
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

33 | P a g e

www.ijacsa.thesai.org

Anomaly Detection with Machine Learning and

Graph Databases in Fraud Management

Shamil Magomedov
1
, Sergei Pavelyev

2
, Irina Ivanova

3
, Alexey Dobrotvorsky

4
, Marina Khrestina

5

Department «Automated control systems»

MIREA – Russian Technological University

Moscow, Russian Federation

Timur Yusubaliev
6

Quality Software Solutions ltd Moscow, Russia

Abstract—In this paper, the task of fraud detection using the

methods of data analysis and machine learning based on social

and transaction graphs is considered. The algorithms for feature

calculation, outlier detection and identifying specific sub-graph

patterns are proposed. Software realization of the proposed

algorithms is described and the results of experimental study of

the algorithms on the sets of real and synthetic data are

presented.

Keywords—Data analysis; machine learning; graph database;

fraud detection; anti-money laundering

I. INTRODUCTION

At present fraud is a major threat that is increasing every
year. The global economic crime survey of 2018 carried out by
PricewaterhouseCoopers [1] found that almost half (49%) of
the 7,200 companies they surveyed had experienced fraud of
some kind. Experts from HSN Consultants predict online credit
card fraud to soar to $32 billion in 2020 [2]. Beside direct
financial losses, fraud also affects customer loyalty and
conversions in both digital and physical environments. For
instance, 20% of customers change their banks after
experiencing frauds. Meanwhile, manual review remains
prevalent among the means of fraud detection. According to
the annual Fraud Benchmark Report by CyberSource [3] 79%
of North American businesses conduct manual reviews, and on
average, these businesses manually review 25% of orders. At
the same time, the survey found that these businesses accepted
89% of orders following manual review. This means that more
orders are subject to manual reviews than might be necessary.
Since manual review is usually the costly aspect of fraud
management operations, automated screening could make
fraud management processes more efficient by leaving only the
most suspect orders to manual reviews.

Machine Learning technologies have shown their
effectiveness in solving such tasks as spam detection, image
recognition, product recommendation, predictive analytics etc.
In fraud management, Machine Learning can be used to predict
fraud in a large volume of transactions by applying cognitive
computing technologies to raw data. The prediction problem
can be further divided into two types of tasks: classification
and regression. Regression analysis is a popular, longstanding
statistical technique that measures the strength of cause-and-

effect relationships in structured data sets. Regression analysis
tends to become more sophisticated when applied to fraud
detection due to the number of variables and size of the data
sets. It can provide value by assessing the predictive power of
individual variables or combinations of variables as part of a
larger fraud strategy. According to this technique, the authentic
transactions are compared with the fraud ones to create an
algorithm, which will then predict whether a new transaction is
fraudulent or not. Classification problem can be solved with
the help of Decision Tree algorithms. They are essentially a set
of rules that are trained using examples of fraud that clients are
facing. The creation of a tree ignores irrelevant features and
does not require extensive normalization of the data. By
inspecting a tree, it is possible to understand why a decision
was made by following the list of rules triggered by a certain
customer. Random Forest technique uses a combination of
multiple decision trees to improve the performance of the
classification or regression. It allows smoothing the error that
might exist in a single tree and increases the overall
performance and accuracy of the model while maintaining the
ability to interpret the results and provide explainable scores to
the users. Random forest runtimes are quite fast, and they are
able to deal with unbalanced and missing data. Random Forest
weaknesses are that when used for regression they cannot
predict beyond the range in the training data and that they may
over-fit data sets that are particularly noisy. Neural networks
can be an excellent complement to other techniques, which
improves with exposure to data. The neural network is a part of
cognitive computing technology where the machine mimics
how the human brain works and how it observes patterns.
Neural networks can adapt to the change in the behavior of
normal transactions and identify new patterns of fraud
transactions. Data processing by neural networks is extremely
fast which makes it possible to make decisions in real time.

Due to growing popularity of machine learning, many
innovative enterprises are starting to implement these
techniques in their fraud management processes. For example,
PayPal uses a homegrown AI engine built with open-source
tools to detect suspicious activity, and more importantly to
separate false alarms from true fraud [4]. PayPal implements
express assessment using linear models to separate uncertain
transactions from ordinary ones. Then, all transactions that
look suspicious are run through an ensemble of three models

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

34 | P a g e

www.ijacsa.thesai.org

comprising a linear model, a neural network, and a deep neural
network. The three models then vote to arrive at the result with
the higher accuracy. With the help of this human and AI
solution, PayPal has decreased its false alarm rate to half.
MasterCard integrated machine learning and AI to track and
process such variables as transaction size, location, time,
device, and purchase data [5]. The system assesses account
behavior in each operation and provides real-time judgment on
whether a transaction is fraudulent. The project aims at
reducing the number of false declines in merchant payments.
Feedzai [6], a FinTech company, claims that a fine-tuned
machine learning solution can detect up to 95% of all fraud and
minimize the cost of manual reconciliations, which accounts
now for 25% of fraud expenditures. Capgemini [7] claims that
fraud detection systems using machine learning and analytics
minimize fraud investigation time by 70% and improve
detection accuracy by 90%. These facts prove the benefits of
using machine learning in anti-fraud systems. On the other
hand, banks have been slow to adopt machine learning and AI
solution at a large scale. The reasons for this include high
infrastructural costs, strict regulations and risk of replacing
existing technology.

Machine Learning technologies also have their own
limitations. One of such limitations is their blindness to
connections in data when the initial data set is relatively small.
Machine learning models work on actions, behavior, and
activity. For example, the model can overlook a seemingly
obvious connection such as a shared card between two
accounts. To counter this machine learning models can be
enhanced with Graph databases. Graph database addresses
Gartner’s fifth layer of fraud prevention: entity link analysis
[8]. Graph database allows looking beyond the individual data
points of discrete analysis to the connections that link them.
Thus, graph technique can find multiple bogus actors for every
single one prevented through scoring. Graph databases allow
blocking suspect and bogus accounts before they have taken
any fraudulent action. Another important trait that makes graph
database a valuable addition to any fraud prevention solution is
its inherent speed in calculating relationships. Since the
relationships in graph database are treated with as much value
as the database records themselves, the engine that navigates
the connections between nodes can do so efficiently, enabling
millions of connections per second. Graph database enables
quick extraction of new insight from large and complex
databases to help uncover unknown interactions and
relationships.

II. ANOMALY DETECTION ALGORITHMS FOR GRAPH

STRUCTURES

A. Local Outlier Factor (LOF) Algorithm based on Local-

Sensitive Hashing (LSH) Method

LOF is an outlier detection algorithm that calculates certain
numeric value for each point, which allows identifying the
point as normal or anomaly. LOF value close to one
corresponds to normal points; otherwise, the points are
considered anomalies. Exact threshold for anomaly detection is
set after conducting data analysis. An algorithm for calculation
of LOF based on LSH method has been developed. Pseudo
code for the developed algorithm is listed below:

Input: points // set of all points
Output: result // set of nearest neighbors for each point
result = 0
nv = StartNumVectors
// creation of hash-table
hash_table = 0
for 1..NumTables do
 // clearing hash-table for each iteration
 hash_table = 0
 hash_vecs = get_random_vecs(nv)
 forall p ∈ points do
 hash = get_hash(hash_vecs, p)
 hash_table[hash] += p
 foreach cell ∈ hash_table, cell.size < const do
 forall point ∈ cell do
 result[point] += all points ∈ cell without the

point
 forall point ∈ result do
 result[point] = save_only_best_kNN_neighbors
 nv = nv + 1
foreach cell ∈ hash_table, cell.size > const do
 forall point ∈ cell do
 result[point] = save_any_kNN_neighbors ∈ cell
forall point ∈ result do
 result[point] = save_only_best_kNN_neighbors
foreach point : result[point].size < kNN do
 result[point] = brute_force[point]

LSH method was chosen due to necessity of fast
identification of nearest neighbors for each point. The main
principle of LSH method involves using special method of
hashing when hash values are equal for the points close to each
other. A set of hash-tables (NumTables = 100) has been
generated with a set of vectors for each of those tables. For the
first table a number of random vectors (StartNumVectors = 3)
has been generated. For each subsequent table the number of
random vectors increases by one with each iteration (number of
iterations corresponds to the number of tables, one table is
processed per iteration). Each vector consists of d random
values generated according to normal distribution with mean
value of zero and standard deviation of one. Hash is calculated
for each point as a bit sequence where bit i equals one if scalar
product of vector i of the processed table and the vector
corresponding to the point in question (the point can be
considered a vector) is equal or greater than 0. Otherwise bit i
equals zero. Thus in each iteration of the algorithm all points
are distributed among the cells of current hash-table.

Then the cells of current hash-table are considered with the
size lower than const (4*kNN in this example, where kNN is
the number of nearest neighbors). For each point in such cells,
all other points in this cell are added to the set of candidates for
the point in question. Finally, for each point, duplicate
candidates are removed and the nearest kNN neighbors are left.

At the last iteration, the cells with the size larger than const
are considered and for each point in such cells kNN random
points from the same cell are selected, duplicate candidates for
each point are removed and the best kNN candidates are left.
For each point, random kNN candidates are selected, because
when the number of random vectors used for calculating hash
is large enough each cell corresponds to a small part of n-
dimensional space, which means all points from the same cell
are close to each other. In the end for each point with the
number of neighbors lower than kNN a naïve algorithm is used
since the number of such points at the last iteration should be
very small. In current realization, kNN was set equal to 10.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

35 | P a g e

www.ijacsa.thesai.org

B. “Volcano” and “Black Hole” Patterns

So-called “volcano” and “black hole” patterns were
described in [9]. “Black hole” refers to a sub-graph, which has
only incoming edges from the vertices of the graph not
included in this sub-graph. “Volcano” refers to a sub-graph
which has only outgoing edges to the vertices of the graph not
included in this sub-graph. The task of identifying “volcanoes”
is inverse to the task of identifying “black holes”.

An example of a “volcano” and a “black hole” is shown in
Figure 1.

Fig. 1. An example of a “volcano” and a “black hole”.

The task of identifying “volcanoes” and “black holes” is a
combinatorial problem. In [9] two algorithms based on pruning
schemes are proposed.

C. Algorithm for Identifying “Volcanoes” and “Black Holes”

An algorithm for identifying “black holes” has been
developed. For identifying “volcanoes”, the direction of all
edges of the graph should be reversed and the same algorithm
should be applied.

The set of ancestors for the vertex v is defined as a set of
all vertices having at least one edge outgoing to v, as well as all
ancestors of those vertices. The algorithm identifies “black
holes”:

 with diameter equal or lower than (MaxIterCount) and

 with the number of ancestors for each vertex in the sub-
graph lower than MaxSetSize (considering only
ancestors at the distance equal or lower than
MaxIterCount).

The algorithm is described using vertex-centric [10]
approach, but practical realization is carried out using resilient
distributed dataset (RDD) API [11] without Pregel API in
Apache Spark [12-15]. The algorithm is iterative with
maximum number of iterations defined by MaxIterCount.

1) Description of Handler Function
Each vertex has a local buffer send_buf, which is cleared

each time the handler is called. At the start of the algorithm,
each vertex receives the message init, which is necessary for
initialization of the algorithm. On receiving the message init
the vertex puts its identifier id into the buffer send_buf.

Each vertex has its own set of ancestors – ancestors.
Initially the set ancestors is empty for each vertex. Each vertex

also has a flag bad, initially set to value false. This flag is set to
value true if the vertex has too many ancestors. At each
iteration, a vertex can acquire new ancestors in incoming
messages. Acquired ancestors are added to the set ancestors if
the size of resulting set does not exceed MaxSetSize, otherwise
the set ancestors does not update and the flag bad is set to
value true.

2) Description of message-sending operation
At each iteration of the algorithm after handler function

finishes its work follows the message-sending step. At this
step, all triplets of the graph corresponding to its edges are
considered, and a message is sent along each edge.

For each triplet (edge):

 if the buffer send_buf of the initial vertex of the edge is
empty or the flag bad of the terminal vertex equals true,
then nothing should be sent along this edge;

 otherwise all elements from the buffer send_buf which
are not present in the set ancestors of the terminal
vertex are sent within a message along this edge.

3) Detection of “black holes”
In the end, each vertex owns a set including a number of its

ancestors. A set of vertices B with a common ancestor X is
considered a “black hole” if:

 X is not included in the buffer send_buf of any vertex
from the set B. Otherwise some vertex could send X at
the last iteration, which means there could be an
outgoing edge from B, which contradicts the definition
of a “black hole”.

 X does not belong to the set ancestors of the initial
vertex of each edge incoming to a vertex with the flag
bad set to value true, and X is not the initial vertex of
such edge. Otherwise (if such edge existed) some vertex
(corresponding to such edge) could send X at the last
iteration, but due to the defined limitations further
transmission through the vertex with the flag bad set to
value true would be impossible, and identifier X would
not be able to reach any of the buffers send_buf.

Then the vertices should be grouped according to ancestors.
In the Apache Spark realization, each pair (vertex, ancestor)
should be mapped to a pair (ancestor, vertex) and then the pairs
should be grouped by key (operations map and groupBy).
Defined limitations guarantee that the sets of vertices acquired
by the method described above does not include any outgoing
edges.

An important feature of the developed algorithm is the
ability to identify intersecting “black holes”. Pseudo code for
the developed algorithm is listed below:

MaxSetSize = 100 // constant limiting the size of sets ancestors and
send_buf

MaxIterCount = 10 // constant defining the number of iterations
// vertex handler
(1) procedure handler(v: vertex, msgs: Vector[Long])
// message sending
(2) procedure sendMsg(triplet: EdgeTriplet)
v.send_buf = 0
// if initial message
if msgs.size = 1 and msgs(0) = -1 then

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

36 | P a g e

www.ijacsa.thesai.org

 vert.send_buf.add(vertex.id)
 return
if vert.ancestors.size + msgs.size ≤ MaxSetSize then
 // update set of ancestors
 vert.ancestors.add(msgs)
else
 vert.bad = true
 return
if msgs.size ≤ MaxSetSize then
 vert.send_buf.add(msgs)
else
 vert.bad = true
if !(triplet.srcAttr.send_buf.isEmpty or triplet.dstAttr.bad) then
 msgs = Vector[Long]()
 for x ← triplet.srcAttr.send_buf do
 if !triplet.dstAttr.ancestors.contains(x) then
 msgs.add(x)
 send msgs along triplet
// merging messages
(3) function mergeMsg(a: Vector[Long], b: Vector[Long])
 // concatenation of two vectors
 return a + b
// main procedure
(4) procedure detect_blackholes(graph: Graph)

III. EXPERIMENTAL STUDY

Experimental study has been carried out on a set of data
consisting of the database of all transactions (including
781 440 transactions and 15 034 710 involved entities) and the
database of suspicious transactions (including 715 transactions
and 349 involved entities). For evaluation of computational
performance and scalability of the developed algorithms
synthetic Erdos-Renyi [16] graphs of different sizes have also
been used.

Software realization of the developed algorithms has been
tested on a computational cluster consisting of 8 nodes
connected with 1GBit Ethernet, each node running 8-core
2.2GHz E5-2660 processor, 64GB DDR3 memory, operation
system SLES 11 SP4, Apache Spark 2.1.1 and Scala compiler
sbt 0.13.13.

Software realization of the machine learning algorithm has
been carried out using Scala, Spark 2.1.0 language and
includes the following steps:

 Data input (database of all transactions, database of
suspicious transactions and configuration data).

 Search for suspicious transaction in the database of all
transactions (by comparing the fields DATA, SUME,
ACC_B0 and Date, RealQty, AccClientOtpr
accordingly).

 Creation of a graph with entities as its vertices and
transactions as its edges (entities being taken from the
database of all transactions).

 Selection of a set of edges for machine learning
consisting of all suspicious transactions and the same
number of normal transactions (selected randomly).

 Formation of egonets around the vertices for calculation
of features.

 Calculation of features for each edge (transaction) (32
features total): amount and time of transaction; for
sender and recipient egonets - minimum, maximum and

average degrees, indegrees and outdegrees of vertices,
number of vertices, “volcano” vertices, “black hole”
vertices and other vertices; number of transactions and
total transaction amount.

 Machine learning: method – random forest;
MinMaxScaler method used to project each feature into
[0, 1] line; random division of the learning set – 70% of
samples for training (using cross-validation), 30% of
samples for testing.

Graph created in the experimental study consists of
114 791 vertices (entities) and 781 440 edges. The learning set
for machine learning includes 1430 transactions (50% normal
and 50% suspicious). Training set consists of 993 transactions
– 477 class 0 objects (normal transactions) and 516 class 1
objects (suspicious transactions). Testing set consists of 437
transactions – 238 class 0 objects (normal transactions) and
199 class 1 objects (suspicious transactions).

Resulting classification accuracy (share of correctly
classified objects) reached 97.7%.

A measure of importance for each feature has been
calculated. Top five most important features (listed with their
respective “coefficient of importance”; the sum of coefficients
for all features amounts to one) turned out to be the following:

 Amount of transaction – 0.38

 Degree of the sender vertex – 0.12

 Total amount of transactions (incoming and outgoing)
corresponding to the sender – 0.09

 Number of vertices in the sender’s egonet – 0.07

 Outdegree of the sender vertex – 0.07

It is evident that amount of transaction has the greatest
influence on classification results.

Other metrics of classification quality calculated during the
experimental study (the closer to 1.0 the better):

 AUROC – 0.999

 Sensitivity (also known as “Recall”) – 1.0

 Specificity – 0.958

 Precision – 0.952

 NPV (negative predictive value = number of correctly
classified normal transactions divided by total number
of transactions classified as normal) – 1.0

 F1 score – 0.975

Sensitivity equaling 1.0 means that the algorithm did not
miss any suspicious transactions within the testing set. This
metric is especially important, since in anti-money laundering
tasks it is necessary not to miss any fraudulent transactions.

False positive rate (FPR = (1-Specificity)*100%) on the
testing set amounted to 4.2%, meaning that among 238 normal
transactions 10 were falsely classified as suspicious.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

37 | P a g e

www.ijacsa.thesai.org

Recent studies using a Random Forest Classifier in order to
predict fraudulent transactions on raw data [17] have shown
results for such metrics of classification quality as Precision,
Recall, F1-score and AUROC all below 0.9 in most cases.
Thus, it can be concluded that using the developed set of
features allows improving the classification quality.

Additional experiment has been carried out using the
database of all transactions excluding the suspicious ones as
the testing set (780 725 transactions total). The share of
transactions classified as suspicious equaled 4.9%. It is worth
noting that the share of transactions with amount exceeding
100 000 classified as suspicious equaled 3.2% of the total
number of transactions.

Quality of LOF algorithm based on LSH method is shown
in Table I.

TABLE I. TABLE TYPE STYLES

THR FN / P FP / N

2.5 8.03% 1.2%

3 10.27% 0.9%

3.5 12.13% 0.8%

Here THR defines threshold value for anomaly detection,
FN – number of false-negative objects, FP – number of false-
positive objects, P – total number of anomalies, N – total
number of normal objects. Results were calculated for 6000
random points corresponding to the edges of the real graph.
Though the classification quality is lower in comparison with
the trained random forest method applied above, the advantage
of this approach is the ability to carry out fraud detection
without prior knowledge of transaction history.

Using the algorithm for identifying “volcanoes” and “black
holes” an edge was considered an anomaly if its initial vertex
belonged to any of 5% largest “volcanoes” or “black holes”.
Figure 2 shows the distribution of identified “volcanoes” and
“black holes” for the real graph.

Fig. 2. Distribution of identified “volcanoes” and “black holes”.

Figure 3 illustrates strong scalability of the developed
feature calculation algorithm, LOF algorithm based on LSH
method and the algorithm for identifying “volcanoes” and
“black holes”.

Fig. 3. Scalability of the developed algorithms.

Scalability of feature calculation algorithm was calculated
for a synthetic Erdos-Renyi graph with 2

19
 vertices and 2

22

edges. Scalability of LOF algorithm based on LSH method was
calculated for the real graph. Scalability of the algorithm for
identifying “volcanoes” and “black holes” was calculated for a
synthetic Erdos-Renyi graph with 2

21
 vertices and 2

24
 edges.

Figure 4 illustrates the relative speedup of data processing
with the developed algorithms based on the number of
computational nodes involved in the processing of data.

Fig. 4. Speedup of data processing according to the number of

computational nodes.

IV. CONCLUSION

It can be concluded that the developed algorithm for feature
calculation can be successfully implemented in conjunction
with common machine learning methods to achieve high
values of classification quality metrics. In particular, high value
of sensitivity (and subsequently low False Negative Rate
value) is important for anti-money laundering and other fraud
management processes.

The results of experimental study have shown that the
developed algorithms for anomaly detection demonstrate
classification quality comparable with a trained random forest
method when applied on a real transaction graph. This makes it
possible to implement these algorithms in situations when prior
knowledge of transaction history is not accessible, as well as
for identification of new and unknown methods of fraud.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

38 | P a g e

www.ijacsa.thesai.org

Software realization of the developed algorithms
demonstrated high scalability, which makes it possible to
significantly increase their performance using multi-processor
computational clusters.

The developed algorithms are intended to be used in the
framework of a software complex for automated fraud
management in different areas of business.

ACKNOWLEDGMENT

The research is being conducted with the financial support
of the Ministry of Education and Science of the Russian
Federation (Contract №14.574.21.0142) Unique ID for
Applied Scientific Research (project) RFMEFI57417X0142.
The data presented, the statements made, and the views
expressed are solely the responsibility of the authors.

REFERENCES

[1] D. Lavion et al., PwC's Global Economic Crime and Fraud Survey,
2018, URL: https://www.pwc.com/gx/en/forensics/global-economic-
crime-and-fraud-survey-2018.pdf (retrieved 28 August 2018).

[2] The Nilson Report, 2016, issue 1096, URL:
https://nilsonreport.com/upload/content_promo/The_Nilson_Report_10-
17-2016.pdf (retrieved 01 October 2018).

[3] 2017 North America Online Fraud Benchmark Report, URL:
https://www.cybersource.com/content/dam/cybersource/2017_Fraud_Be
nchmark_Report.pdf (retrieved 01 October 2018).

[4] A. Chelsea, PayPal’s history of fighting fraud, Fin Newsletter, URL:
https://fin.plaid.com/articles/paypals-history-of-fighting-fraud (retrieved
01 October 2018).

[5] M. Cochrane, How MasterCard is using AI to improve the accuracy of
its fraud protection, Business Insider, 2017, URL:
https://www.businessinsider.com/mastercard-artificial-intelligence-
fraud-protection-2017-1 (retrieved 01 October 2018).

[6] Demystifying machine learning for banking, URL:
https://hollandfintech.com/wp-content/uploads/2018/01/Feedzai-

Demystifying-Machine-Learning-for-Banking-2017.pdf (retrieved 01
October 2018).

[7] Next-generation fraud management solutions, URL:
https://www.capgemini.com/wp-content/uploads/2017/07/next-
generation_fraud_management_2017.pdf (retrieved 01 October 2018).

[8] C. Pettey and R. Van der Meulen, Gartner Says a Layered Fraud
Prevention Approach Can Thwart Malicious Attacks, Gartner, 2009,
URL: https://www.gartner.com/newsroom/id/1254413 (retrieved 01
October 2018).

[9] Z. Li, H. Xiong, and Y. Liu, Detecting Blackholes and Volcanoes in
Directed Networks, CoRR, 2010, URL:
https://arxiv.org/pdf/1005.2179.pdf (retrieved 23.11.2016).

[10] R.R. McCune, T. Weninger, and G.R. Madey, Thinking Like a Vertex: a
Survey of Vertex-Centric Frameworks for Distributed Graph Processing,
CoRR, 2015, URL: http://arxiv.org/abs/1507.04405 (retrieved
23.11.2016).

[11] M. Zaharia, M. Chowdhurr, M.J. Franklin et al., Spark: Cluster
Computing with Working Set, HotCloud, 2010, vol. 10, p. 7.

[12] M. Armbrust, T. Das, A. Davidson et al., Scaling spark in the real world:
performance and usability, Proceedings of the VLDB Endowment, 2015,
issue 8, vol. 12, pp. 1840-1843.

[13] Voit A., Stankus A., Magomedov Sh., Ivanova I. Big data processing for
full-text search and visualization with elasticsearch International Journal
of Advanced Computer Science and Applications. 2017. Т. 8. № 12. С.
76-83. DOI: 10.14569/IJACSA.2017.081211

[14] Magomedov Sh. Organization of secured data transfer in computers
using sign-value notation. ITM Web of Conferences. 2017. Т. 10. DOI:
10.1051/itmconf/20171004004

[15] N. Chaimov, A. Malony, S. Canon et al., Scaling Spark on HPC
Systems, 2016, pp. 97-110.

[16] P. Erdos and A. Renyi, On random graphs, Publicationes Mathematicae
Debrecen, 1959, vol. 6, pp. 290-297.

[17] R. Pierre, Detecting Financial Fraud Using Machine Learning: Winning
the War Against Imbalanced Data, 2018, URL:
https://towardsdatascience.com/detecting-financial-fraud-using-
machine-learning-three-ways-of-winning-the-war-against-imbalanced-
a03f8815cce9 (retrieved 20.11.2018).

