28115 35162 34578 37215 41684 44664 49488 54138 57236 

RLS 16721 28136 35162 34572 37217 41684 44683 49488 54138 57236 

TABLE VIII. BEST OBTAINED OBJECTIVE VALUES FOR USW KNAPSACK AND F=3 

Instance      
C 

 1 2 3 4 5 6 7 8 9 10 

eil51 51 150 

GATS 4116 6622 8109 5967 6789 8302 9943 12327 13402 16159 

EA 3798 7325 9966 6807 7657 8472 10397 11070 12804 14844 

RLS 2545 7208 9879 6774 7653 8452 10397 11070 12804 14841 

berlin52 52 153 

GATS 3708 4905 3089 2231 5447 7705 10469 14224 15148 19844 

EA 5122 8317 8492 7680 11501 12556 15218 18025 20323 23209 

RLS 3002 5232 8505 7680 11501 12556 15211 18025 20323 23209 

eil76 76 225 

GATS 4860 3644 4897 6716 10454 8483 13552 16530 21883 24085 

EA 5411 4969 6958 8684 10717 8819 14067 16440 20802 23165 

RLS 5112 4898 6971 8653 10717 8814 14067 16440 20802 23165 

kroA100 100 297 

GATS 8155 11858 14149 15844 18600 22103 25725 31424 39119 42713 

EA 7145 13163 15424 17418 20282 23721 27051 31370 38089 39463 

RLS 6886 13020 15387 17421 20282 23721 27051 31370 38089 39463 

pr124 124 369 

GATS 11919 15691 20015 22816 27333 32262 36064 43836 47830 55714 

EA 13643 20347 25838 27580 32387 37483 40047 43151 47270 52732 

RLS 12388 20190 25787 27575 32387 37480 40047 43150 47272 52732 

ch150 150 477 

GATS 6144 8269 10327 13749 19747 23968 27928 35052 41202 47371 

EA 9117 14249 17855 23513 30111 34003 35413 41297 45660 49657 

RLS 5998 14221 17838 23497 30094 34003 35413 41301 45660 49657 
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TABLE IX. BEST OBTAINED OBJECTIVE VALUES FOR BSC KNAPSACK AND F=3 

Instance     
C 

 1 2 3 4 5 6 7 8 9 10 

eil51 51 150 

GATS 14794 10763 15472 21741 22798 20715 21456 21686 25276 27136 

EA 6664 12796 15786 21558 22913 21012 21188 20677 23414 24114 

RLS 4487 11673 15037 21337 22366 20957 21154 20647 23382 24124 

berlin52 52 153 

GATS 5590 10577 12932 21148 20540 26319 25721 39668 35159 31443 

EA 9652 16485 19684 28125 26488 31150 30211 34029 30659 31700 

RLS 6600 14304 18337 27379 26344 31352 29934 34021 30509 31784 

eil76 76 225 

GATS 6393 14296 24487 26867 31103 38152 40316 43023 39945 45623 

EA 7644 14692 22538 22502 25785 31633 32611 35101 30232 34183 

RLS 6806 14687 22561 22468 25669 31571 32584 35138 30226 34190 

kroA100 100 297 

GATS 12447 29433 42359 52054 62991 69103 72403 68952 63789 67504 

EA 13725 25080 32678 37156 43668 46954 48207 42549 36035 39067 

RLS 12600 24664 32720 37043 43618 46969 48211 42544 36017 39076 

pr124 124 369 

GATS 13088 35206 52693 74355 83716 97891 102660 101580 90070 98197 

EA 16217 29193 41810 57901 64792 79009 84810 82360 71276 78945 

RLS 15539 28777 40657 57477 64361 78972 84866 82291 71265 78899 

ch150 150 477 

GATS 16124 35081 53125 60824 68400 75684 76558 71987 75781 69198 

EA 19600 37596 52111 53592 57974 62374 61093 54987 55871 49642 

RLS 16039 36403 52106 53533 57939 62419 61021 54922 55891 49642 

TABLE X. BEST OBTAINED OBJECTIVE VALUES FOR U KNAPSACK AND F=5 

Instance n m 
C 

 1 2 3 4 5 6 7 8 9 10 

eil51 51 250 

GATS 6256 13322 13482 15624 18430 20628 19378 22934 26390 31520 

EA 10683 16345 13885 16367 16375 19057 17871 21961 25208 29508 

RLS 10688 16380 13887 16366 16375 19057 17871 21963 25208 29508 

berlin52 52 255 

GATS 9805 13413 19636 22637 26302 27357 31294 30881 29606 35997 

EA 18049 21247 26153 29547 31348 32109 36819 35942 36584 39386 

RLS 18029 21222 26153 29547 31354 32109 36819 35942 36584 39386 

eil76 76 375 

GATS 7268 13883 16258 18624 24665 27517 31973 35890 42916 46714 

EA 13023 18070 19554 22349 26986 28412 32510 36327 43008 44770 

RLS 13023 18080 19554 22349 26986 28424 32510 36327 43008 44770 

kroA100 100 495 

GATS 4084 18049 31563 41507 50054 52219 55082 64904 69106 78315 

EA 13670 27789 38737 45781 51076 51588 53633 62457 66117 73998 

RLS 13674 27789 38726 45764 51086 51592 53633 62457 66115 73999 

pr124 124 615 

GATS 21880 32241 40368 45632 56115 65422 69301 76267 91335 101453 

EA 28416 40811 45873 58503 66018 70346 76155 78626 84805 91399 

RLS 28422 40811 45873 58503 66029 70351 76155 78626 84805 91399 

ch150 150 745 

GATS 22475 34033 37762 39908 57564 58785 63270 56226 85023 92916 

EA 33047 50046 55532 58683 58739 59979 64561 72084 79610 87000 

RLS 33052 50049 55532 58688 58739 59985 64561 72085 79610 87000 
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TABLE XI. BEST OBTAINED OBJECTIVE VALUES FOR USW KNAPSACK AND F=5 

Instance n m 
C 

 1 2 3 4 5 6 7 8 9 10 

eil51 51 250 

GATS 4835 7312 8816 9449 10831 14091 17749 17645 21245 28107 

EA 5285 9121 11140 10455 12878 15574 18683 18184 21343 26483 

RLS 3811 9206 11093 10445 12878 15574 18683 18184 21343 26483 

berlin52 52 255 

GATS 6097 6775 5847 6338 9443 15392 18098 22447 28650 33515 

EA 9178 13505 15700 17132 20587 22873 26359 31739 36054 40537 

RLS 6079 11347 15714 17085 20590 22873 26363 31741 36054 40537 

eil76 76 375 

GATS 8245 5761 10534 12509 14123 14392 20804 24840 30082 38073 

EA 9883 10290 13293 18532 19944 18801 24721 27858 32213 36553 

RLS 9867 10368 13329 18508 19957 18806 24721 27858 32213 36553 

kroA100 100 495 

GATS 7875 13426 18677 23964 29733 36743 43030 48959 63755 70255 

EA 10530 21104 27042 33303 38855 45102 49565 52726 63657 66751 

RLS 10401 21145 26978 33303 38846 45105 49565 52726 63657 66751 

pr124 124 615 

GATS 13735 18155 23084 29777 34953 52432 47900 58064 65419 94974 

EA 19906 26311 33455 37740 44301 52962 60710 65982 74340 85794 

RLS 16085 26311 33444 37740 44299 52961 60710 65982 74340 85795 

ch150 150 745 

GATS 7397 10199 13604 29700 36421 44233 62350 63635 65498 95766 

EA 15609 24436 29324 33000 40922 47562 55701 64278 74430 83275 

RLS 10107 24427 29341 33004 40919 47560 55701 64278 74430 83275 

TABLE XII. BEST OBTAINED OBJECTIVE VALUES FOR BSC KNAPSACK AND F=5 

Instance n m 
C 

 1 2 3 4 5 6 7 8 9 10 

eil51 51 250 

GATS 8215 17551 29452 33230 33350 40293 40203 44120 45228 43007 

EA 10397 19722 30181 32102 30482 35749 34191 37373 37247 33697 

RLS 9173 18991 29998 31560 30497 35752 34230 37058 37209 33697 

berlin52 52 255 

GATS 8107 20247 32764 35018 41165 53501 56404 74836 63133 50526 

EA 14528 28835 44516 48130 52655 63329 65358 67873 65713 55935 

RLS 11398 24981 40838 48127 52559 63221 65362 67882 65713 55952 

eil76 76 375 

GATS 12387 28397 43974 53637 63576 64705 72170 74670 73161 72539 

EA 14684 29705 41728 45733 53648 52825 59137 60762 58755 57441 

RLS 14522 29765 41568 45454 53625 52853 59172 60658 58752 57435 

kroA100 100 495 

GATS 17871 42303 62852 78784 97322 109370 122500 111540 103920 108070 

EA 20171 37407 52409 60664 71889 80653 91242 77821 69296 73190 

RLS 19592 37101 52544 60497 71853 80656 91106 77849 69300 73190 

pr124 124 615 

GATS 24295 57282 90776 113290 129060 142430 157270 143380 143720 132110 

EA 52341 79028 93081 106169 115370 133307 118764 119662 107580 52341 

RLS 52492 78851 92919 106100 115370 133342 118773 119662 107549 52492 

ch150 150 745 

GATS 26247 61770 88715 107560 121410 132560 132380 121960 129690 126520 

EA 34374 69088 91584 99919 108119 114990 111872 98960 104834 100531 

RLS 31445 68036 91362 99873 108125 114974 111876 98962 104836 100525 

VI. GATS RESULTS 

The best obtained objective values for GATS were 
recorded and compared with the best obtained by two state-of-
the-art approaches, EA and RLS. Tables 4–6 show the results 
for instances with one item per city and a knapsack capacity 
ranging from 1 to 10. Table 4 shows that GATS obtained 

higher objective values than EA and RLS for all knapsack 
capacities for the instances consisting of 51, 76 and 100 cities 
with uncorrelated (U) item weights. However, the results 
showed that GATS was not able to record higher objective 
values in instances consisting of 52 cities; it achieved better 
values in only two instances, with medium knapsack capacity 
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(           ). Nevertheless, the differences between the 
highest objective values obtained by the three approaches were 
not substantial in these instances; for example, EA and RLS 
achieved objective values, for the knapsack with    , that 
were only 1% higher than GATS. GATS also outperformed 
RLS and EA in instances with a large number of cities (i.e., 
124 and 150) and knapsacks with a high capacity (8, 9 and 10). 
With USW, Table 5 shows that GATS was able to achieve 
better objective values than EA and RLS, with the majority of 
instances having a small knapsack capacity (ranging from 1 to 
3). Similarly, it outperformed them for most of the large-
capacity instances, ranging from 8 to 10, except instances with 
52 cities (i.e., berlin52). On the other hand, EA and RLS 
outperformed GATS with a medium KP, ranging from 4 to 7 in 
most instances, although the differences between the objective 
values obtained by the three approaches were not significant. 
For example, the best value reached by GATS with the 
instance consisting of 76 cities (i.e., eil76) and a knapsack 
capacity of 5 was 3556, whereas it was 3560 in RLS. In BSC, 
GATS surpassed RLS and EA in almost all instances, with 
medium- and large-capacity knapsacks ranging from 4 to 10, 
except in the instances with 52 cities (i.e., berlin52), where EA 
and RLS were able to achieve better objective values in the 
majority of the instances (see Table 6). GATS was also able to 
obtain better objective values with a small-capacity knapsack 
in various instances, particularly the ones for 51, 100, 124 and 
150 cities, while the best objective values were achieved by EA 
in the rest of the instances for 52 and 76 cities. Tables 7–9 
show the best objective values obtained from instances 
consisting of three items per city. Table 7 shows that GATS 
achieved better objective values in several uncorrelated 
instances with different knapsack capacities. For instance, it 
outperformed EA and RLS in all knapsack capacities in 
instances consisting of 51 cities (i.e., eil51). In contrast, lower 
objective values were achieved by GATS in all instances 
consisting of 52, 124 and 150 cities. Although the values 
obtained by GATS fluctuated among instances, it performed 
better with medium- and large-capacity knapsacks ranging 
from 5 to 10 instances containing 76 and 100 cities. The best 
objective values were achieved interchangeably with USW by 
the three approaches. However, GATS was able to surpass EA 
and RLS with large-capacity knapsacks, specifically when 
             , in instances containing 51, 76, 100 and 124 
cities. But EA and RLS achieved better values in the other two 
instances with the same knapsack capacities (see Table 8). 
Table 9 shows that GATS also obtained better objective values 
with BSC items, especially with large knapsack capacities 
(              ). 

 As observed in Table 10, with uncorrelated items, GATS 
was unable to exceed the objective values obtained by EA and 
RLS when increasing the number of items to five per city. This 
became apparent with small and medium knapsacks (  
      ). However, GATS revealed the highest objective values 
with large-capacity knapsacks in various instances. For 
instance, GATS outperformed RLS and EA in all instances 
consisting of large knapsacks, ranging from 6 to 10, for 51 and 
100 cities (eil51 and kroA100). It also reached the highest 
objective value in most uncorrelated item instances with a 
knapsack capacity equal to 10, except for those that contained 
52 cities (berlin52). But GATS was not able to outperform the 

two state-of-the-art approaches in all instances with USW, 
except instances with the largest knapsack capacity (    ). 
In fact, it recorded significantly higher objective values in four 
sets of various instances, particularly those composed of 51, 
100, 124 and 150 cities (see Table 11). The performance of 
GATS for a BSC knapsack was notably better than that of the 
two state-of-the-art approaches in the majority of instances (see 
Table 12). However, this improvement became most evident 
with medium- and large-capacity knapsacks ranging from 4 to 
10. 

Based on the obtained results, the following findings were 
observed: 

 The method used for tour initialization significantly 
affects the obtained solutions. 

 Our proposed approach (GATS) performed better, in 
terms of objective values achieved, than two of the 
well-known state-of-the-art approaches (RLS and EA) 
in the majority of instances. 

 GATS performed better, especially with instances of a 
large-capacity knapsack.  

 GATS’ performance significantly decreased when 
increasing the number of items and cities, particularly 
with a small-capacity knapsack.  

 GATS had some issues with one set of instances, for 
berlin52, where it struggled to achieve better objective 
values in almost all instances.  

VII. CONCLUSION 

This paper investigates one of the recent NP-hard problems 
called the traveling thief problem, a multicomponent problem 
consisting of the two well-known problems TSP and KP. The 
optimization of TTP is challenging because of the 
interdependence between its components, where finding an 
optimal solution for one problem independently does not 
guarantee obtaining an optimal TTP solution. The aim of this 
paper was to investigate the use of hybrid GAs for the TTP. 
Therefore, we proposed a hybrid genetic approach with TS, a 
combination called GATS. The key aspect of GATS is that 
TTP solutions are considered by taking into account the 
interdependent nature of the TTP subcomponents. The 
performance of GATS was analyzed and compared with that of 
two state-of-the-art approaches, EA and RLS. A 
comprehensive set of TTP benchmark datasets was adopted in 
this experimental work, and 540 instances were selected for 
our investigation. These instances consisted of five different 
groups of cities, 51, 52, 76, 100 and 150 in number, as well as 
groups of items ranging in number from 50 to 745. The 
selected instances also consisted of the three types of KPs (U, 
USW and BSC) and all varieties of knapsack capacity (C). The 
obtained results were analyzed based on several factors, such 
as the type of knapsack, knapsack capacity and number of 
items per city. 

The obtained results revealed that GATS was able to 
outperform EA and RLS in terms of objective values for 
several instances. This became more apparent with a large-
capacity knapsack. However, some limitations of GATS were 
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observed, for example, that its performance significantly 
decreased when the number of items and cities increased, 
particularly with a small-capacity knapsack. It was also noted 
that GATS had some issues with one set of the datasets, 
berlin52, where it struggled to achieve better objective values 
in almost all instances. Therefore, in the future, further 
experiments should be conducted to tackle such issues. Larger 
numbers of instances should also be investigated. 
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