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Abstract—In this paper, the task of fraud detection using the 

methods of data analysis and machine learning based on social 

and transaction graphs is considered. The algorithms for feature 

calculation, outlier detection and identifying specific sub-graph 

patterns are proposed. Software realization of the proposed 

algorithms is described and the results of experimental study of 

the algorithms on the sets of real and synthetic data are 

presented. 
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I. INTRODUCTION 

At present fraud is a major threat that is increasing every 
year. The global economic crime survey of 2018 carried out by 
PricewaterhouseCoopers [1] found that almost half (49%) of 
the 7,200 companies they surveyed had experienced fraud of 
some kind. Experts from HSN Consultants predict online credit 
card fraud to soar to $32 billion in 2020 [2]. Beside direct 
financial losses, fraud also affects customer loyalty and 
conversions in both digital and physical environments. For 
instance, 20% of customers change their banks after 
experiencing frauds. Meanwhile, manual review remains 
prevalent among the means of fraud detection. According to 
the annual Fraud Benchmark Report by CyberSource [3] 79% 
of North American businesses conduct manual reviews, and on 
average, these businesses manually review 25% of orders. At 
the same time, the survey found that these businesses accepted 
89% of orders following manual review. This means that more 
orders are subject to manual reviews than might be necessary. 
Since manual review is usually the costly aspect of fraud 
management operations, automated screening could make 
fraud management processes more efficient by leaving only the 
most suspect orders to manual reviews. 

Machine Learning technologies have shown their 
effectiveness in solving such tasks as spam detection, image 
recognition, product recommendation, predictive analytics etc. 
In fraud management, Machine Learning can be used to predict 
fraud in a large volume of transactions by applying cognitive 
computing technologies to raw data. The prediction problem 
can be further divided into two types of tasks: classification 
and regression. Regression analysis is a popular, longstanding 
statistical technique that measures the strength of cause-and-

effect relationships in structured data sets. Regression analysis 
tends to become more sophisticated when applied to fraud 
detection due to the number of variables and size of the data 
sets. It can provide value by assessing the predictive power of 
individual variables or combinations of variables as part of a 
larger fraud strategy. According to this technique, the authentic 
transactions are compared with the fraud ones to create an 
algorithm, which will then predict whether a new transaction is 
fraudulent or not. Classification problem can be solved with 
the help of Decision Tree algorithms. They are essentially a set 
of rules that are trained using examples of fraud that clients are 
facing. The creation of a tree ignores irrelevant features and 
does not require extensive normalization of the data. By 
inspecting a tree, it is possible to understand why a decision 
was made by following the list of rules triggered by a certain 
customer. Random Forest technique uses a combination of 
multiple decision trees to improve the performance of the 
classification or regression. It allows smoothing the error that 
might exist in a single tree and increases the overall 
performance and accuracy of the model while maintaining the 
ability to interpret the results and provide explainable scores to 
the users. Random forest runtimes are quite fast, and they are 
able to deal with unbalanced and missing data. Random Forest 
weaknesses are that when used for regression they cannot 
predict beyond the range in the training data and that they may 
over-fit data sets that are particularly noisy. Neural networks 
can be an excellent complement to other techniques, which 
improves with exposure to data. The neural network is a part of 
cognitive computing technology where the machine mimics 
how the human brain works and how it observes patterns. 
Neural networks can adapt to the change in the behavior of 
normal transactions and identify new patterns of fraud 
transactions. Data processing by neural networks is extremely 
fast which makes it possible to make decisions in real time. 

Due to growing popularity of machine learning, many 
innovative enterprises are starting to implement these 
techniques in their fraud management processes. For example, 
PayPal uses a homegrown AI engine built with open-source 
tools to detect suspicious activity, and more importantly to 
separate false alarms from true fraud [4]. PayPal implements 
express assessment using linear models to separate uncertain 
transactions from ordinary ones. Then, all transactions that 
look suspicious are run through an ensemble of three models 
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comprising a linear model, a neural network, and a deep neural 
network. The three models then vote to arrive at the result with 
the higher accuracy. With the help of this human and AI 
solution, PayPal has decreased its false alarm rate to half. 
MasterCard integrated machine learning and AI to track and 
process such variables as transaction size, location, time, 
device, and purchase data [5]. The system assesses account 
behavior in each operation and provides real-time judgment on 
whether a transaction is fraudulent. The project aims at 
reducing the number of false declines in merchant payments. 
Feedzai [6], a FinTech company, claims that a fine-tuned 
machine learning solution can detect up to 95% of all fraud and 
minimize the cost of manual reconciliations, which accounts 
now for 25% of fraud expenditures. Capgemini [7] claims that 
fraud detection systems using machine learning and analytics 
minimize fraud investigation time by 70% and improve 
detection accuracy by 90%. These facts prove the benefits of 
using machine learning in anti-fraud systems. On the other 
hand, banks have been slow to adopt machine learning and AI 
solution at a large scale. The reasons for this include high 
infrastructural costs, strict regulations and risk of replacing 
existing technology. 

Machine Learning technologies also have their own 
limitations. One of such limitations is their blindness to 
connections in data when the initial data set is relatively small. 
Machine learning models work on actions, behavior, and 
activity. For example, the model can overlook a seemingly 
obvious connection such as a shared card between two 
accounts. To counter this machine learning models can be 
enhanced with Graph databases. Graph database addresses 
Gartner’s fifth layer of fraud prevention: entity link analysis 
[8]. Graph database allows looking beyond the individual data 
points of discrete analysis to the connections that link them. 
Thus, graph technique can find multiple bogus actors for every 
single one prevented through scoring. Graph databases allow 
blocking suspect and bogus accounts before they have taken 
any fraudulent action. Another important trait that makes graph 
database a valuable addition to any fraud prevention solution is 
its inherent speed in calculating relationships. Since the 
relationships in graph database are treated with as much value 
as the database records themselves, the engine that navigates 
the connections between nodes can do so efficiently, enabling 
millions of connections per second. Graph database enables 
quick extraction of new insight from large and complex 
databases to help uncover unknown interactions and 
relationships. 

II. ANOMALY DETECTION ALGORITHMS FOR GRAPH 

STRUCTURES 

A. Local Outlier Factor (LOF) Algorithm based on Local-

Sensitive Hashing (LSH) Method 

LOF is an outlier detection algorithm that calculates certain 
numeric value for each point, which allows identifying the 
point as normal or anomaly. LOF value close to one 
corresponds to normal points; otherwise, the points are 
considered anomalies. Exact threshold for anomaly detection is 
set after conducting data analysis. An algorithm for calculation 
of LOF based on LSH method has been developed. Pseudo 
code for the developed algorithm is listed below: 

Input: points // set of all points 
Output: result // set of nearest neighbors for each point 
result = 0 
nv = StartNumVectors 
// creation of hash-table 
hash_table = 0 
for 1..NumTables do 
 // clearing hash-table for each iteration 
 hash_table = 0 
 hash_vecs = get_random_vecs(nv) 
 forall p ∈ points do 
  hash = get_hash(hash_vecs, p) 
  hash_table[hash] += p 
 foreach cell ∈ hash_table, cell.size < const do 
  forall point ∈ cell do 
   result[point] += all points ∈ cell without the 

point 
 forall point ∈ result do 
  result[point] = save_only_best_kNN_neighbors 
 nv = nv + 1 
foreach cell ∈ hash_table, cell.size > const do 
 forall point ∈ cell do 
  result[point] = save_any_kNN_neighbors ∈ cell 
forall point ∈ result do 
 result[point] = save_only_best_kNN_neighbors 
foreach point : result[point].size < kNN do 
 result[point] = brute_force[point] 

LSH method was chosen due to necessity of fast 
identification of nearest neighbors for each point. The main 
principle of LSH method involves using special method of 
hashing when hash values are equal for the points close to each 
other. A set of hash-tables (NumTables = 100) has been 
generated with a set of vectors for each of those tables. For the 
first table a number of random vectors (StartNumVectors = 3) 
has been generated. For each subsequent table the number of 
random vectors increases by one with each iteration (number of 
iterations corresponds to the number of tables, one table is 
processed per iteration). Each vector consists of d random 
values generated according to normal distribution with mean 
value of zero and standard deviation of one. Hash is calculated 
for each point as a bit sequence where bit i equals one if scalar 
product of vector i of the processed table and the vector 
corresponding to the point in question (the point can be 
considered a vector) is equal or greater than 0. Otherwise bit i 
equals zero. Thus in each iteration of the algorithm all points 
are distributed among the cells of current hash-table. 

Then the cells of current hash-table are considered with the 
size lower than const (4*kNN in this example, where kNN is 
the number of nearest neighbors). For each point in such cells, 
all other points in this cell are added to the set of candidates for 
the point in question. Finally, for each point, duplicate 
candidates are removed and the nearest kNN neighbors are left. 

At the last iteration, the cells with the size larger than const 
are considered and for each point in such cells kNN random 
points from the same cell are selected, duplicate candidates for 
each point are removed and the best kNN candidates are left. 
For each point, random kNN candidates are selected, because 
when the number of random vectors used for calculating hash 
is large enough each cell corresponds to a small part of n-
dimensional space, which means all points from the same cell 
are close to each other. In the end for each point with the 
number of neighbors lower than kNN a naïve algorithm is used 
since the number of such points at the last iteration should be 
very small. In current realization, kNN was set equal to 10. 
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B. “Volcano” and “Black Hole” Patterns 

So-called “volcano” and “black hole” patterns were 
described in [9]. “Black hole” refers to a sub-graph, which has 
only incoming edges from the vertices of the graph not 
included in this sub-graph. “Volcano” refers to a sub-graph 
which has only outgoing edges to the vertices of the graph not 
included in this sub-graph. The task of identifying “volcanoes” 
is inverse to the task of identifying “black holes”. 

An example of a “volcano” and a “black hole” is shown in 
Figure 1. 

 

Fig. 1. An example of a “volcano” and a “black hole”. 

The task of identifying “volcanoes” and “black holes” is a 
combinatorial problem. In [9] two algorithms based on pruning 
schemes are proposed.  

C. Algorithm for Identifying “Volcanoes” and “Black Holes” 

An algorithm for identifying “black holes” has been 
developed. For identifying “volcanoes”, the direction of all 
edges of the graph should be reversed and the same algorithm 
should be applied. 

The set of ancestors for the vertex v is defined as a set of 
all vertices having at least one edge outgoing to v, as well as all 
ancestors of those vertices. The algorithm identifies “black 
holes”:  

 with diameter equal or lower than (MaxIterCount) and  

 with the number of ancestors for each vertex in the sub-
graph lower than MaxSetSize (considering only 
ancestors at the distance equal or lower than 
MaxIterCount). 

The algorithm is described using vertex-centric [10] 
approach, but practical realization is carried out using resilient 
distributed dataset (RDD) API [11] without Pregel API in 
Apache Spark [12-15]. The algorithm is iterative with 
maximum number of iterations defined by MaxIterCount. 

1) Description of Handler Function 
Each vertex has a local buffer send_buf, which is cleared 

each time the handler is called. At the start of the algorithm, 
each vertex receives the message init, which is necessary for 
initialization of the algorithm. On receiving the message init 
the vertex puts its identifier id into the buffer send_buf. 

Each vertex has its own set of ancestors – ancestors. 
Initially the set ancestors is empty for each vertex. Each vertex 

also has a flag bad, initially set to value false. This flag is set to 
value true if the vertex has too many ancestors. At each 
iteration, a vertex can acquire new ancestors in incoming 
messages. Acquired ancestors are added to the set ancestors if 
the size of resulting set does not exceed MaxSetSize, otherwise 
the set ancestors does not update and the flag bad is set to 
value true. 

2) Description of message-sending operation 
At each iteration of the algorithm after handler function 

finishes its work follows the message-sending step. At this 
step, all triplets of the graph corresponding to its edges are 
considered, and a message is sent along each edge. 

For each triplet (edge): 

 if the buffer send_buf of the initial vertex of the edge is 
empty or the flag bad of the terminal vertex equals true, 
then nothing should be sent along this edge; 

 otherwise all elements from the buffer send_buf which 
are not present in the set ancestors of the terminal 
vertex are sent within a message along this edge. 

3) Detection of “black holes” 
In the end, each vertex owns a set including a number of its 

ancestors. A set of vertices B with a common ancestor X is 
considered a “black hole” if: 

 X is not included in the buffer send_buf of any vertex 
from the set B. Otherwise some vertex could send X at 
the last iteration, which means there could be an 
outgoing edge from B, which contradicts the definition 
of a “black hole”. 

 X does not belong to the set ancestors of the initial 
vertex of each edge incoming to a vertex with the flag 
bad set to value true, and X is not the initial vertex of 
such edge. Otherwise (if such edge existed) some vertex 
(corresponding to such edge) could send X at the last 
iteration, but due to the defined limitations further 
transmission through the vertex with the flag bad set to 
value true would be impossible, and identifier X would 
not be able to reach any of the buffers send_buf. 

Then the vertices should be grouped according to ancestors. 
In the Apache Spark realization, each pair (vertex, ancestor) 
should be mapped to a pair (ancestor, vertex) and then the pairs 
should be grouped by key (operations map and groupBy). 
Defined limitations guarantee that the sets of vertices acquired 
by the method described above does not include any outgoing 
edges. 

An important feature of the developed algorithm is the 
ability to identify intersecting “black holes”. Pseudo code for 
the developed algorithm is listed below: 

MaxSetSize = 100 // constant limiting the size of sets ancestors and 
send_buf 

MaxIterCount = 10 // constant defining the number of iterations 
// vertex handler 
(1) procedure handler(v: vertex, msgs: Vector[Long]) 
// message sending 
(2) procedure sendMsg(triplet: EdgeTriplet) 
v.send_buf = 0 
// if initial message 
if msgs.size = 1 and msgs(0) = -1 then 
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 vert.send_buf.add(vertex.id) 
 return 
if vert.ancestors.size + msgs.size ≤ MaxSetSize then 
 // update set of ancestors 
 vert.ancestors.add(msgs) 
else 
 vert.bad = true 
 return 
if msgs.size ≤ MaxSetSize then 
 vert.send_buf.add(msgs) 
else 
 vert.bad = true 
if !(triplet.srcAttr.send_buf.isEmpty or triplet.dstAttr.bad) then 
 msgs = Vector[Long]() 
 for x ← triplet.srcAttr.send_buf do 
  if !triplet.dstAttr.ancestors.contains(x) then 
   msgs.add(x) 
 send msgs along triplet 
// merging messages 
(3) function mergeMsg(a: Vector[Long], b: Vector[Long]) 
 // concatenation of two vectors 
 return a + b 
// main procedure 
(4) procedure detect_blackholes(graph: Graph) 

III. EXPERIMENTAL STUDY 

Experimental study has been carried out on a set of data 
consisting of the database of all transactions (including 
781 440 transactions and 15 034 710 involved entities) and the 
database of suspicious transactions (including 715 transactions 
and 349 involved entities). For evaluation of computational 
performance and scalability of the developed algorithms 
synthetic Erdos-Renyi [16] graphs of different sizes have also 
been used. 

Software realization of the developed algorithms has been 
tested on a computational cluster consisting of 8 nodes 
connected with 1GBit Ethernet, each node running 8-core 
2.2GHz E5-2660 processor, 64GB DDR3 memory, operation 
system SLES 11 SP4, Apache Spark 2.1.1 and Scala compiler 
sbt 0.13.13. 

Software realization of the machine learning algorithm has 
been carried out using Scala, Spark 2.1.0 language and 
includes the following steps: 

 Data input (database of all transactions, database of 
suspicious transactions and configuration data). 

 Search for suspicious transaction in the database of all 
transactions (by comparing the fields DATA, SUME, 
ACC_B0 and Date, RealQty, AccClientOtpr 
accordingly). 

 Creation of a graph with entities as its vertices and 
transactions as its edges (entities being taken from the 
database of all transactions). 

 Selection of a set of edges for machine learning 
consisting of all suspicious transactions and the same 
number of normal transactions (selected randomly). 

 Formation of egonets around the vertices for calculation 
of features. 

 Calculation of features for each edge (transaction) (32 
features total): amount and time of transaction; for 
sender and recipient egonets - minimum, maximum and 

average degrees, indegrees and outdegrees of vertices, 
number of vertices, “volcano” vertices, “black hole” 
vertices and other vertices; number of transactions and 
total transaction amount. 

 Machine learning: method – random forest; 
MinMaxScaler method used to project each feature into 
[0, 1] line; random division of the learning set – 70% of 
samples for training (using cross-validation), 30% of 
samples for testing. 

Graph created in the experimental study consists of 
114 791 vertices (entities) and 781 440 edges. The learning set 
for machine learning includes 1430 transactions (50% normal 
and 50% suspicious). Training set consists of 993 transactions 
– 477 class 0 objects (normal transactions) and 516 class 1 
objects (suspicious transactions). Testing set consists of 437 
transactions – 238 class 0 objects (normal transactions) and 
199 class 1 objects (suspicious transactions). 

Resulting classification accuracy (share of correctly 
classified objects) reached 97.7%. 

A measure of importance for each feature has been 
calculated. Top five most important features (listed with their 
respective “coefficient of importance”; the sum of coefficients 
for all features amounts to one) turned out to be the following: 

 Amount of transaction – 0.38 

 Degree of the sender vertex – 0.12 

 Total amount of transactions (incoming and outgoing) 
corresponding to the sender – 0.09 

 Number of vertices in the sender’s egonet – 0.07 

 Outdegree of the sender vertex – 0.07 

It is evident that amount of transaction has the greatest 
influence on classification results. 

Other metrics of classification quality calculated during the 
experimental study (the closer to 1.0 the better): 

 AUROC – 0.999 

 Sensitivity (also known as “Recall”) – 1.0 

 Specificity – 0.958 

 Precision – 0.952 

 NPV (negative predictive value = number of correctly 
classified normal transactions divided by total number 
of transactions classified as normal) – 1.0 

 F1 score – 0.975 

Sensitivity equaling 1.0 means that the algorithm did not 
miss any suspicious transactions within the testing set. This 
metric is especially important, since in anti-money laundering 
tasks it is necessary not to miss any fraudulent transactions. 

False positive rate (FPR = (1-Specificity)*100%) on the 
testing set amounted to 4.2%, meaning that among 238 normal 
transactions 10 were falsely classified as suspicious. 
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Recent studies using a Random Forest Classifier in order to 
predict fraudulent transactions on raw data [17] have shown 
results for such metrics of classification quality as Precision, 
Recall, F1-score and AUROC all below 0.9 in most cases. 
Thus, it can be concluded that using the developed set of 
features allows improving the classification quality. 

Additional experiment has been carried out using the 
database of all transactions excluding the suspicious ones as 
the testing set (780 725 transactions total). The share of 
transactions classified as suspicious equaled 4.9%. It is worth 
noting that the share of transactions with amount exceeding 
100 000 classified as suspicious equaled 3.2% of the total 
number of transactions. 

Quality of LOF algorithm based on LSH method is shown 
in Table I. 

TABLE I.  TABLE TYPE STYLES 

THR FN / P FP / N 

2.5 8.03% 1.2% 

3 10.27% 0.9% 

3.5 12.13% 0.8% 

Here THR defines threshold value for anomaly detection, 
FN – number of false-negative objects, FP – number of false-
positive objects, P – total number of anomalies, N – total 
number of normal objects. Results were calculated for 6000 
random points corresponding to the edges of the real graph. 
Though the classification quality is lower in comparison with 
the trained random forest method applied above, the advantage 
of this approach is the ability to carry out fraud detection 
without prior knowledge of transaction history. 

Using the algorithm for identifying “volcanoes” and “black 
holes” an edge was considered an anomaly if its initial vertex 
belonged to any of 5% largest “volcanoes” or “black holes”. 
Figure 2 shows the distribution of identified “volcanoes” and 
“black holes” for the real graph. 

 
Fig. 2. Distribution of identified “volcanoes” and “black holes”. 

Figure 3 illustrates strong scalability of the developed 
feature calculation algorithm, LOF algorithm based on LSH 
method and the algorithm for identifying “volcanoes” and 
“black holes”. 

 
Fig. 3. Scalability of the developed algorithms. 

Scalability of feature calculation algorithm was calculated 
for a synthetic Erdos-Renyi graph with 2

19
 vertices and 2

22
 

edges. Scalability of LOF algorithm based on LSH method was 
calculated for the real graph. Scalability of the algorithm for 
identifying “volcanoes” and “black holes” was calculated for a 
synthetic Erdos-Renyi graph with 2

21
 vertices and 2

24
 edges. 

Figure 4 illustrates the relative speedup of data processing 
with the developed algorithms based on the number of 
computational nodes involved in the processing of data. 

 
Fig. 4. Speedup of data processing according to the number of 

computational nodes. 

IV. CONCLUSION 

It can be concluded that the developed algorithm for feature 
calculation can be successfully implemented in conjunction 
with common machine learning methods to achieve high 
values of classification quality metrics. In particular, high value 
of sensitivity (and subsequently low False Negative Rate 
value) is important for anti-money laundering and other fraud 
management processes. 

The results of experimental study have shown that the 
developed algorithms for anomaly detection demonstrate 
classification quality comparable with a trained random forest 
method when applied on a real transaction graph. This makes it 
possible to implement these algorithms in situations when prior 
knowledge of transaction history is not accessible, as well as 
for identification of new and unknown methods of fraud. 
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Software realization of the developed algorithms 
demonstrated high scalability, which makes it possible to 
significantly increase their performance using multi-processor 
computational clusters. 

The developed algorithms are intended to be used in the 
framework of a software complex for automated fraud 
management in different areas of business. 
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