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Abstract—In the field of avionics, most of the software 

systems are either safety critical or mission critical. These 

systems are developed with high quality standards strictly 

following the relevant guidelines and procedures. Due to the high 

criticality of the systems, it is mandatory that the verification and 

validation of these systems are done with utmost importance and 

only then any system is cleared for flight trials. The verification 

and validation activities need to be very exhaustive and hence 

take a considerable amount of time in the software development 

lifecycle. This paper describes about the innovative approach 

towards automation of Combinatorial Interaction Test case 

generation and execution for Requirements Based Testing of 

complex avionics systems for achieving test adequacy in a highly 

time efficient and cost efficient manner. 

Keywords—Avionics; combinatorial interaction testing; 

requirement specifications; requirements based testing; safety 

critical; validation; verification 

I. INTRODUCTION 

Avionics systems are complex real time embedded 
systems with a very high criticality associated with them. 
These systems are software intensive and exhaustive 
verification and validation activities need to be carried out 
both at system level and software level to ensure error free and 
safe functioning of the system. Verification of the Software 
Development Life Cycle (SDLC) deliverables right from 
requirements engineering phase is essential in order to ensure 
that defects are discovered early and fixed as doing it at later 
stages has high impact on cost and effort. 

The validation testing of avionics system is done with the 
Software Under Test (SUT) running on the actual target 
hardware and all the interfacing subsystems simulated. 
Implementation of each of the functionality is tested by 
running a number of test cases on the SUT. The test cases for 
the Functionality Under Test (FUT) are designed to uncover 
errors, demonstrate that the inputs are properly accepted by 
the SUT and the outputs are correctly produced.  Validation 
testing is basically black box testing that examines the aspects 
of system functionality with little regard for the internal 
logical structure of the software.  The SUT and the simulated 
systems run in real time during the validation tests. 

A. Combinatoral Interaction Testing 

Combinatorial Interaction Testing (CIT) can detect failures 
triggered by interactions of parameters in the SUT with a 
covering array test suite which tests all the required parameter 
value combinations. Traditionally testers develop scenarios of 
how an application will be used, then select inputs that will 
exercise each of the application features using representative 
values, normally supplemented with extreme values to test the 
performance and reliability. The problem with this often ad 
hoc approach is that unusual combinations will usually be 
missed, so that a system may pass all tests and may work well 
under normal circumstances, but may eventually encounter a 
combination of inputs that it fails to process correctly. By 
testing all combinations, for a specific interaction strength 
within the input variables, CIT can help to avoid this type of 
situation. 

B. Requirements based Testing 

A general principle of good requirements engineering 
practice [1] is that requirements should be testable. 
Requirements Based Testing (RBT), therefore, is a systematic 
approach to test case design where you consider each 
requirement and derive a set of tests for it. RBT is done to 
demonstrate that the system has properly implemented its 
requirements. By combining methods from requirements 
engineering and software testing, this testing methodology 
provides a set of quality assurance activities and management 
tools that enable getting requirements right from the outset. 
The RBT process addresses two major issues [2] first, 
validating that the requirements are correct, complete, 
unambiguous, and logically consistent; and second, designing 
a necessary and sufficient (from a black box perspective) set 
of test cases from those requirements, to ensure that the design 
and code fully meet the requirements. When designing tests, 
two issues need to be overcome: reducing the enormous 
number of potential tests down a reasonable size set and 
ensuring that the tests got the right answer for the right reason. 
The RBT process will drive out ambiguity and drive down the 
level of detail. The overall RBT strategy is to integrate testing 
throughout the SDLC and focus on the quality of the 
requirements specification. This leads to early defect detection 
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which has been shown to be much less expensive than finding 
defects during integration testing or later. The RBT process 
also has a focus on defect prevention, not just defect detection. 
The test cases for each of the FUT are designed using the 
corresponding Software Requirements Specifications (SRS) 
and Interface Requirement Specifications (IRS). For the FUT, 
the requirements related to processing of input data and 
generation of output data are specified in the SRS. The 
address and format of the input and output parameters are 
defined in the IRS between the SUT and the interfacing 
subsystems for the FUT. 

C. Contents of the Pape 

The rest of the paper is structured as follows. Section II 
discusses literature survey on related work. Section III 
introduces the new approach of CIT for RBT of complex 
avionics systems which is explained with a case study detailed 
in sections IV and V. In Section IV the manual testing 
approach used for a Mission critical system in a combat 
aircraft/helicopter is explained followed by the disadvantages 
of manual testing. In Section V automation of CIT cases 
generation and enhancement of the manual test rig for 
automatic execution for RBT of the system is elaborated 
followed by the advantages of automation. 

II. LITERATURE SURVEY 

A. Automatic Test Data Generation 

In [3] development of Test Case Generation (TCG) 
algorithm for CIT and idea for considering input constraints 
and  building a unit testing harness from TCG is addressed. In 
[4] and [5], the authors have used programs from Software-
artifact Infrastructure Repository (SIR) as their subjects for 
examining the effectiveness of CIT on regression testing. In 
[6], the authors illustrated that adding constraints in CIT of 
highly configurable systems, reduces the number of feasible 
system configurations but it is not guaranteed to reduce the 
size of the CIT sample to achieve coverage of desired 
strength. In [7] covers discussion on integrated approach for 
finding covering arrays and application of the same for 
constructing variable strength arrays. In [8] an approach to 
automate unit and integrating testing of radio’s control 
software is described. In [9], the authors have illustrated an 
automated approach for finding and fixing conformance faults 
between given software system and its combinatorial model. 
In [10] automatic generation of test configurations that cover 
all pair-wise interactions using feature models for testing  
Software Product Line (SPL) is explained. In [11] the authors 
have proposed a framework for automated pair-wise testing of 
SPL, with an objective to generate the minimal set of test 
configurations that are valid and cover all pair-wise feature 
interactions. 

B. MC/DC Coverage with CIT 

In [12] automatic test data generation for testing of C 
programs at white box level for obtaining multiple coverage 
criteria including MCDC is covered. In [13], the authors have 
discussed about the extent of statement/branch and MC/DC 
coverage and the Fault Detection Rate (FDR) that can be 
achieved by executing CIT cases with strength varying from 2 
to 5 on two subjects taken from SIR. They have taken original 

implementation and number of mutants of the subjects to 
study the effectiveness of CIT. Though they have generated 
covering arrays with strength of 5, as executing all the test 
cases with higher combination strength is a huge effort, the 
number of test cases that were executed is limited to that with 
strength 4. But a decrease in the statement/branch/MCDC 
coverage and FDR was noted by running only a subset of test 
cases with higher strength when compared to execution of 
complete set of test cases with lower strength. 

But for mission critical and safety critical avionics 
software systems, it is essential to achieve 100% 
statement/branch and MC/DC coverage so that the FDR also 
is high.  In f DO-178B guidelines followed for development 
and certification of avionics systems, RBT is emphasized 
because this testing strategy is found to be most effective in 
revealing errors. From the new approach followed by us we 
have found that the advantages of CIT for RBT are more 
compared to CIT with higher strength than needed. 

III. INTRODUCTION TO NEW APPROACH 

We have evolved a new approach of performing CIT for 
RBT for verification and validation of complex avionics 
systems involving interactions of varying strengths within the 
parameters of the functionalities. CIT for RBT with minimum 
required strength is more effective in uncovering the errors 
with lesser effort than performing CIT with higher strength 
than required. For computing the expected output of the CIT 
cases for each FUT, the corresponding reference models are 
developed using the corresponding SRS and IRS. Because of 
this approach, the requirements get refined at initial stages of 
SDLC saving time of rework if detected later. The required 
optimal strength for CIT of the FUT is derived from the 
requirements thus validated and elaborated instead of 
generating and executing CIT cases with higher strength than 
needed. This approach which provides the benefits of both 
CIT and RBT involves the following activities: 

1) Generation of expected output for each test case 
As the FUTs will be computation intensive involving 

number of parameters, for generating expected output for each 
set of inputs, reference models are developed. 

2) Generation of optimal, reusable combinatorial 

interaction test cases for RBT 
Because of complex nature of requirements and the typical 

constraints on values of input as well as intermediate and 
output parameters for the systems of this domain, for 
generation of test data, additional considerations are required 
as compared to systems of other domains. Hence this activity 
is automated by enhancing the reference models for the FUTs 
and integrating with covering array generation tool for CIT 
suite. 

3) Execution of CIT for RBT 
As the systems are highly interface intensive with a 

number of other sub systems interfacing through various 
buses, feeding the inputs to the SUT for a particular FUT is 
highly cumbersome. Hence the test rig is enhanced and 
integrated with the CIT suite for automated execution of CIT 
for RBT. 
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4) Generation of test reports 
As the number of test cases is too many, generation and 

tracking of test results manually is very difficult. Hence the 
test report generation activity is automated. 

As per [15], generally, automation always follows manual 
testing. Typically, one or more rounds of manual testing 
already would be performed on the automated test rig. This 
implies that manual test cases already exist and have been 
executed at least once. But in our approach, even the first time 
execution of test cases can be done automatically. 

IV. CASE STUDY 

To explain automation of test data generation for CIT and 
automation of execution of the generated test cases, we have 
taken the case of Mission Management Computer (MMC) 
software as a case study. 

Introduction to the MMC which is the SUT, manual test 
rig used for black box testing, manual test procedure and the 
drawbacks of the same are explained in sections A to D below. 
Further in section V the automation of all the activities for the 
new approach of CIT for RBT of MMC is explained. 

A. Mission Management Compute 

In a modern combat aircraft/helicopter, the Mission 
Management Computer (MMC) is a highly complex unified 
software system. It is the heart of the avionics architecture 
which is the bus controller for more than 25 subsystems 
connected to it namely, Weapon Management System, Multi 
Mode Radar, Laser Designation Pod, Cockpit Controls System 
Redundancy management system, Data Acquisition System, 
Fuel System, Engine System, Electrical System, Brake 
Management System, Hydraulics System, Environment 
Control System, Recording And Replay Systems, multiple 
display processors for displaying more than 1000 symbols on 

MFD (Multi Function Display unit), Head-Up Display (HUD) 
unit, HMD (Helmet Mounted Display), Communication 
Systems, Backup Instruments,  Vehicle Health Management 
Systems,  Flight Control System. These systems interface with 
MMC on different buses like 1553B, RS422, Video and 
discretes. 

Most of the mission management functions of the combat 
aircraft are implemented in MMC, mainly, weapon 
management for various modes of air-to-ground and air-to-air 
attack functions, redundancy management of the external 
interface systems for fault tolerance, Pilot Vehicle Interface 
(PVI) functions that include processing of cockpit controls, 
driving various display surfaces and Warning/Caution 
management, sensor management functions and so on.  Thus 
there are thousands of software requirements for the MMC 
system to receive and process data from multiple subsystems 
and transmit the processed data to other subsystems. The 
MMC software is developed incrementally with a set of new 
functionalities added during each iteration. 

B. Manual Test Rig for Testing of MMC 

1) Components of the Manual Test Rig 
In order to facilitate testing of various functionalities 

implemented in the SUT, the test facility has the following 
components as shown in Fig–1. 

 Desk top PCs for Simulated Interface Models (SIMs) 
of the subsystems interfacing with the MMC on 
different data buses same as in the target aircraft. 

 Provision of connecting MMC (SUT). 

 Power Supply unit for SUT and the SIMs. 

 Patch panel for feeding /tapping various signals/data.

 

Fig. 1. Test Rig for Manual Testing of MMC.
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 Control and display panel for ON/OFF control of SUT, 
isolation of SUT from bus, monitoring the health status 
of various components of the test rig etc. 

 Bus Monitors (BM_1/2/3) for capturing data on the 
1553B buses for analysis. 

 RS422 Simulator for simulating RS422 interfaces to 
SUT same as in the target vehicle. 

 Cockpit display simulators – Head Up Display (HUD), 
Multi-Function Displays (MFDs) and Helmet Mounted 
Display (HMD). 

2) Simulated Interface Models 
The test rig which is used for black box testing of MMC 

comprises of a network of Simulated Interface Models (SIMs) 
of various subsystems as depicted in Fig-1. The SIMs mimic 
the actual subsystems connected to the SUT in the target 
vehicle in terms of inputs and outputs to the SUT. 

Each SIM will have the provision for feeding the inputs 
through GUI in engineering formats in a Transmit (TX) 
Window. These values are converted by the SIM into the 
required digital format and are updated on the corresponding 
data bus. Similarly, the outputs from the SUT which will be in 
digital format (Hexadecimal/Binary/Octal/ASCII/BCD are 
received by the SIM to which the data is addressed. They will 
be translated into engineering format and displayed in its GUI 
in Receive (RX) Window. 

The UI of the SIMs shall also have the provision to feed 
transmit data in digital format which will get automatically 
updated in engineering format in the TX window. Similarly, 
there shall be provision to view the received data in digital 
format also. The test cases are static in the sense, for a 
particular test case, the values fed from the SIMs are constant. 
Hence the expected output of the SUT for the test case will be 
constant. However, the simulated subsystems and the SUT run 
dynamically in real time as per the bus scheduler functionality. 

C. Manual Procedure for Generation and Execution of Test 

Cases for MMC 

For each of the functionalities implemented in the MMC, 
test cases are generated and executed manually as follows: 

1) The input parameters for the FUT are identified. 

2) The address of the interfacing sub-system for each of 

the input parameters, the corresponding message details (the 

bits /words) and the range of values of the input parameters, 

are identified from the IRS. 

3) Test cases are generated to ensure that the SUT is 

tested for different values of each of the input parameters and 

different combinations of input parameters. The values chosen 

for the input parameters include boundary values and mid 

value of the range. Additionally, as per the SRS, if there are 

any decisions/conditions with respect to specific values of any 

parameter,  then values >, < and = to the specific value are 

added. 

4) For each of the test case, the expected output value is 

calculated based on the SRS and converted into the format as 

per the IRS and specified in the test case document. 

5) For running a test case on the test rig, the tester needs 

to feed the input values in various SIMs as per the test case, 

observe the output on the cockpit display surfaces and/or on 

the RX window of the SIMs which consume the output of the 

SUT corresponding to the FUT. 

6) The observed output is compared with the expected 

output manually and the test result as PASS or FAIL is 

updated in the test report. 

D. Drawbacks of Manual Methods of Generation and 

Execution of Test Cases 

The process of generation of test cases manually is not 
very efficient and has many drawbacks. The test cases are not 
easily retrievable and reusable for regression testing of 
incremental software upgrades. The extent of combination 
coverage and path coverage depends on the randomly selected 
values of the input parameter. 

The manual execution of test cases is time consuming, 
cumbersome and non repeatable as explained below. 

 Values of different input parameters for the test case 
need to be provided across different subsystem 
terminals manually. 

 If a sequence of inputs is needed to be provided within 
a specific timeframe consecutively, it is very difficult 
to achieve in the current approach. Requires multiple 
retries. 

 Output result needs to be observed across multiple 
subsystem terminals manually. 

 If the requirement is to update the output data only for 
a specific duration (for e.g., setting of a FLAG for one 
cycle), it is very difficult to observe the same. Tester 
needs to capture the data using the bus monitor 
terminal during run time and analyse offline whether 
the output data is updated correctly during the expected 
time duration in correlation with the input data. 

 If any test case fails, then for demonstrating the failure 
to the designers, the whole process needs to be done 
again manually.  If any observation is non-repeatable, 
getting the right scenario to get the observation 
becomes impossible some times. 

 The systems are developed as unified systems suitable 
for different variants of target vehicle. For similar 
functionality, the expected behaviour of the system for 
the same input conditions will be different across 
different modes of operation (for e.g., navigation, 
approach, landing, weapon aiming, weapon releasing, 
exiting from attack mode, jettisoning etc.) and for 
different variants of the target vehicle (Airforce/Navy 
/Fighter/Trainer). The test cases are not easily reusable. 
A particular testing scenario if needs to be repeated for 
a different mode, then all the set of inputs need to be 
provided manually again across multiple terminals. 

 Even if there are minor changes in the upgraded 
software releases, regression testing for clearance of 
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the upgraded version of the software takes same time 
as taken for the initial clearance of the software. 

 Though modular design methodologies are used, every 
time when the software is upgraded for new 
functionalities, the impact of the changes on the 
existing software is very huge. The reason is the 
complex nature and huge size of the order of three-to-
four million lines of source code. Performing detailed 
impact analysis manually is impractical. Even the 
usage of Computer Aided Software Engineering 
(CASE) tools for impact analysis of this type of 
software upgrades on the previously working software 
has been proven to be impractical. The tool shows 
hundreds of relationships across various objects of the 
source code. So based on gross level impact analysis 
carried out manually and with the knowledge of 
previous defect history most of the testing is repeated 
for previously implemented requirements. But as 
explained above, the effort for re-executing the test 
cases is very huge. 

Because of above reasons, though the effort involved in 
automation is significant, it is one time effort which will help 
in reducing the regression testing time drastically for various 
upgrades of MMC software. During the development and 
maintenance of avionics systems which extend to about 15-20 
years, there will be hundreds of software upgrades released 
incrementally. Once the setup for generation and execution of 
CIT for such systems is established, the same can be reused 
with no or minimum changes for testing the upgraded versions 
during each iteration. The test case generation and execution 
activities become more of process dependent than person 
dependent. In this domain where attrition of test engineers is 
very high, having this type of process dependent testing 
mechanism helps in a very big way for the organization. 

V. AUTOMATION OF CIT FOR RBT OF MMC 

In order to increase the efficiency of testing by using CIT 
and to ensure 100% requirements coverage for the RBT of 
MMC, the following activities are automated. 

a) Generation of Expected Output for each test case by 

developing reference models for the FUT 

b) Generation of Test data for the CIT cases 

c) Execution of Combinatorial Interaction Test Cases 

for RBT of MMC 

d) Generation of Test Report 

Out of the above four activities that are automated, (b) & 
(c) explained in section B and C are unique to MMC testing. 
These methods are first time evolved and applied and are 
highly beneficial in many ways as explained in section VI. 
Though (a) and (d) are similar for systems belonging to 
various domains, (a) is explained in section A in brief as the 
same is used as the basis for (b).  (d) is covered in section D 
for completeness. 

A. Automation of Generation of Expected Output 

Development of the reference models as shown in Fig-2 
for different FUTs is carried out for generating the expected 
output values for every test case. The reference models are 

independently developed by the testing team based on the 
corresponding SRS. Generally the programming language 
used for the reference model is different from the one used by 
the design team in the actual SUT. The values for the input 
parameters for each test case are based on the IRS between the 
SUT and the interfacing subsystems for the FUT. 

 
Fig. 2. Use of Reference Models for Generation of Expected Output. 
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get tested for some combinations of values of inputs. Hence 
CIT is an effective test generation technique for avionics 
systems only when additional test cases are added to meet the 
complex nature of input constraints and to get 100% 
combination coverage of required strength. 

b) Need for redefinition of values of input parameters to 

meet typical constraints on intermediate parameters and output 

parameters. 

Many of the functionalities that are implemented in the 
MMC software are computation intensive. The computed 
values are used either to display a symbol and/or data on the 
cockpit display surfaces and/or send the data to other systems 
for consumption.  For a set of inputs, if the output which is the 
current_location of a moving symbol on a cockpit display 
surface is out of the dispay_area or Field Of View (FOV) then, 
based on the requirements, EITHER the symbol shall be made 
absent OR the symbol shall be displayed at the boundary in 
flashing. 

Because of the reasons mentioned above, the choice of 
values of the input parameters should be such that the 
corresponding output values do not result in the location of the 
symbol being out of FOV. Only two test cases are required to 
test the symbol for absence/flashing. All other test cases 
should be such that resultant locations of symbol are 
distributed across the entire FOV instead of cluttered at some 
portions. 

Similarly if the computed data is sent to other equipment, 
the values of the input parameters in the test cases should be 
such that the resulting output values are within valid output 
range, the values are distributed across the entire range of the 
output parameter and the Output_Data INVALIDITY bit is 
not set for more than one test case. 

Every combination in the test suite needs to be checked by 
running on the corresponding simulated reference model (refer 
Fig-2) to ensure whether the resultant values of the output 
parameters are meeting the above output constraints. If not, 
the input values need to be redefined. Thus there is an impact 
of output constraints on the selection of values for various 
input parameters. 

Similarly, in the algorithms for various functionalities, 
there will be constraints on the intermediate variables which 
are dependent on input variables. Based on the values of these 
intermediate variables, the program takes multiple paths. In 
order to ensure that the test cases are adequate enough to 
cover all the paths, it is essential that these types of constraints 
on intermediate values are met. Accordingly the values of the 
input parameters need to be redefined. 

For effective CIT, wherever there are constraints on the 
values of intermediate/output parameters, the values of 
corresponding input parameters need to be redefined to meet 
those constraints.  However, the size of the test suite and the 
combinations should not increase significantly. 

c) Need for generation of covering arrays with 

combination coverage for the input parameters and the 

intermediate   parameters. 

The existing combination strategies [16] [17] are 
inadequate for handling intermediate parameters for 
combination coverage required for avionics software testing. 
In the algorithms for different functionalities, there will be 
decisions/paths based on conditions with combinations of 
input and intermediate parameters. Hence generation of 
covering array with combinations of input parameters alone 
will not be adequate. The covering array needs to be generated 
with combination coverage for the input parameters and the 
intermediate parameters to get 100% condition/decision 
coverage. 

2) Development of facility for evolving CIT cases for RBT 

of MMC 
We have developed the Combinatorial Interaction Test 

case Evolving Facility (CITEF). This facility is useful for 
evolving optimal test cases with input values for the 
parameters of the FUT such that the typical constraints on the 
input/intermediate and output parameters of the FUT in MMC 
are met. Fig-4 shows the Block Diagram of CITEF. It 
comprises of Input Value Generator (IVG), Reference Model 
(RM) of the FUT and CTCG tool for covering array 
generation. The RM in turn has two components: The 
Simulated Functionality Under Test (SFUT) and Constraint 
Checker (CC). SFUT is developed independently by test team 
members based on the corresponding requirements specified 
in the SRS of MMC. CC shall have the intermediate and the 
output constraints applicable for the FUT stored in it. The IVG 
is GUI based application which has the provision for entering 
the initial set of input values and range of data for each 
parameter. 

The initial set of input values are derived through category 
partitioning [18] which involves selection of typical 
representative values based on input domain partitioning and 
boundary values as per the interface requirements. The IVG 
has the provision to manually update the values of the 
parameters or to automatically select random values (without 
duplication) from the given range of the parameters. This 
provision is given so that the size of the test suite does not 
increase abnormally. Else IVG was selecting random values 
from the valid range and with an increase in number of values 
of any parameter, the size of the test suite increases 
exponentially and the testing time will proportionally increase. 

We have used ACTS Version 3.1 released in April 2018 
for generating covering arrays for CIT of MMC.  ACTS [19] 
[20] [14] is a GUI-based CIT tool developed by National 
Institute of Standards and Technology (NIST). ACTS has the 
ability to generate tests with interaction strength from 2-way 
to 6-way, with a user-friendly GUI and a command line 
version suitable for use in scripts or system calls from another 
tool. 
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Fig. 4. Combinatorial Interaction Test Case Evolving Facility (CITEF). 
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the input parameters and the combinations coverage strength 
(mixed strength wherever required) are fed to the ACTs tool. 
The generated test cases are stored in an output file. For the 
FUT, each of the generated combinatorial test cases shall be 
run on the SFUT in order. During execution of each test case, 
the run time intermediate values and the output values are sent 
from the SFUT to the CC in the RM. These values are 
checked by the CC against the respective constraints which 
are stored in it. If they are not satisfied, then feedback from 
CC is sent IVG and execution of further test cases on SFUT is 
stopped. The feedback information will contain the test case 
number, values of the intermediate and output parameters and 
the information about constraints that are not met. The same is 
displayed in the GUI of IVG. On selecting the EDIT option on 
the IVG for a particular input parameter, the values of that 
parameter will change randomly or a fixed value can be fed by 
the user.  When the new values are applied by pressing the 
APPLY button, the same are sent to the CCTG Tool for 
generation of updated covering array. Each of the newly 
generated combinatorial test cases shall be again run on the 
SFUT. This process is repeated till the optimal values are 
assigned to the input parameters for every test case with 
values of all the input parameters satisfying the constraints on 
intermediate parameters and output parameters. The final test 
suite shall be such that on running all the test cases on the 
MMC, 100% path coverage and combination coverage of the 
parameters shall be achieved. 

The test cases with the generated test data are stored in the 
Test Case Library in the CIT SUITE along with the 
preconditions and the expected output value for each test case. 
For each of the input and output parameters the corresponding 
address details (BUS ID, SIM ID, MESSAGE ID, Word 
number and Bit details) are also stored. The test data can be 
automatically fed to the SUT at black box level through the 
test rig as explained in the following section. 

C. Automation of Execution of Test Cases 

For Automation of execution of RBT of MMC, the test rig 
used for manual testing (Fig-1) is augmented and further 
integrated with CIT SUITE of CITEF as depicted in Fig-5. 

 

Fig. 5. Depiction of Components of Facility for Automation of CIT for 

RBT.



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 12, 2018 

119 | P a g e  

www.ijacsa.thesai.org 

CENTRAL
COMPUTER

CIT
SUITE

MMC
(SUT)

HYPER
TERMINAL

3

B3_SIM_1

B2_SIM_2

B2_SIM_3

B3_SIM_N

BUS
MONITOR_3

B3

.

.

.

.

HYPER
TERMINAL

1

B1_SIM_1

B1_SIM_2

B1_SIM_3

B1_SIM_N

.

.

.

.

BUS
MONITOR_1

B1

HYPER
TERMINAL

4

1553 Bus
RS422

Video
Ethernet

Discrete

COCKPIT
DISPLAY

HYPER
TERMINAL

2

B2_SIM_1

B2_SIM_2

B2_SIM_3

B2_SIM_N

BUS
MONITOR_2

B2

.

.

.

.

 
Fig. 6. Test Rig for Automation of  CIT for RBT of MMC. 

The block diagram of the Test rig for automation of 
execution of CIT for RBT of MMC is depicted in Fig-6. 

Each SIM has a unique identification number BX_SIMY 
where X and Y are variables. X is the Bus 1/2/3 on which the 
SIM is connected. Y is the SIM number on that bus. For e.g. 

Sub-System_1 on Bus1:  B1_SIM1 

Sub-System_2 on Bus 1: B1_SIM2 

The test cases for the FUT are selected from the Test Case 
Library in the CIT SUITE.  The Central Computer (CCOM) is 
the interface between the CIT SUITE and the Test Rig. For a 
chosen test case, the sources (respective SIMs) for input 
parameters are identified. To each of the four hyper-terminals 
connected on the different buses, the information about the 
values that the SIMs need to update in specific messages on 
the respective buses is sent by the CCOM.  Each of the hyper-
terminals 1 to 3 in turn will send the address and data blocks 
to corresponding SIMs on the respective 1553B buses. The 
SIMs will put the data accordingly in their transmit buffers for 
updating on the bus. Hyper- terminal 4 will update the values 
on the RS422 bus and set the discrete values as required to be 
fed to the SUT as per the test case. The output of the SUT is 
observed on the cockpit display surfaces and /or the RX 
windows of the SIMs to which the data is addressed.  In the 
Automated approach, all the SIMs  and the SUT would be 
working coherently in the same way as during manual testing 
except that the input to the SUT from the SIMs are fed without 
human intervention. For e.g.,  in order to test the SUT for 
computation of MACH NUMBER DATA, the ‘total pressure’ 
and ‘static pressure’ values have to be provided through 

B1_SIM4 (Simulated Air Data Computer) and 
Aircraft_On_Gnd_In_Air information has to be provided 
through B2_SIM2 (Simulated Engine System Interface Unit ). 
This happens automatically on selection of the relevant test 
case from the CIT Suite. 

Further, the computed MACH NUMBER DATA for the 
inputs fed, can be seen in the RX Window of the GUI of 
B2_SIM4 (Simulated Flight Control Computer) and B3_SIM5 
(Simulated Fuel System Interface Unit) and on the cockpit 
display surfaces. 

Floating point numbers are not supported by ACTS. For 
floating point type of values, the tool was not considering the 
decimal portion of the given input values for usage in the 
constraints defined. This limitation of the tool also had to be 
handled in the test harness. 

Application S/W
(SUT)

Reference model 
for

FUT Expected Output

Observed Output

Outputs 

Compared

Test Case
Inputs

 

Fig. 7. Comparison of Expected and Observed Outputs for Test Report 

Generation. 
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D. Automation of Test Report Generation 

The outputs from SUT captured by the bus monitors are 
compared with the expected output for automated test report 
generation. As shown in Fig-7, for a set of input values for a 
given test case if the corresponding outputs of the application 
software are same as that of the reference model, then the test 
is considered as PASS. 

VI. BENEFITS OF AUTOMATED APPROACH 

 Tester need not switch to multiple terminals for 
providing inputs manually. Multiple Inputs from 
different SIMs will be provided automatically when 
test case is run from the CIT Suite. 

 Sequence of inputs if required to be provided within a 
timeframe can be conveniently given as there is no 
human delay involved. The script has to be designed 
such that those input variables are placed and executed 
sequentially. 

 The output that appears only for a short interval can 
also be easily verified as the checking of the output is 
automated. 

 A particular testing scenario if need to be repeated, 
then it is sufficient to only re-run the test case instead 
of giving all the required inputs manually again. 

 Regression testing for different variants of the target 
vehicle can be done at a faster pace and more 
efficiently. 

 This process helps in effective CIT for RBT of MMC 
with typical constraints on values of inputs as well as 
intermediate and output parameters. 

 The process of feeding the test data to the SUT 
automatically from the CIT SUITE and generation of 
Test report by comparing the output of the reference 
model and the actual output from the SUT reduces 

 The overall testing time drastically as shown in the 
Table-1. 

TABLE I. COMPARISON OF EFFORT INVOLVED IN MANUAL TESTING AND 

AUTOMATED TESTING 

Functionality Under Test 
No. of Test 

cases 

Time for 

Manual 

Execution 

(Mins) 

Time for 

automated 

Execution 

(Mins) 

Jettisoning of selected 
stores 

14 70 7 

MARK & UPDATE 
Functions with different 

types of sensors 

45 240 20 

Attack Functions in 
different guided modes  

56 560 56 

Send Specific Data 60 180 10 

VII. CONCLUSIONS 

As the procedure involves generation of test cases by 
development of the simulated reference model for the 
functionality under test based on the detailed SRS, any 
ambiguity in the SRS can be reported to the authors for 
correction/elaboration. This helps in detailing the software 
requirement specifications without any ambiguity which is the 
main goal of RBT and hence the combinatorial test cases 
designed using this method will generate the most optimal test 
cases. Execution of these test cases shall not only provide the 
benefits of CIT but also provide benefits of  RBT. 

Automation is beneficial only if the components of the 
automated test rig and CITEF: SIMs, CCOM, Hyper-
terminals, SFUT, CC, IVG etc. are validated for correctness. 
Errors in any of these components may result in the following 
which are not acceptable. 

 FALSE NEGATIVE errors: Not detecting the errors 

present in the SUT which is very dangerous as errors in 

mission critical and safety critical avionics systems when 

encountered during flight can even lead to catastrophic 

consequences. 

 FALSE POSITIVE errors: Though the implementation in 

the SUT is correct, this is highly undesirable as it results 

in waste of time in analysing and tracing the reason for 

the failure to a bug in the test facility. 

Floating point numbers are not supported by ACTS. For 
floating point type of values, the tool was not considering the 
decimal portion of the given input values for usage in the 
constraints defined. This limitation of the tool also had to be 
handled in the test harness. 

VIII. SCOPE FOR FUTURE WORK 

Floating point numbers in constraints are not supported by 
covering array generation tools. There is scope for further 
work in development of tools for handling floating point data 
type. The automation test facility can be enhanced for 
optimisation of test cases in which multiple Functionalities 
can be tested together instead of sequential execution. 
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