
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

276 | P a g e

www.ijacsa.thesai.org

A Hybrid Genetic Algorithm with Tabu Search for

Optimization of the Traveling Thief Problem

Saad T Alharbi

Computer Science Department

Taibah University

Medina, Saudi Arabia

Abstract—Until now, several approaches such as evolutionary

computing and heuristic methods have been presented to

optimize the traveling thief problem (TTP). However, most of

these approaches consider the TTP components independently,

usually considering the traveling salesman problem (TSP) and

then tackling the knapsack problem (KP), despite their

interdependent nature. In this paper, we investigate the use of a

hybrid genetic algorithm (GA) and tabu search (TS) for the TTP.

Therefore, a novel hybrid genetic approach called GATS is

proposed and compared with the state-of-the-art approaches.

The key aspect of GATS is that TTP solutions are considered by

firmly taking into account the interdependent nature of the TTP

subcomponents, where all its operators are simultaneously

implemented on TSP and KP solutions. A comprehensive set of

TTP benchmark datasets was adopted to investigate the

effectiveness of GATS. We selected 540 instances for our

investigation, which comprised five different groups of cities (51,

52, 76, 100 and 150 cities) and different groupings of items, from

50 to 745 items. All types of knapsack (uncorrelated,

uncorrelated with similar weights and bonded strongly

correlated) with all different knapsack capacities were also taken

into consideration. Different initialization methods were

empirically investigated as well. The results of the computational

experiments demonstrated that GATS is capable of surpassing

the state-of-the-art results for various instances.

Keywords—Combinatorial; hybrid approaches; genetic

algorithm; optimization; tabu search; TTP

I. INTRODUCTION

The traveling thief problem (TTP) is a benchmark problem
recently introduced by [1]. It is an abstraction of real-world
problems that consist of multiple components, such as vehicle
routing problems and supply chain management. TTP has
recently drawn researchers’ attention, as its definition
represents various aspects of real-world complexities. TTP
combines two well-known problems, the traveling salesman
problem (TSP) and the knapsack problem (KP). The
underlying definition of the problem is that a thief has to visit a
set of cities and pick some items from these cities and pack
them in a knapsack, where each item has its own weight and
value [1]. The challenging aspect of the problem is that the
knapsack has a certain capacity, and the total weights of the
picked items must not exceed this capacity; the thief also must
pay rent for using the knapsack, the rent depending primarily
on the total traveling time. Because the two problems (TSP and

KP) are interdependent, the speed of the thief decreases when
the knapsack gets heavier, which results in an increased total
travel time and requires the paying of a higher rent. Therefore,
the main objective of TTP is to maximize the total profit of the
thief, comprising the total value of the picked items minus the
rent of the knapsack.

Despite the TTP only recently being introduced, it has been
rigorously considered. Various approaches have been
introduced into the literature, adopting different types of
techniques and algorithms. For instance, heuristics strategies
are among the widely adopted methods for solving TTP, as
seen in [2-6]. Searching for the best solutions in such
approaches typically involves using classical greedy routines
where an initial solution is generated and is iteratively
improved. However, adopting heuristics to solve TTP can be
computationally complex, especially with a large number of
instances [7]. Evolutionary approaches such as genetic
algorithms (GAs) and genetic programming have also been
adopted for roughly solving the TTP, as in [6, 8-14]. The
majority of these approaches try to improve TTP solutions by
considering each subproblem (i.e., TSP and KP) independently,
despite the interdependence between the subcomponents.
Evolutionary operators such as crossover and mutation are
normally implemented on tours, and then one of the known
packing heuristics is implemented to obtain the best packing
plan for the best tours. However, the shortest tours do not
necessarily guarantee that the optimal TTP solution will be
achieved, due to the nonlinear relationship in the solution’s
objective function [15]. Other approaches that have
occasionally been adopted in the literature to solve TTP
include swarm intelligence approaches, such as the ant colony
or the artificial bees colony [16, 17].

It has not yet been proven which type of approach is most
applicable for solving TTP. Several local search algorithms
such as those presented in [18, 19] have been introduced. Most
importantly, Packing Routine and PACKITERATIVE,
presented by [20], have become key strategies in the literature.
The former starts by sorting items according to their weight
and then picks the most profitable items. The latter approach is
considered an enhanced version of the former, working in the
same way but in an iterative manner with some exponent
values. Bitflip and Insertion are two local search operators that
are also regularly adopted for solutions generated by the
previous two methods, to achieve optimal solutions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

277 | P a g e

www.ijacsa.thesai.org

TABLE I. MATHEMATICAL REPRESENTATION OF TTP

Equation No Description

 (1)
The speed (velocity) of the thief, where C is a constant value calculated using Equation 2, and is the weight

of the knapsack at the current city

()

 (2) is the maximum velocity , minimum velocity, W is the total wieght of the knapsack

 () ∑

 (3)

The total value of the collected items, where is the profit of the item and is a binary value indicating

whether the item is available at a particular city (0 denotes that the item is unpicked. while 1 indicates that it is

picked)

 () ∑

 (4) The total travel time from city to

 () () () (5) The objective value (i.e., the total profit gained by the thief)

(6) The travel time between two cities, where is the distance between city and

In this paper, we introduce a hybrid GA [21, 22], called
GATS, using one of the well-known local search methods, tabu
search (TS) [23-25]. GA has been proven powerful in
optimizing various types of problems in different domains,
such as machine learning [26], network traffic control [27] and
industry [28]. Similarly, TS has also been successfully adopted,
both alone and hybridized with other approaches, for solving
different problems in various fields, as in [29-31]. In fact, to
our knowledge, TS has been hybridized with GA for solving
various optimization problems, but the hybridization has not
been adopted for TTP.

The contribution of this article to the literature is therefore
twofold. First, it introduces a novel hybrid approach developed
specifically for TTP. The key aspect of this approach is that
TTP solutions are considered by firmly taking into account the
interdependent nature of the TTP subcomponents. The adopted
operators of the proposed approach are simultaneously
implemented on tours and packing plans in the process of
solution generation; specifically, GA operators, such as
crossover and mutation, are implemented to modify tours,
while TS is devoted to seeking the best corresponding packing
plan. Second, the paper also presents a wide-ranging study
taking into account different aspects of TTP, where the
performance of the proposed approach was investigated on 540
datasets. These datasets differed in aspects such as size,
knapsack capacity and type of knapsack. For instance, the
number of cities in these datasets ranged from 51 to 150 cities,
and the number of items ranged from 50 to 745 items. All types
and capacities of knapsack were tested in this study, and the
results were compared with the state-of-the-art approaches.

The rest of the paper is organized as follows. Section II
briefly presents the definition of the TTP. In section III, a
detailed description of the proposed approach is presented. The
experimental design is discussed in section IV, and the
proposed approach is tested on various instances and the
experimental results are discussed in section VI . The paper
concludes in section VII and directions for future work are
outlined.

II. THE TRAVELING THIEF PROBLEM

The definition of TTP and its mathematical representation
have been well introduced in the literature, for example in [1,
5, 20, 32]. Table 1 shows the mathematical representation of
TTP, and we briefly summarize its underlying concept as
follows:

 A thief has to travel among a set of cities , visiting
each city only once.

 The tour of the thief must start and end at the same
city.

 The tour has a length that can be calculated from the
distance * + between cities.

 Each city contains some items where each item has
weight and value .

 The thief holds a knapsack that has a specific capacity
 and a rent .

 The thief is required to pick the most profitable items
from cities during his tour, where the total weight of
the picked items must not exceed the knapsack
capacity.

 The knapsack rent is based on the time unit.

 The speed of the thief depends on the knapsack weight,
where the thief gets slower when the knapsack
becomes heavier.

 The total profit gained by the thief is the total value of
the picked items minus the rent.

 The ultimate objective is finding a tour and a
packing plan that maximize the total profit gained by
the thief

III. DEVELOPMENT OF THE PROPOSED APPROACH

The aim of this paper is to empirically investigate the use of
the GA to solve the TTP. Specifically, the hybridization of the
GA with one of the well-known metaheuristic search

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

278 | P a g e

www.ijacsa.thesai.org

algorithms, TS, is investigated. Therefore, a hybrid GA with a
TS approach, called GATS, is proposed. Figure 1 shows the
flow chart of this proposed approach. Its key modules are
described in detail in the following sections. For instance,

Section A shows the adoption of GA and its operators, while
Tabu Search C shows how TS was employed in the proposed
approach to the TTP.

Fig. 1. GATS Flow Chart.

A. Genetic Algorithm for TTP

1) Coding
Tours are encoded directly, with integer numbers indicating

city indices in sorted enumeration, starting from a city and
ending with the same city. Figure 2 shows an example of a tour
consisting of five cities, starting from city 4, traveling to cities
1, 3, 5 and 2 and then returning to the starting city.

4 1 3 5 2 4

Fig. 2. Tour Representation.

Similarly, a packing plan is encoded with an integer
enumeration, where the length of the chromosome indicates the
number of items, and the integer value in each position
represents the number of the city from which the item was
picked. Unpicked items are denoted by zero. Figure 3 shows a
knapsack solution with 10 items (2 items per city), consisting
of three picked items, 2, 3 and 9, at cities 1, 3 and 5,
respectively.

0 1 3 0 0 0 0 0 5 0

Fig. 3. Packing Plan Representation.

 9 2 3 8 4 5 6 1 7 9

 4 5 2 1 8 7 6 9 3 4

Step 1

 0 0 0 1 8 7 6 0 0 0

 0 0 0 8 4 5 6 0 0 0

Step 2

 {9,2,3,4,5}

 9 2 3 1 8 7 6 4 5 0

 {2, 1,7,9,3}

 2 1 7 8 4 5 6 9 3 0

Steps 3 and 4

 9 2 3 1 8 7 6 4 5 9

 2 1 7 8 4 5 6 9 3 2

Step 5

Fig. 4. An Example of Crossover.

2) Initialization
GA starts with sets of routes and their corresponding

packing plans, which are considered to be the initial candidate
solutions (i.e., population). Various strategies of initialization
were adopted and tested for this paper. Tours were either
randomly or using the Chained Lin-Kernighan heuristic (CLK)
[33]. The impact of each method was tested, and the results
will be discussed in Section VI. The knapsack plan, on the
other hand, was initialized using of one the well-known
heuristics of TTP, which is PACKITERATIVE [20].

3) Crossover
An order crossover (OX) operator [34] was applied on

tours to generate new solutions throughout the algorithm
iterations. OX is one of the operators successfully used in
combinatorial optimization problems, especially with TSP. In
OX, a part of one parent is copied to the child. In GATS, two
candidate solutions (tours) are selected using the well-known
roulette wheel selection [35] method, which depends mainly on
fitness values. Then OX is implemented as follows:

1) Two random positions in each tour are selected that

would be considered the starting and end of the part that will

be copied to the new offspring.

2) The selected part in the first tour is copied to the

second offspring , while the sub-tour in is copied to

the first offspring .
3) Cities in that do not exist in are recorded in

the same order in which they occur in .
4) Blank positions in are filled, in order, with the

cities recorded from .
5) The last city of is updated to be the same as the

first one.

6) Steps 3–5 are repeated for .

Figure 4 shows an example of new offspring generation
using the OX crossover. Positions 4 and 7 are selected.
Accordingly, then, the sub-tour {8, 4, 5, 6} from is copied

Start

Read Instances

CLK

Pack Iterative

Calculate Objective

values

Max

Iteratio

n

Sort solutions based

on objective

Select top 50% of

population for

Roulette

Wheel

Selection

OX Crossover

No of

Offspring

<

population

Insertion

TS

End

Yes

No
Yes

No

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

279 | P a g e

www.ijacsa.thesai.org

to the second offspring , while contains the sub-tour
{1, 8, 7,6} from . Blank positions in are filled with
cities {9, 2, 3, 4, 5}, in that order, because they occur in that
order in . Finally, the last city in is updated to be the
same as the starting city of the tour. Similarly, blank positions
in are filled with cities {2, 1, 7, 9, 3}, in that order, as they
occur in

Fig. 5. OX Crossover Pseudocode.

 , and then the last city is updated to be the same as the
starting city of the tour. Figure 5 shows the pseudocode of the
implemented OX.

4) Mutation
Opt-Mutation or insertion [34] was applied on the tours in

GATS. Here, a predefined mutation probability determines the
number of candidate solutions (tours) that will undergo the
mutation process. Let us say, for example, that the mutation
probability was set at 0.1, and the population (number of
candidate solutions) is 100. Then insertion will only be
performed on 10 tours, selected randomly. A randomly
selected city is inserted into a randomly selected position in the
tour. Figure 7 shows an example of insertion mutation on .
Notice that city 8 () was selected to be moved to be the
third city (), and subsequent cities are shifted.
Consequently, is obtained. Figure 6 shows the insertion
pseudocode.

B. Item Packing

In each iteration, after the crossover and mutation operators
have performed on tours, the well-known PACKITERATIVE
routine [20] is performed on each tour to generate its
corresponding packing plan. PACKITERATIVE is well

documented in [20], demonstrating good performance results.
The main idea behind it is to pack the most profitable items
into the pack by sorting them based on a score calculated based
on the items’ weights. Items are sorted based on their scores,
and the algorithm sequentially checks whether adding an item
increases the total profit obtained by the thief. After the
generation of packing plans for all tours, the proposed GA
calculates the objective value of each candidate solution using
equation 5.

Fig. 6. Insertion Pseudocode.

 4 5 2 1 8 7 6 9 3 4

 4 5 8 2 1 7 6 9 3 4

Fig. 7. An Example of Insertion.

C. Tabu Search

Tabu search is one of the known metaheuristic algorithms
that has been efficiently employed in solving various
optimization problems, especially combinatorial ones. For
instance, it has been extensively used to solve classical job-
shop scheduling, as in [36] [37], as well as various
environmental problems, such as power system planning [38]
and transportation [39]. It has also been adopted in optimizing
different aspects of recent technology trends such as big data
[40]. The main idea of TS is to generate new solutions from the
neighborhood of a current solution. Similar to other
metaheuristic algorithms, a certain number of iterations are
performed to generate new solutions. However, TS selects the
best of these. The most important feature of TS is the tabu list,
which is used to store subsets of solutions that are not allowed
to be visited again, as they would bring the search to areas that
have already been visited. This feature helps the algorithm to
avoid cycling and getting trapped by local optima. In our
proposed GA, TS was adopted on packing plans for each tour
to ensure that the best items were picked for the tour. In each
iteration of the GA, after performing the crossover and
mutation operators, the TS method is called for each tour. The
current tour and the initial packing plan are passed to this
method. The length of the tabu list is randomly initialized
based on the number of items, and the method terminates when
it reaches the maximum number of iterations value where the
best packing plan (i.e., with highest objective value) is
returned. The Bitflip routine introduced by [20] was adopted in
the proposed algorithm as a method for searching the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

280 | P a g e

www.ijacsa.thesai.org

neighborhood (new packing plans). However, it was modified
to adapt to the proposed algorithm, where all items in the pack
are checked in order, and the status of each item is flipped
where picked items become unpicked and vice versa. After
flipping each item, the resulting packing plan is returned to the
TS, and the objective value is calculated. Figure 8 shows the
algorithm of TS.

Fig. 8. TS Pseudocode.

TABLE II. INSTANCE CHARACTERISTICS

Parameters Description

Number of cities Ranged from 51 to 85900

Type of knapsack problem

- Uncorrelated (U)

- Uncorrelated with similar weights (USW)

- Bounded strongly correlated (BSC)

Items per city (F) 1, 3, 5 and 10

Knapsack Capacity (C) Ranged from 1 to 10

TABLE III. BEST OBJECTIVE VALUES OBTAINED USING THE RANDOM AND

CLK INITIALIZATIONS

 U USW BSW

C Random CLK Random CLK Random CLK

1 4195 2251 -2770 1323 25033 3714

2 7718 1342 -3674 3410 22479 4639

3 5432 9111 -7162 3587 13055 6999

4 7143 1052 -5433 2260 10199 8866

5 19972 3892 -21274 884 -2714 5448

6 -19612 3737 -3674 1409 -28883 7678

7 -21893 4764 -3674 1478 -27672 9147

8 -19245 6019 -7162 2105 -33525 8607

9 -19611 6922 -21274 3609 -38895 8336

10 -21833.6 3965 -23798 5451 -35153 12386

IV. EXPERIMENTAL DESIGN

In order to perform an investigation on a TTP, the set of
instances defined by [4] should be considered for performance
evaluation. These instances were developed in such a way that

the two sub-problems (i.e., TSP and KP) were considered. The
total number of instances in this set is 9720, and the instances

have different characteristics based on different parameters,
for example, the numbers of cities and items. Most of these
characteristics are derived from the TSP library dataset [41].
Table 2 highlights the characteristics of the TTP instances.
Because of the complexity of performing an experiment on the
entire set of instances, a collection of 540 instances was
selected for our investigation. These instances consisted of five
different groups of cities, 51, 52, 76, 100 and 150 in number, as
well as three different numbers of items per city (F), 1, 3, and
5. The selected instances also consisted of the three types of
KPs (uncorrelated [U], uncorrelated with similar weights
[USW] and bounded strongly correlated [BSC]) and all
varieties of knapsack capacity (C). Our implementation was
conducted using MATLAB R2014a, and all computations were
performed on machines using an Intel Core i7-4790S 3.20 GHz
processor and 12 GB RAM, running Windows 8.

Before performing the experiment, several parameters were
determined. For instance, the maximum running time for an
instance was 10 minutes. In addition, due to the randomization
of evolutionary approaches, each instance would be tested 10
independent times. The results obtained from our experiment
were compared with the best objective values obtained in the
literature. At the beginning of the experiment, several
variations on the proposed approach were empirically tested;
for example, we tested the effect of the random initialization of
tours and investigated the performance of GA with CLK
initialization. The aim of these investigations was to adopt the
best obtained methods in our approach. Then the proposed
approach was tested, and the results were compared with some
of the state-of-the-art approaches.

V. INITIALIZATION METHOD

In order to investigate the effect of the tour initialization
method on the quality of the obtained solutions, two methods
were tested, the basic random tour initialization and the CLK
heuristic. These methods were implemented within a classic
GA for solving TTP. The performance of the two methods was
compared on 30 instances with relatively small numbers of
cities and items. Surprisingly, the basic random method
obtained higher objective values in some instances when
compared with CLK, especially with a small knapsack capacity
ranging from 1 to 3 and particularly with U and BSC
knapsacks (see Table 3). In order to obtain an accurate result, a
normalized objective value was calculated for each method in
all instances, taking into consideration the values obtained
from each run. This normalized value was calculated by taking
the ratio between the best objective value for an instance and
the average of the objective values for all runs for this instance.
Figure 9 shows the results of the comparisons for the three
types of knapsack (U, USW and BSC). It is clear that the CLK
used for tour initialization is significantly better than the basic
random method. Figure 10 also shows an example of a tour
generated for an optimal solution obtained by each method; the
obtained tour using CLK was significantly (more than 50%)
shorter than that obtained by random means.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

281 | P a g e

www.ijacsa.thesai.org

(a) (b) (c)

Fig. 9. Normalized objective values for random and CLK initializations in a) U, b) USW and c) BSW.

(a) (b)

Fig. 10. Tours of an optimal TTP solution obtained by a) random and b) CLK initializations.

TABLE IV. BEST OBTAINED OBJECTIVE VALUES FOR U KNAPSACK AND F=1

Instance m
C

 1 2 3 4 5 6 7 8 9 10

eil51 51 50

GATS 2251 13420 9111 1596 3892 3737 3965 4764 6019 6922

EA 1720 3983 4162 1444 2997 3313 3201 3929 5297 6130

RLS 1533 3983 4162 1444 2963 3313 3201 3929 5297 6130

berlin52 52 51

GATS 1354 2261 4335 3934 4265 5582 6280 6944 7752 7545

EA 2330 3220 4748 3963 4141 5372 6541 7532 8060 7979

RLS 2003 3220 4748 3963 4141 5356 6541 7532 8060 7979

eil76 76 75

GATS 4528 6101 4467 4663 6355 7425 7161 7134 9013 9457

EA 3727 5173 4176 3958 5292 6175 5968 6078 7768 8825

RLS 3412 5012 4114 3958 5292 6150 5968 6061 7768 8825

kroA100 100 99

GATS 2790 6180 6246 10318 11362 12001 12508 14712 15662 16725

EA 1410 4437 5359 8104 8255 9069 9560 12084 13072 14141

RLS 1193 4409 5357 8104 8255 9069 9560 12084 13072 14141

pr124 124 123

GATS 1953 7410 11031 14092 13299 16996 16329 17096 18470 19378

EA 2180 7214 11406 15324 14092 16766 15436 16316 17659 18544

RLS 2180 7175 11406 15315 14092 16766 15406 16316 17659 18546

ch150 150 149

GATS 3007 8645 11335 10207 12107 14304 15926 17621 18860 20595

EA 5033 10805 12964 10972 12402 14767 16182 17475 18271 20171

RLS 4982 10805 12890 10972 12393 14767 16182 17475 18271 20171

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

282 | P a g e

www.ijacsa.thesai.org

TABLE V. BEST OBTAINED OBJECTIVE VALUES FOR USW KNAPSACK AND F=1

Instance m
C

 1 2 3 4 5 6 7 8 9 10

eil51 51 50

GATS 1323 3490 3864 2354 1281 1726 2183 3060 4114 5909

EA 1238 3318 3890 2531 1373 1933 2133 2977 3894 5420

RLS 473 2035 3182 2486 1373 1933 2097 2977 3894 5404

berlin52 52 51

GATS 1356 2605 3502 2890 3647 3623 4345 5927 5785 6676

EA 1350 2516 3254 2763 3975 3847 4817 6716 6678 7231

RLS 754 1503 1831 2663 3965 3796 4817 6716 6674 7226

eil76 76 75

GATS 1344 1574 2212 2481 3556 1468 3960 5496 7687 8166

EA 1227 1717 1847 2449 3560 1601 3722 5276 7360 7807

RLS -27.9 1470 1847 2284 3545 1601 3722 5282 7360 7807

kroA100 100 99

GATS 2247 5784 7538 8276 7821 10097 11778 12903 14490 15607

EA 1642 5066 6994 7855 7904 9925 11187 11675 13146 1642

RLS 482 4510 6994 7775 7893 9915 11187 11675 13146 482

pr124 124 123

GATS 4151 6669 6594 8507 10743 12619 14325 16519 16814 17950

EA 3833 6474 6224 8725 10622 12852 14533 16566 17010 17942

RLS 2717 6174 6152 8661 10593 12845 14533 16566 17002 17942

ch150 150 149

GATS 3187 3893 4680 6380 10005 11523 12555 16806 17504 19475

EA 2786 4033 5110 6973 10034 12104 12919 16638 17048 18445

RLS 696 4033 4914 6954 10019 12112 12919 16638 17048 18445

TABLE VI. BEST OBTAINED OBJECTIVE VALUES FOR BSC KNAPSACK AND F=1

Instance m
C

 1 2 3 4 5 6 7 8 9 10

eil51 51 50

GATS 7046 5705 6210 5633 5763 7752 9209 8619 8431 12604

EA 3669 5076 4918 5528 3920 5701 7120 5980 5576 9613

RLS 2077 3922 4383 5037 3918 5497 7103 5978 5576 9574

berlin52 52 51

GATS 3257 4063 4206 6421 8785 6834 8944 11481 13777 10591

EA 3927 5634 5393 7419 9884 7900 9706 9048 11131 7875

RLS 3104 5319 4978 7014 9524 7524 9325 9035 11131 7868

eil76 76 75

GATS 2505 5591 9698 8990 6082 10586 9868 12179 9773 12999

EA 3353 6220 9750 8517 5469 9961 9779 11001 9238 10033

RLS 2965 4891 9216 7855 5410 9678 9757 10973 9009 9920

kroA100 100 99

GATS 3519 8510 12545 16345 21823 24768 27075 27222 27545 27733

EA 2936 7607 8463 10024 13983 14752 15548 14710 14665 14740

RLS 3185 7233 7632 9824 13636 14728 15285 14456 14631 14762

pr124 124 123

GATS 5279 9868 15891 22874 26369 27065 31564 31509 31748 28895

EA 4918 5977 8981 12518 15501 16410 21540 22435 23838 21770

RLS 4610 5584 8744 11769 14618 16237 21517 22434 23838 21748

ch150 150 149

GATS 6003 9361 14416 19712 21516 21474 26198 30004 28441 21983

EA 7060 9930 13363 17123 18267 17915 22443 25924 23967 17133

RLS 5540 7890 13138 16969 18205 17915 22446 25736 23898 17139

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

283 | P a g e

www.ijacsa.thesai.org

TABLE VII. BEST OBTAINED OBJECTIVE VALUES FOR U KNAPSACK AND F=3

Instance
 C

 1 2 3 4 5 6 7 8 9 10

eil51 51 150

GATS 12757 6862 10408 11631 10125 11404 12407 14898 18978 20940

EA 5866 8190 9496 6704 7405 9110 10039 12848 15883 18783

RLS 5644 8224 9548 6706 7367 9110 10039 12848 15883 18783

berlin52 52 153

GATS 5653 6243 11573 13346 14434 12841 14244 15958 16055 18265

EA 9550 9446 14467 15717 15453 13783 16367 18420 18479 20755

RLS 9550 9446 14467 15717 15453 13783 16367 18420 18479 20755

eil76 76 225

GATS 9885 10755 9793 12910 15712 18468 20719 21363 26461 26235

EA 11215 11577 10285 13518 14881 18011 19134 21004 25645 25696

RLS 11153 11567 10285 13518 14881 18011 19135 21004 25645 25696

kroA100 100 297

GATS 5958 15285 22481 25766 29504 31782 34282 40355 40065 45303

EA 10305 19318 25500 26306 26622 28964 32229 38375 37576 41997

RLS 10294 19318 25500 26306 26622 28959 32229 38375 37576 41997

pr124 124 369

GATS 9438 15284 25219 30209 36136 39723 42801 47099 51937 57657

EA 16303 23105 29438 37560 42888 42589 43700 49025 52550 56691

RLS 16303 23068 29462 37572 42899 42589 43700 49029 52550 56691

ch150 150 477

GATS 5086 17325 26264 28929 31472 37347 40510 46622 51966 55714

EA 16721 28115 35162 34578 37215 41684 44664 49488 54138 57236

RLS 16721 28136 35162 34572 37217 41684 44683 49488 54138 57236

TABLE VIII. BEST OBTAINED OBJECTIVE VALUES FOR USW KNAPSACK AND F=3

Instance
C

 1 2 3 4 5 6 7 8 9 10

eil51 51 150

GATS 4116 6622 8109 5967 6789 8302 9943 12327 13402 16159

EA 3798 7325 9966 6807 7657 8472 10397 11070 12804 14844

RLS 2545 7208 9879 6774 7653 8452 10397 11070 12804 14841

berlin52 52 153

GATS 3708 4905 3089 2231 5447 7705 10469 14224 15148 19844

EA 5122 8317 8492 7680 11501 12556 15218 18025 20323 23209

RLS 3002 5232 8505 7680 11501 12556 15211 18025 20323 23209

eil76 76 225

GATS 4860 3644 4897 6716 10454 8483 13552 16530 21883 24085

EA 5411 4969 6958 8684 10717 8819 14067 16440 20802 23165

RLS 5112 4898 6971 8653 10717 8814 14067 16440 20802 23165

kroA100 100 297

GATS 8155 11858 14149 15844 18600 22103 25725 31424 39119 42713

EA 7145 13163 15424 17418 20282 23721 27051 31370 38089 39463

RLS 6886 13020 15387 17421 20282 23721 27051 31370 38089 39463

pr124 124 369

GATS 11919 15691 20015 22816 27333 32262 36064 43836 47830 55714

EA 13643 20347 25838 27580 32387 37483 40047 43151 47270 52732

RLS 12388 20190 25787 27575 32387 37480 40047 43150 47272 52732

ch150 150 477

GATS 6144 8269 10327 13749 19747 23968 27928 35052 41202 47371

EA 9117 14249 17855 23513 30111 34003 35413 41297 45660 49657

RLS 5998 14221 17838 23497 30094 34003 35413 41301 45660 49657

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

284 | P a g e

www.ijacsa.thesai.org

TABLE IX. BEST OBTAINED OBJECTIVE VALUES FOR BSC KNAPSACK AND F=3

Instance
C

 1 2 3 4 5 6 7 8 9 10

eil51 51 150

GATS 14794 10763 15472 21741 22798 20715 21456 21686 25276 27136

EA 6664 12796 15786 21558 22913 21012 21188 20677 23414 24114

RLS 4487 11673 15037 21337 22366 20957 21154 20647 23382 24124

berlin52 52 153

GATS 5590 10577 12932 21148 20540 26319 25721 39668 35159 31443

EA 9652 16485 19684 28125 26488 31150 30211 34029 30659 31700

RLS 6600 14304 18337 27379 26344 31352 29934 34021 30509 31784

eil76 76 225

GATS 6393 14296 24487 26867 31103 38152 40316 43023 39945 45623

EA 7644 14692 22538 22502 25785 31633 32611 35101 30232 34183

RLS 6806 14687 22561 22468 25669 31571 32584 35138 30226 34190

kroA100 100 297

GATS 12447 29433 42359 52054 62991 69103 72403 68952 63789 67504

EA 13725 25080 32678 37156 43668 46954 48207 42549 36035 39067

RLS 12600 24664 32720 37043 43618 46969 48211 42544 36017 39076

pr124 124 369

GATS 13088 35206 52693 74355 83716 97891 102660 101580 90070 98197

EA 16217 29193 41810 57901 64792 79009 84810 82360 71276 78945

RLS 15539 28777 40657 57477 64361 78972 84866 82291 71265 78899

ch150 150 477

GATS 16124 35081 53125 60824 68400 75684 76558 71987 75781 69198

EA 19600 37596 52111 53592 57974 62374 61093 54987 55871 49642

RLS 16039 36403 52106 53533 57939 62419 61021 54922 55891 49642

TABLE X. BEST OBTAINED OBJECTIVE VALUES FOR U KNAPSACK AND F=5

Instance n m
C

 1 2 3 4 5 6 7 8 9 10

eil51 51 250

GATS 6256 13322 13482 15624 18430 20628 19378 22934 26390 31520

EA 10683 16345 13885 16367 16375 19057 17871 21961 25208 29508

RLS 10688 16380 13887 16366 16375 19057 17871 21963 25208 29508

berlin52 52 255

GATS 9805 13413 19636 22637 26302 27357 31294 30881 29606 35997

EA 18049 21247 26153 29547 31348 32109 36819 35942 36584 39386

RLS 18029 21222 26153 29547 31354 32109 36819 35942 36584 39386

eil76 76 375

GATS 7268 13883 16258 18624 24665 27517 31973 35890 42916 46714

EA 13023 18070 19554 22349 26986 28412 32510 36327 43008 44770

RLS 13023 18080 19554 22349 26986 28424 32510 36327 43008 44770

kroA100 100 495

GATS 4084 18049 31563 41507 50054 52219 55082 64904 69106 78315

EA 13670 27789 38737 45781 51076 51588 53633 62457 66117 73998

RLS 13674 27789 38726 45764 51086 51592 53633 62457 66115 73999

pr124 124 615

GATS 21880 32241 40368 45632 56115 65422 69301 76267 91335 101453

EA 28416 40811 45873 58503 66018 70346 76155 78626 84805 91399

RLS 28422 40811 45873 58503 66029 70351 76155 78626 84805 91399

ch150 150 745

GATS 22475 34033 37762 39908 57564 58785 63270 56226 85023 92916

EA 33047 50046 55532 58683 58739 59979 64561 72084 79610 87000

RLS 33052 50049 55532 58688 58739 59985 64561 72085 79610 87000

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

285 | P a g e

www.ijacsa.thesai.org

TABLE XI. BEST OBTAINED OBJECTIVE VALUES FOR USW KNAPSACK AND F=5

Instance n m
C

 1 2 3 4 5 6 7 8 9 10

eil51 51 250

GATS 4835 7312 8816 9449 10831 14091 17749 17645 21245 28107

EA 5285 9121 11140 10455 12878 15574 18683 18184 21343 26483

RLS 3811 9206 11093 10445 12878 15574 18683 18184 21343 26483

berlin52 52 255

GATS 6097 6775 5847 6338 9443 15392 18098 22447 28650 33515

EA 9178 13505 15700 17132 20587 22873 26359 31739 36054 40537

RLS 6079 11347 15714 17085 20590 22873 26363 31741 36054 40537

eil76 76 375

GATS 8245 5761 10534 12509 14123 14392 20804 24840 30082 38073

EA 9883 10290 13293 18532 19944 18801 24721 27858 32213 36553

RLS 9867 10368 13329 18508 19957 18806 24721 27858 32213 36553

kroA100 100 495

GATS 7875 13426 18677 23964 29733 36743 43030 48959 63755 70255

EA 10530 21104 27042 33303 38855 45102 49565 52726 63657 66751

RLS 10401 21145 26978 33303 38846 45105 49565 52726 63657 66751

pr124 124 615

GATS 13735 18155 23084 29777 34953 52432 47900 58064 65419 94974

EA 19906 26311 33455 37740 44301 52962 60710 65982 74340 85794

RLS 16085 26311 33444 37740 44299 52961 60710 65982 74340 85795

ch150 150 745

GATS 7397 10199 13604 29700 36421 44233 62350 63635 65498 95766

EA 15609 24436 29324 33000 40922 47562 55701 64278 74430 83275

RLS 10107 24427 29341 33004 40919 47560 55701 64278 74430 83275

TABLE XII. BEST OBTAINED OBJECTIVE VALUES FOR BSC KNAPSACK AND F=5

Instance n m
C

 1 2 3 4 5 6 7 8 9 10

eil51 51 250

GATS 8215 17551 29452 33230 33350 40293 40203 44120 45228 43007

EA 10397 19722 30181 32102 30482 35749 34191 37373 37247 33697

RLS 9173 18991 29998 31560 30497 35752 34230 37058 37209 33697

berlin52 52 255

GATS 8107 20247 32764 35018 41165 53501 56404 74836 63133 50526

EA 14528 28835 44516 48130 52655 63329 65358 67873 65713 55935

RLS 11398 24981 40838 48127 52559 63221 65362 67882 65713 55952

eil76 76 375

GATS 12387 28397 43974 53637 63576 64705 72170 74670 73161 72539

EA 14684 29705 41728 45733 53648 52825 59137 60762 58755 57441

RLS 14522 29765 41568 45454 53625 52853 59172 60658 58752 57435

kroA100 100 495

GATS 17871 42303 62852 78784 97322 109370 122500 111540 103920 108070

EA 20171 37407 52409 60664 71889 80653 91242 77821 69296 73190

RLS 19592 37101 52544 60497 71853 80656 91106 77849 69300 73190

pr124 124 615

GATS 24295 57282 90776 113290 129060 142430 157270 143380 143720 132110

EA 52341 79028 93081 106169 115370 133307 118764 119662 107580 52341

RLS 52492 78851 92919 106100 115370 133342 118773 119662 107549 52492

ch150 150 745

GATS 26247 61770 88715 107560 121410 132560 132380 121960 129690 126520

EA 34374 69088 91584 99919 108119 114990 111872 98960 104834 100531

RLS 31445 68036 91362 99873 108125 114974 111876 98962 104836 100525

VI. GATS RESULTS

The best obtained objective values for GATS were
recorded and compared with the best obtained by two state-of-
the-art approaches, EA and RLS. Tables 4–6 show the results
for instances with one item per city and a knapsack capacity
ranging from 1 to 10. Table 4 shows that GATS obtained

higher objective values than EA and RLS for all knapsack
capacities for the instances consisting of 51, 76 and 100 cities
with uncorrelated (U) item weights. However, the results
showed that GATS was not able to record higher objective
values in instances consisting of 52 cities; it achieved better
values in only two instances, with medium knapsack capacity

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

286 | P a g e

www.ijacsa.thesai.org

(). Nevertheless, the differences between the
highest objective values obtained by the three approaches were
not substantial in these instances; for example, EA and RLS
achieved objective values, for the knapsack with , that
were only 1% higher than GATS. GATS also outperformed
RLS and EA in instances with a large number of cities (i.e.,
124 and 150) and knapsacks with a high capacity (8, 9 and 10).
With USW, Table 5 shows that GATS was able to achieve
better objective values than EA and RLS, with the majority of
instances having a small knapsack capacity (ranging from 1 to
3). Similarly, it outperformed them for most of the large-
capacity instances, ranging from 8 to 10, except instances with
52 cities (i.e., berlin52). On the other hand, EA and RLS
outperformed GATS with a medium KP, ranging from 4 to 7 in
most instances, although the differences between the objective
values obtained by the three approaches were not significant.
For example, the best value reached by GATS with the
instance consisting of 76 cities (i.e., eil76) and a knapsack
capacity of 5 was 3556, whereas it was 3560 in RLS. In BSC,
GATS surpassed RLS and EA in almost all instances, with
medium- and large-capacity knapsacks ranging from 4 to 10,
except in the instances with 52 cities (i.e., berlin52), where EA
and RLS were able to achieve better objective values in the
majority of the instances (see Table 6). GATS was also able to
obtain better objective values with a small-capacity knapsack
in various instances, particularly the ones for 51, 100, 124 and
150 cities, while the best objective values were achieved by EA
in the rest of the instances for 52 and 76 cities. Tables 7–9
show the best objective values obtained from instances
consisting of three items per city. Table 7 shows that GATS
achieved better objective values in several uncorrelated
instances with different knapsack capacities. For instance, it
outperformed EA and RLS in all knapsack capacities in
instances consisting of 51 cities (i.e., eil51). In contrast, lower
objective values were achieved by GATS in all instances
consisting of 52, 124 and 150 cities. Although the values
obtained by GATS fluctuated among instances, it performed
better with medium- and large-capacity knapsacks ranging
from 5 to 10 instances containing 76 and 100 cities. The best
objective values were achieved interchangeably with USW by
the three approaches. However, GATS was able to surpass EA
and RLS with large-capacity knapsacks, specifically when
 , in instances containing 51, 76, 100 and 124
cities. But EA and RLS achieved better values in the other two
instances with the same knapsack capacities (see Table 8).
Table 9 shows that GATS also obtained better objective values
with BSC items, especially with large knapsack capacities
().

 As observed in Table 10, with uncorrelated items, GATS
was unable to exceed the objective values obtained by EA and
RLS when increasing the number of items to five per city. This
became apparent with small and medium knapsacks (
). However, GATS revealed the highest objective values
with large-capacity knapsacks in various instances. For
instance, GATS outperformed RLS and EA in all instances
consisting of large knapsacks, ranging from 6 to 10, for 51 and
100 cities (eil51 and kroA100). It also reached the highest
objective value in most uncorrelated item instances with a
knapsack capacity equal to 10, except for those that contained
52 cities (berlin52). But GATS was not able to outperform the

two state-of-the-art approaches in all instances with USW,
except instances with the largest knapsack capacity ().
In fact, it recorded significantly higher objective values in four
sets of various instances, particularly those composed of 51,
100, 124 and 150 cities (see Table 11). The performance of
GATS for a BSC knapsack was notably better than that of the
two state-of-the-art approaches in the majority of instances (see
Table 12). However, this improvement became most evident
with medium- and large-capacity knapsacks ranging from 4 to
10.

Based on the obtained results, the following findings were
observed:

 The method used for tour initialization significantly
affects the obtained solutions.

 Our proposed approach (GATS) performed better, in
terms of objective values achieved, than two of the
well-known state-of-the-art approaches (RLS and EA)
in the majority of instances.

 GATS performed better, especially with instances of a
large-capacity knapsack.

 GATS’ performance significantly decreased when
increasing the number of items and cities, particularly
with a small-capacity knapsack.

 GATS had some issues with one set of instances, for
berlin52, where it struggled to achieve better objective
values in almost all instances.

VII. CONCLUSION

This paper investigates one of the recent NP-hard problems
called the traveling thief problem, a multicomponent problem
consisting of the two well-known problems TSP and KP. The
optimization of TTP is challenging because of the
interdependence between its components, where finding an
optimal solution for one problem independently does not
guarantee obtaining an optimal TTP solution. The aim of this
paper was to investigate the use of hybrid GAs for the TTP.
Therefore, we proposed a hybrid genetic approach with TS, a
combination called GATS. The key aspect of GATS is that
TTP solutions are considered by taking into account the
interdependent nature of the TTP subcomponents. The
performance of GATS was analyzed and compared with that of
two state-of-the-art approaches, EA and RLS. A
comprehensive set of TTP benchmark datasets was adopted in
this experimental work, and 540 instances were selected for
our investigation. These instances consisted of five different
groups of cities, 51, 52, 76, 100 and 150 in number, as well as
groups of items ranging in number from 50 to 745. The
selected instances also consisted of the three types of KPs (U,
USW and BSC) and all varieties of knapsack capacity (C). The
obtained results were analyzed based on several factors, such
as the type of knapsack, knapsack capacity and number of
items per city.

The obtained results revealed that GATS was able to
outperform EA and RLS in terms of objective values for
several instances. This became more apparent with a large-
capacity knapsack. However, some limitations of GATS were

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

287 | P a g e

www.ijacsa.thesai.org

observed, for example, that its performance significantly
decreased when the number of items and cities increased,
particularly with a small-capacity knapsack. It was also noted
that GATS had some issues with one set of the datasets,
berlin52, where it struggled to achieve better objective values
in almost all instances. Therefore, in the future, further
experiments should be conducted to tackle such issues. Larger
numbers of instances should also be investigated.

REFERENCES

[1] Bonyadi, M.R., Z. Michalewicz, and L. Barone. The travelling thief
problem: The first step in the transition from theoretical problems to
realistic problems. in 2013 IEEE Congress on Evolutionary Computation.
2013.

[2] Gupta, B.C. and V.P. Prakash. Greedy heuristics for the Travelling Thief
Problem. in 2015 39th National Systems Conference (NSC). 2015.

[3] Martins, M.S.R., et al., HSEDA: a heuristic selection approach based on
estimation of distribution algorithm for the travelling thief problem, in
Proceedings of the Genetic and Evolutionary Computation Conference.
2017, ACM: Berlin, Germany. p. 361-368.

[4] Polyakovskiy, S., et al., A comprehensive benchmark set and heuristics
for the traveling thief problem, in Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation. 2014, ACM:
Vancouver, BC, Canada. p. 477-484.

[5] Chand, S. and M. Wagner, Fast Heuristics for the Multiple Traveling
Thieves Problem, in Proceedings of the Genetic and Evolutionary
Computation Conference 2016. 2016, ACM: Denver, Colorado, USA. p.
293-300.

[6] El Yafrani, M., et al., A hyperheuristic approach based on low-level
heuristics for the travelling thief problem. Genetic Programming and
Evolvable Machines, 2017.

[7] Mei, Y., X. Li, and X. Yao. Improving Efficiency of Heuristics for the
Large Scale Traveling Thief Problem. 2014. Cham: Springer International
Publishing.

[8] Bonyadi, M.R., et al., Socially inspired algorithms for the travelling thief
problem, in Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation. 2014, ACM: Vancouver, BC, Canada. p. 421-
428.

[9] Karder, J., et al. Solving the Traveling Thief Problem Using
Orchestration in Optimization Networks. 2018. Cham: Springer
International Publishing.

[10] Mei, Y., et al. Heuristic evolution with genetic programming for traveling
thief problem. in 2015 IEEE Congress on Evolutionary Computation
(CEC). 2015.

[11] Moeini, M., D. Schermer, and O. Wendt. A Hybrid Evolutionary
Approach for Solving the Traveling Thief Problem. 2017. Cham:
Springer International Publishing.

[12] Vieira, D.K.S., et al. A Genetic Algorithm for Multi-component
Optimization Problems: The Case of the Travelling Thief Problem. 2017.
Cham: Springer International Publishing.

[13] Wu, J., et al., Evolutionary Computation plus Dynamic Programming for
the Bi-Objective Travelling Thief Problem. arXiv preprint
arXiv:1802.02434, 2018.

[14] Lourenço, N., F.B. Pereira, and E. Costa. An Evolutionary Approach to
the Full Optimization of the Traveling Thief Problem. 2016. Cham:
Springer International Publishing.

[15] Mei, Y., X. Li, and X. Yao, On investigation of interdependence between
sub-problems of the Travelling Thief Problem. Soft Computing, 2016.
20(1): p. 157-172.

[16] Alharbi, S.T., The Design and Development of a Modified Artificial Bee
Colony Approach for the Traveling Thief Problem. International Journal
of Applied Evolutionary Computation (IJAEC), 2018. 9(3): p. 32-47.

[17] Wagner, M. Stealing Items More Efficiently with Ants: A Swarm
Intelligence Approach to the Travelling Thief Problem. 2016. Cham:
Springer International Publishing.

[18] El Yafrani, M. and B. Ahiod, A local search based approach for solving
the Travelling Thief Problem: The pros and cons. Applied Soft
Computing, 2017. 52: p. 795-804.

[19] Araujo, R.P., et al., A novel List-Constrained Randomized VND
approach in GPU for the Traveling Thief Problem. Electronic Notes in
Discrete Mathematics, 2018. 66: p. 183-190.

[20] Faulkner, H., et al., Approximate Approaches to the Traveling Thief
Problem, in Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation. 2015, ACM: Madrid, Spain. p. 385-392.

[21] Srinivas, M. and L.M. Patnaik, Genetic algorithms: a survey. Computer,
1994. 27(6): p. 17-26.

[22] Davis, L., Handbook of genetic algorithms. 1991.

[23] Glover, F. and M. Laguna, Tabu Search, in Handbook of Combinatorial
Optimization: Volume1–3, D.-Z. Du and P.M. Pardalos, Editors. 1999,
Springer US: Boston, MA. p. 2093-2229.

[24] Glover, F., Tabu Search—Part I. ORSA Journal on Computing, 1989.
1(3): p. 190-206.

[25] Glover, F., Tabu Search—Part II. ORSA Journal on Computing, 1990.
2(1): p. 4-32.

[26] Shapiro, J., Genetic Algorithms in Machine Learning, in Machine
Learning and Its Applications: Advanced Lectures, G. Paliouras, V.
Karkaletsis, and C.D. Spyropoulos, Editors. 2001, Springer Berlin
Heidelberg: Berlin, Heidelberg. p. 146-168.

[27] Barolli, A., et al. Application of Genetic Algorithms for QoS Routing in
Mobile Ad Hoc Networks: A Survey. in 2010 International Conference
on Broadband, Wireless Computing, Communication and Applications.
2010.

[28] Sivanandam, S.N. and S.N. Deepa, Genetic Algorithm Optimization
Problems, in Introduction to Genetic Algorithms, S.N. Sivanandam and
S.N. Deepa, Editors. 2008, Springer Berlin Heidelberg: Berlin,
Heidelberg. p. 165-209.

[29] Brusco, M.J. and P. Doreian, Partitioning signed networks using
relocation heuristics, tabu search, and variable neighborhood search.
Social Networks, 2019. 56: p. 70-80.

[30] Fauziah, N.F. and Y.H. Putra, Scheduling Regular Classrooms using
Heuristic Genetic and Tabu Search Algorithms. IOP Conference Series:
Materials Science and Engineering, 2018. 407(1): p. 012116.

[31] Shafahi, A., Z. Wang, and A. Haghani, SpeedRoute: Fast, efficient
solutions for school bus routing problems. Transportation Research Part
B: Methodological, 2018. 117: p. 473-493.

[32] Wagner, M., et al., A case study of algorithm selection for the traveling
thief problem. Journal of Heuristics, 2017.

[33] Applegate, D., W. Cook, and A. Rohe, Chained Lin-Kernighan for Large
Traveling Salesman Problems. INFORMS Journal on Computing, 2003.
15(1): p. 82-92.

[34] Simon, D., Evolutionary optimization algorithms. 2013: John Wiley &
Sons.

[35] Holland, J. and D. Goldberg, Genetic algorithms in search, optimization
and machine learning. Massachusetts: Addison-Wesley, 1989.

[36] Abdul–Razaq, T.S., Solving Composite Multi objective Single Machine
Scheduling Problem Using Branch and Bound and Local Search
Algorithms. Al-Mustansiriyah Journal of Science, 2017. 28(3): p. 200-
208.

[37] Tamssaouet, K., S. Dauzère-Pérès, and C. Yugma, Metaheuristics for the
Job-Shop Scheduling Problem with Machine Availability Constraints.
Computers & Industrial Engineering, 2018.

[38] Cherukupalli, K., P.R. Chinda, and S. Peddakotla, Security Constrained
Optimal Power Flow by Hybrid SATS Algorithm. Journal of Advanced
Research in Dynamical and Control Systems, 2018(09-Special Issue).

[39] Wang, J. and Y. Wu, Optimal Design of Urban and Rural Public
Transportation Network Based on Spatio - Temporal Constraints. Journal
of Applied Science and Engineering, 2018. 21(1): p. 51-58.

[40] Lu, Y., et al., A Tabu search based clustering algorithm and its parallel
implementation on Spark. Applied Soft Computing, 2018. 63: p. 97-109.

[41] Reinelt, G., TSPLIB—A traveling salesman problem library. ORSA
journal on computing, 1991. 3(4): p. 376-384.

