
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

112 | P a g e

www.ijacsa.thesai.org

Automation of Combinatorial Interaction Test (CIT)

Case Generation and Execution for Requirements

based Testing (RBT) of Complex Avionics Systems

P Venkata Sarla
1

Research Scholar, Bharathiar University,Coimbatore

Scientist-G, Aeronautical Development Agency,

Bangalore, India

Dr. Balakrishnan Ramadoss
2

Professor, Department of Computer Applications,

National Institute of Technology,

Trichy, India

Abstract—In the field of avionics, most of the software

systems are either safety critical or mission critical. These

systems are developed with high quality standards strictly

following the relevant guidelines and procedures. Due to the high

criticality of the systems, it is mandatory that the verification and

validation of these systems are done with utmost importance and

only then any system is cleared for flight trials. The verification

and validation activities need to be very exhaustive and hence

take a considerable amount of time in the software development

lifecycle. This paper describes about the innovative approach

towards automation of Combinatorial Interaction Test case

generation and execution for Requirements Based Testing of

complex avionics systems for achieving test adequacy in a highly

time efficient and cost efficient manner.

Keywords—Avionics; combinatorial interaction testing;

requirement specifications; requirements based testing; safety

critical; validation; verification

I. INTRODUCTION

Avionics systems are complex real time embedded
systems with a very high criticality associated with them.
These systems are software intensive and exhaustive
verification and validation activities need to be carried out
both at system level and software level to ensure error free and
safe functioning of the system. Verification of the Software
Development Life Cycle (SDLC) deliverables right from
requirements engineering phase is essential in order to ensure
that defects are discovered early and fixed as doing it at later
stages has high impact on cost and effort.

The validation testing of avionics system is done with the
Software Under Test (SUT) running on the actual target
hardware and all the interfacing subsystems simulated.
Implementation of each of the functionality is tested by
running a number of test cases on the SUT. The test cases for
the Functionality Under Test (FUT) are designed to uncover
errors, demonstrate that the inputs are properly accepted by
the SUT and the outputs are correctly produced. Validation
testing is basically black box testing that examines the aspects
of system functionality with little regard for the internal
logical structure of the software. The SUT and the simulated
systems run in real time during the validation tests.

A. Combinatoral Interaction Testing

Combinatorial Interaction Testing (CIT) can detect failures
triggered by interactions of parameters in the SUT with a
covering array test suite which tests all the required parameter
value combinations. Traditionally testers develop scenarios of
how an application will be used, then select inputs that will
exercise each of the application features using representative
values, normally supplemented with extreme values to test the
performance and reliability. The problem with this often ad
hoc approach is that unusual combinations will usually be
missed, so that a system may pass all tests and may work well
under normal circumstances, but may eventually encounter a
combination of inputs that it fails to process correctly. By
testing all combinations, for a specific interaction strength
within the input variables, CIT can help to avoid this type of
situation.

B. Requirements based Testing

A general principle of good requirements engineering
practice [1] is that requirements should be testable.
Requirements Based Testing (RBT), therefore, is a systematic
approach to test case design where you consider each
requirement and derive a set of tests for it. RBT is done to
demonstrate that the system has properly implemented its
requirements. By combining methods from requirements
engineering and software testing, this testing methodology
provides a set of quality assurance activities and management
tools that enable getting requirements right from the outset.
The RBT process addresses two major issues [2] first,
validating that the requirements are correct, complete,
unambiguous, and logically consistent; and second, designing
a necessary and sufficient (from a black box perspective) set
of test cases from those requirements, to ensure that the design
and code fully meet the requirements. When designing tests,
two issues need to be overcome: reducing the enormous
number of potential tests down a reasonable size set and
ensuring that the tests got the right answer for the right reason.
The RBT process will drive out ambiguity and drive down the
level of detail. The overall RBT strategy is to integrate testing
throughout the SDLC and focus on the quality of the
requirements specification. This leads to early defect detection

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

113 | P a g e

www.ijacsa.thesai.org

which has been shown to be much less expensive than finding
defects during integration testing or later. The RBT process
also has a focus on defect prevention, not just defect detection.
The test cases for each of the FUT are designed using the
corresponding Software Requirements Specifications (SRS)
and Interface Requirement Specifications (IRS). For the FUT,
the requirements related to processing of input data and
generation of output data are specified in the SRS. The
address and format of the input and output parameters are
defined in the IRS between the SUT and the interfacing
subsystems for the FUT.

C. Contents of the Pape

The rest of the paper is structured as follows. Section II
discusses literature survey on related work. Section III
introduces the new approach of CIT for RBT of complex
avionics systems which is explained with a case study detailed
in sections IV and V. In Section IV the manual testing
approach used for a Mission critical system in a combat
aircraft/helicopter is explained followed by the disadvantages
of manual testing. In Section V automation of CIT cases
generation and enhancement of the manual test rig for
automatic execution for RBT of the system is elaborated
followed by the advantages of automation.

II. LITERATURE SURVEY

A. Automatic Test Data Generation

In [3] development of Test Case Generation (TCG)
algorithm for CIT and idea for considering input constraints
and building a unit testing harness from TCG is addressed. In
[4] and [5], the authors have used programs from Software-
artifact Infrastructure Repository (SIR) as their subjects for
examining the effectiveness of CIT on regression testing. In
[6], the authors illustrated that adding constraints in CIT of
highly configurable systems, reduces the number of feasible
system configurations but it is not guaranteed to reduce the
size of the CIT sample to achieve coverage of desired
strength. In [7] covers discussion on integrated approach for
finding covering arrays and application of the same for
constructing variable strength arrays. In [8] an approach to
automate unit and integrating testing of radio’s control
software is described. In [9], the authors have illustrated an
automated approach for finding and fixing conformance faults
between given software system and its combinatorial model.
In [10] automatic generation of test configurations that cover
all pair-wise interactions using feature models for testing
Software Product Line (SPL) is explained. In [11] the authors
have proposed a framework for automated pair-wise testing of
SPL, with an objective to generate the minimal set of test
configurations that are valid and cover all pair-wise feature
interactions.

B. MC/DC Coverage with CIT

In [12] automatic test data generation for testing of C
programs at white box level for obtaining multiple coverage
criteria including MCDC is covered. In [13], the authors have
discussed about the extent of statement/branch and MC/DC
coverage and the Fault Detection Rate (FDR) that can be
achieved by executing CIT cases with strength varying from 2
to 5 on two subjects taken from SIR. They have taken original

implementation and number of mutants of the subjects to
study the effectiveness of CIT. Though they have generated
covering arrays with strength of 5, as executing all the test
cases with higher combination strength is a huge effort, the
number of test cases that were executed is limited to that with
strength 4. But a decrease in the statement/branch/MCDC
coverage and FDR was noted by running only a subset of test
cases with higher strength when compared to execution of
complete set of test cases with lower strength.

But for mission critical and safety critical avionics
software systems, it is essential to achieve 100%
statement/branch and MC/DC coverage so that the FDR also
is high. In f DO-178B guidelines followed for development
and certification of avionics systems, RBT is emphasized
because this testing strategy is found to be most effective in
revealing errors. From the new approach followed by us we
have found that the advantages of CIT for RBT are more
compared to CIT with higher strength than needed.

III. INTRODUCTION TO NEW APPROACH

We have evolved a new approach of performing CIT for
RBT for verification and validation of complex avionics
systems involving interactions of varying strengths within the
parameters of the functionalities. CIT for RBT with minimum
required strength is more effective in uncovering the errors
with lesser effort than performing CIT with higher strength
than required. For computing the expected output of the CIT
cases for each FUT, the corresponding reference models are
developed using the corresponding SRS and IRS. Because of
this approach, the requirements get refined at initial stages of
SDLC saving time of rework if detected later. The required
optimal strength for CIT of the FUT is derived from the
requirements thus validated and elaborated instead of
generating and executing CIT cases with higher strength than
needed. This approach which provides the benefits of both
CIT and RBT involves the following activities:

1) Generation of expected output for each test case
As the FUTs will be computation intensive involving

number of parameters, for generating expected output for each
set of inputs, reference models are developed.

2) Generation of optimal, reusable combinatorial

interaction test cases for RBT
Because of complex nature of requirements and the typical

constraints on values of input as well as intermediate and
output parameters for the systems of this domain, for
generation of test data, additional considerations are required
as compared to systems of other domains. Hence this activity
is automated by enhancing the reference models for the FUTs
and integrating with covering array generation tool for CIT
suite.

3) Execution of CIT for RBT
As the systems are highly interface intensive with a

number of other sub systems interfacing through various
buses, feeding the inputs to the SUT for a particular FUT is
highly cumbersome. Hence the test rig is enhanced and
integrated with the CIT suite for automated execution of CIT
for RBT.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

114 | P a g e

www.ijacsa.thesai.org

4) Generation of test reports
As the number of test cases is too many, generation and

tracking of test results manually is very difficult. Hence the
test report generation activity is automated.

As per [15], generally, automation always follows manual
testing. Typically, one or more rounds of manual testing
already would be performed on the automated test rig. This
implies that manual test cases already exist and have been
executed at least once. But in our approach, even the first time
execution of test cases can be done automatically.

IV. CASE STUDY

To explain automation of test data generation for CIT and
automation of execution of the generated test cases, we have
taken the case of Mission Management Computer (MMC)
software as a case study.

Introduction to the MMC which is the SUT, manual test
rig used for black box testing, manual test procedure and the
drawbacks of the same are explained in sections A to D below.
Further in section V the automation of all the activities for the
new approach of CIT for RBT of MMC is explained.

A. Mission Management Compute

In a modern combat aircraft/helicopter, the Mission
Management Computer (MMC) is a highly complex unified
software system. It is the heart of the avionics architecture
which is the bus controller for more than 25 subsystems
connected to it namely, Weapon Management System, Multi
Mode Radar, Laser Designation Pod, Cockpit Controls System
Redundancy management system, Data Acquisition System,
Fuel System, Engine System, Electrical System, Brake
Management System, Hydraulics System, Environment
Control System, Recording And Replay Systems, multiple
display processors for displaying more than 1000 symbols on

MFD (Multi Function Display unit), Head-Up Display (HUD)
unit, HMD (Helmet Mounted Display), Communication
Systems, Backup Instruments, Vehicle Health Management
Systems, Flight Control System. These systems interface with
MMC on different buses like 1553B, RS422, Video and
discretes.

Most of the mission management functions of the combat
aircraft are implemented in MMC, mainly, weapon
management for various modes of air-to-ground and air-to-air
attack functions, redundancy management of the external
interface systems for fault tolerance, Pilot Vehicle Interface
(PVI) functions that include processing of cockpit controls,
driving various display surfaces and Warning/Caution
management, sensor management functions and so on. Thus
there are thousands of software requirements for the MMC
system to receive and process data from multiple subsystems
and transmit the processed data to other subsystems. The
MMC software is developed incrementally with a set of new
functionalities added during each iteration.

B. Manual Test Rig for Testing of MMC

1) Components of the Manual Test Rig
In order to facilitate testing of various functionalities

implemented in the SUT, the test facility has the following
components as shown in Fig–1.

 Desk top PCs for Simulated Interface Models (SIMs)
of the subsystems interfacing with the MMC on
different data buses same as in the target aircraft.

 Provision of connecting MMC (SUT).

 Power Supply unit for SUT and the SIMs.

 Patch panel for feeding /tapping various signals/data.

Fig. 1. Test Rig for Manual Testing of MMC.

RS422

SIMULATOR

MMC

(SUT)

B2

... B2_SIM_1

BM_2 B2_SIM_2

B2_SIM_N

B3

... B3_SIM_1

BM_3 B3_SIM_2

B3_SIM_N

B1

... B1_SIM_1

BM_1 B1_SIM_2

B1_SIM_N

1553B

RS422 Discretes

Video

HUD

HMD

COCKPIT

DISPLAY

SIMULATORS

MFDs

Power supply

Patch

panel

Control and

Display panel

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

115 | P a g e

www.ijacsa.thesai.org

 Control and display panel for ON/OFF control of SUT,
isolation of SUT from bus, monitoring the health status
of various components of the test rig etc.

 Bus Monitors (BM_1/2/3) for capturing data on the
1553B buses for analysis.

 RS422 Simulator for simulating RS422 interfaces to
SUT same as in the target vehicle.

 Cockpit display simulators – Head Up Display (HUD),
Multi-Function Displays (MFDs) and Helmet Mounted
Display (HMD).

2) Simulated Interface Models
The test rig which is used for black box testing of MMC

comprises of a network of Simulated Interface Models (SIMs)
of various subsystems as depicted in Fig-1. The SIMs mimic
the actual subsystems connected to the SUT in the target
vehicle in terms of inputs and outputs to the SUT.

Each SIM will have the provision for feeding the inputs
through GUI in engineering formats in a Transmit (TX)
Window. These values are converted by the SIM into the
required digital format and are updated on the corresponding
data bus. Similarly, the outputs from the SUT which will be in
digital format (Hexadecimal/Binary/Octal/ASCII/BCD are
received by the SIM to which the data is addressed. They will
be translated into engineering format and displayed in its GUI
in Receive (RX) Window.

The UI of the SIMs shall also have the provision to feed
transmit data in digital format which will get automatically
updated in engineering format in the TX window. Similarly,
there shall be provision to view the received data in digital
format also. The test cases are static in the sense, for a
particular test case, the values fed from the SIMs are constant.
Hence the expected output of the SUT for the test case will be
constant. However, the simulated subsystems and the SUT run
dynamically in real time as per the bus scheduler functionality.

C. Manual Procedure for Generation and Execution of Test

Cases for MMC

For each of the functionalities implemented in the MMC,
test cases are generated and executed manually as follows:

1) The input parameters for the FUT are identified.

2) The address of the interfacing sub-system for each of

the input parameters, the corresponding message details (the

bits /words) and the range of values of the input parameters,

are identified from the IRS.

3) Test cases are generated to ensure that the SUT is

tested for different values of each of the input parameters and

different combinations of input parameters. The values chosen

for the input parameters include boundary values and mid

value of the range. Additionally, as per the SRS, if there are

any decisions/conditions with respect to specific values of any

parameter, then values >, < and = to the specific value are

added.

4) For each of the test case, the expected output value is

calculated based on the SRS and converted into the format as

per the IRS and specified in the test case document.

5) For running a test case on the test rig, the tester needs

to feed the input values in various SIMs as per the test case,

observe the output on the cockpit display surfaces and/or on

the RX window of the SIMs which consume the output of the

SUT corresponding to the FUT.

6) The observed output is compared with the expected

output manually and the test result as PASS or FAIL is

updated in the test report.

D. Drawbacks of Manual Methods of Generation and

Execution of Test Cases

The process of generation of test cases manually is not
very efficient and has many drawbacks. The test cases are not
easily retrievable and reusable for regression testing of
incremental software upgrades. The extent of combination
coverage and path coverage depends on the randomly selected
values of the input parameter.

The manual execution of test cases is time consuming,
cumbersome and non repeatable as explained below.

 Values of different input parameters for the test case
need to be provided across different subsystem
terminals manually.

 If a sequence of inputs is needed to be provided within
a specific timeframe consecutively, it is very difficult
to achieve in the current approach. Requires multiple
retries.

 Output result needs to be observed across multiple
subsystem terminals manually.

 If the requirement is to update the output data only for
a specific duration (for e.g., setting of a FLAG for one
cycle), it is very difficult to observe the same. Tester
needs to capture the data using the bus monitor
terminal during run time and analyse offline whether
the output data is updated correctly during the expected
time duration in correlation with the input data.

 If any test case fails, then for demonstrating the failure
to the designers, the whole process needs to be done
again manually. If any observation is non-repeatable,
getting the right scenario to get the observation
becomes impossible some times.

 The systems are developed as unified systems suitable
for different variants of target vehicle. For similar
functionality, the expected behaviour of the system for
the same input conditions will be different across
different modes of operation (for e.g., navigation,
approach, landing, weapon aiming, weapon releasing,
exiting from attack mode, jettisoning etc.) and for
different variants of the target vehicle (Airforce/Navy
/Fighter/Trainer). The test cases are not easily reusable.
A particular testing scenario if needs to be repeated for
a different mode, then all the set of inputs need to be
provided manually again across multiple terminals.

 Even if there are minor changes in the upgraded
software releases, regression testing for clearance of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

116 | P a g e

www.ijacsa.thesai.org

the upgraded version of the software takes same time
as taken for the initial clearance of the software.

 Though modular design methodologies are used, every
time when the software is upgraded for new
functionalities, the impact of the changes on the
existing software is very huge. The reason is the
complex nature and huge size of the order of three-to-
four million lines of source code. Performing detailed
impact analysis manually is impractical. Even the
usage of Computer Aided Software Engineering
(CASE) tools for impact analysis of this type of
software upgrades on the previously working software
has been proven to be impractical. The tool shows
hundreds of relationships across various objects of the
source code. So based on gross level impact analysis
carried out manually and with the knowledge of
previous defect history most of the testing is repeated
for previously implemented requirements. But as
explained above, the effort for re-executing the test
cases is very huge.

Because of above reasons, though the effort involved in
automation is significant, it is one time effort which will help
in reducing the regression testing time drastically for various
upgrades of MMC software. During the development and
maintenance of avionics systems which extend to about 15-20
years, there will be hundreds of software upgrades released
incrementally. Once the setup for generation and execution of
CIT for such systems is established, the same can be reused
with no or minimum changes for testing the upgraded versions
during each iteration. The test case generation and execution
activities become more of process dependent than person
dependent. In this domain where attrition of test engineers is
very high, having this type of process dependent testing
mechanism helps in a very big way for the organization.

V. AUTOMATION OF CIT FOR RBT OF MMC

In order to increase the efficiency of testing by using CIT
and to ensure 100% requirements coverage for the RBT of
MMC, the following activities are automated.

a) Generation of Expected Output for each test case by

developing reference models for the FUT

b) Generation of Test data for the CIT cases

c) Execution of Combinatorial Interaction Test Cases

for RBT of MMC

d) Generation of Test Report

Out of the above four activities that are automated, (b) &
(c) explained in section B and C are unique to MMC testing.
These methods are first time evolved and applied and are
highly beneficial in many ways as explained in section VI.
Though (a) and (d) are similar for systems belonging to
various domains, (a) is explained in section A in brief as the
same is used as the basis for (b). (d) is covered in section D
for completeness.

A. Automation of Generation of Expected Output

Development of the reference models as shown in Fig-2
for different FUTs is carried out for generating the expected
output values for every test case. The reference models are

independently developed by the testing team based on the
corresponding SRS. Generally the programming language
used for the reference model is different from the one used by
the design team in the actual SUT. The values for the input
parameters for each test case are based on the IRS between the
SUT and the interfacing subsystems for the FUT.

Fig. 2. Use of Reference Models for Generation of Expected Output.

B. Automation of Test Case Generation

Automation of generation of test data for the test cases of
CIT involves enhancement of the reference model for the
FUTs to include Constraint Checker (CC) and integration of
the same with covering array generation tool. The test cases
with the input test data and the expected output data are stored
in the CIT Suite. For CIT to be effective for avionics systems,
additional considerations are necessary for generation of
optimal CIT suite with respect to CIT of highly configurable
systems.

1) Additional steps to be taken for generation of test data

for effective CIT of avionics systems
The steps for evolving the required combinations that need

to be covered for evolving the test data for CIT of MMC
software are depicted in Fig-3. The reasons for these
additional considerations are:

For Constraints
 On

I/P Parameters

For Constraints
on O/P

parameters

For Constraints
on Intermediate

Parameters

STEP – 2

Find the test cases which
will result in reduction in
combination coverage

Add test cases to get 100%

combinational coverage

STEP – 3

Identify the output constraints
based on SRS of the FUT

Compute the expected output
using reference model for FUT

Check the output values
against constraints on the o/p

parameters

Re-define input values so that
the output is covered satisfying
the output constraints

STEP – 4

Identify intermediate parameters
and define values for them

Re-define the values of input &
intermediate parameters so as to

meet the respective constraints and
get 100% path coverage

Identify the interaction between

the input & intermediate
parameters

Generate the covering array for

combination coverage between
required input & intermediate
parameters

STEP – 1

Identify input parameters

Define values for parameters

Identify constraints

Define the strength for combination
coverage

Generate covering array using ACTS

Fig. 3. Steps to be followed for Generating Combinatorial Test Cases for

MMC.

a) Need for additional test cases to meet typical

constraints on input parameters.

Most of the input parameters to MMC are associated with
validity bits. As per the requirements whenever validity bit of
any parameter is received as INVALID, MMC uses the
previous valid value for a specified duration. Because of this
type of constraints on the input parameters, the SUT will not

 Reference Model
for the

 FUT

Expected
Output for

the test case

Input values for

each test case of

the FUT

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

117 | P a g e

www.ijacsa.thesai.org

get tested for some combinations of values of inputs. Hence
CIT is an effective test generation technique for avionics
systems only when additional test cases are added to meet the
complex nature of input constraints and to get 100%
combination coverage of required strength.

b) Need for redefinition of values of input parameters to

meet typical constraints on intermediate parameters and output

parameters.

Many of the functionalities that are implemented in the
MMC software are computation intensive. The computed
values are used either to display a symbol and/or data on the
cockpit display surfaces and/or send the data to other systems
for consumption. For a set of inputs, if the output which is the
current_location of a moving symbol on a cockpit display
surface is out of the dispay_area or Field Of View (FOV) then,
based on the requirements, EITHER the symbol shall be made
absent OR the symbol shall be displayed at the boundary in
flashing.

Because of the reasons mentioned above, the choice of
values of the input parameters should be such that the
corresponding output values do not result in the location of the
symbol being out of FOV. Only two test cases are required to
test the symbol for absence/flashing. All other test cases
should be such that resultant locations of symbol are
distributed across the entire FOV instead of cluttered at some
portions.

Similarly if the computed data is sent to other equipment,
the values of the input parameters in the test cases should be
such that the resulting output values are within valid output
range, the values are distributed across the entire range of the
output parameter and the Output_Data INVALIDITY bit is
not set for more than one test case.

Every combination in the test suite needs to be checked by
running on the corresponding simulated reference model (refer
Fig-2) to ensure whether the resultant values of the output
parameters are meeting the above output constraints. If not,
the input values need to be redefined. Thus there is an impact
of output constraints on the selection of values for various
input parameters.

Similarly, in the algorithms for various functionalities,
there will be constraints on the intermediate variables which
are dependent on input variables. Based on the values of these
intermediate variables, the program takes multiple paths. In
order to ensure that the test cases are adequate enough to
cover all the paths, it is essential that these types of constraints
on intermediate values are met. Accordingly the values of the
input parameters need to be redefined.

For effective CIT, wherever there are constraints on the
values of intermediate/output parameters, the values of
corresponding input parameters need to be redefined to meet
those constraints. However, the size of the test suite and the
combinations should not increase significantly.

c) Need for generation of covering arrays with

combination coverage for the input parameters and the

intermediate parameters.

The existing combination strategies [16] [17] are
inadequate for handling intermediate parameters for
combination coverage required for avionics software testing.
In the algorithms for different functionalities, there will be
decisions/paths based on conditions with combinations of
input and intermediate parameters. Hence generation of
covering array with combinations of input parameters alone
will not be adequate. The covering array needs to be generated
with combination coverage for the input parameters and the
intermediate parameters to get 100% condition/decision
coverage.

2) Development of facility for evolving CIT cases for RBT

of MMC
We have developed the Combinatorial Interaction Test

case Evolving Facility (CITEF). This facility is useful for
evolving optimal test cases with input values for the
parameters of the FUT such that the typical constraints on the
input/intermediate and output parameters of the FUT in MMC
are met. Fig-4 shows the Block Diagram of CITEF. It
comprises of Input Value Generator (IVG), Reference Model
(RM) of the FUT and CTCG tool for covering array
generation. The RM in turn has two components: The
Simulated Functionality Under Test (SFUT) and Constraint
Checker (CC). SFUT is developed independently by test team
members based on the corresponding requirements specified
in the SRS of MMC. CC shall have the intermediate and the
output constraints applicable for the FUT stored in it. The IVG
is GUI based application which has the provision for entering
the initial set of input values and range of data for each
parameter.

The initial set of input values are derived through category
partitioning [18] which involves selection of typical
representative values based on input domain partitioning and
boundary values as per the interface requirements. The IVG
has the provision to manually update the values of the
parameters or to automatically select random values (without
duplication) from the given range of the parameters. This
provision is given so that the size of the test suite does not
increase abnormally. Else IVG was selecting random values
from the valid range and with an increase in number of values
of any parameter, the size of the test suite increases
exponentially and the testing time will proportionally increase.

We have used ACTS Version 3.1 released in April 2018
for generating covering arrays for CIT of MMC. ACTS [19]
[20] [14] is a GUI-based CIT tool developed by National
Institute of Standards and Technology (NIST). ACTS has the
ability to generate tests with interaction strength from 2-way
to 6-way, with a user-friendly GUI and a command line
version suitable for use in scripts or system calls from another
tool.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

118 | P a g e

www.ijacsa.thesai.org

Fig. 4. Combinatorial Interaction Test Case Evolving Facility (CITEF).

Combination Test Case Generator (CTCG) developed by
us is an application to which ACTS tool is integrated. The
values supplied by the IVG are accepted by an input file
within the CTCG. These values along with the constraints on
the input parameters and the combinations coverage strength
(mixed strength wherever required) are fed to the ACTs tool.
The generated test cases are stored in an output file. For the
FUT, each of the generated combinatorial test cases shall be
run on the SFUT in order. During execution of each test case,
the run time intermediate values and the output values are sent
from the SFUT to the CC in the RM. These values are
checked by the CC against the respective constraints which
are stored in it. If they are not satisfied, then feedback from
CC is sent IVG and execution of further test cases on SFUT is
stopped. The feedback information will contain the test case
number, values of the intermediate and output parameters and
the information about constraints that are not met. The same is
displayed in the GUI of IVG. On selecting the EDIT option on
the IVG for a particular input parameter, the values of that
parameter will change randomly or a fixed value can be fed by
the user. When the new values are applied by pressing the
APPLY button, the same are sent to the CCTG Tool for
generation of updated covering array. Each of the newly
generated combinatorial test cases shall be again run on the
SFUT. This process is repeated till the optimal values are
assigned to the input parameters for every test case with
values of all the input parameters satisfying the constraints on
intermediate parameters and output parameters. The final test
suite shall be such that on running all the test cases on the
MMC, 100% path coverage and combination coverage of the
parameters shall be achieved.

The test cases with the generated test data are stored in the
Test Case Library in the CIT SUITE along with the
preconditions and the expected output value for each test case.
For each of the input and output parameters the corresponding
address details (BUS ID, SIM ID, MESSAGE ID, Word
number and Bit details) are also stored. The test data can be
automatically fed to the SUT at black box level through the
test rig as explained in the following section.

C. Automation of Execution of Test Cases

For Automation of execution of RBT of MMC, the test rig
used for manual testing (Fig-1) is augmented and further
integrated with CIT SUITE of CITEF as depicted in Fig-5.

Fig. 5. Depiction of Components of Facility for Automation of CIT for

RBT.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

119 | P a g e

www.ijacsa.thesai.org

CENTRAL
COMPUTER

CIT
SUITE

MMC
(SUT)

HYPER
TERMINAL

3

B3_SIM_1

B2_SIM_2

B2_SIM_3

B3_SIM_N

BUS
MONITOR_3

B3

.

.

.

.

HYPER
TERMINAL

1

B1_SIM_1

B1_SIM_2

B1_SIM_3

B1_SIM_N

.

.

.

.

BUS
MONITOR_1

B1

HYPER
TERMINAL

4

1553 Bus
RS422

Video
Ethernet

Discrete

COCKPIT
DISPLAY

HYPER
TERMINAL

2

B2_SIM_1

B2_SIM_2

B2_SIM_3

B2_SIM_N

BUS
MONITOR_2

B2

.

.

.

.

Fig. 6. Test Rig for Automation of CIT for RBT of MMC.

The block diagram of the Test rig for automation of
execution of CIT for RBT of MMC is depicted in Fig-6.

Each SIM has a unique identification number BX_SIMY
where X and Y are variables. X is the Bus 1/2/3 on which the
SIM is connected. Y is the SIM number on that bus. For e.g.

Sub-System_1 on Bus1: B1_SIM1

Sub-System_2 on Bus 1: B1_SIM2

The test cases for the FUT are selected from the Test Case
Library in the CIT SUITE. The Central Computer (CCOM) is
the interface between the CIT SUITE and the Test Rig. For a
chosen test case, the sources (respective SIMs) for input
parameters are identified. To each of the four hyper-terminals
connected on the different buses, the information about the
values that the SIMs need to update in specific messages on
the respective buses is sent by the CCOM. Each of the hyper-
terminals 1 to 3 in turn will send the address and data blocks
to corresponding SIMs on the respective 1553B buses. The
SIMs will put the data accordingly in their transmit buffers for
updating on the bus. Hyper- terminal 4 will update the values
on the RS422 bus and set the discrete values as required to be
fed to the SUT as per the test case. The output of the SUT is
observed on the cockpit display surfaces and /or the RX
windows of the SIMs to which the data is addressed. In the
Automated approach, all the SIMs and the SUT would be
working coherently in the same way as during manual testing
except that the input to the SUT from the SIMs are fed without
human intervention. For e.g., in order to test the SUT for
computation of MACH NUMBER DATA, the ‘total pressure’
and ‘static pressure’ values have to be provided through

B1_SIM4 (Simulated Air Data Computer) and
Aircraft_On_Gnd_In_Air information has to be provided
through B2_SIM2 (Simulated Engine System Interface Unit).
This happens automatically on selection of the relevant test
case from the CIT Suite.

Further, the computed MACH NUMBER DATA for the
inputs fed, can be seen in the RX Window of the GUI of
B2_SIM4 (Simulated Flight Control Computer) and B3_SIM5
(Simulated Fuel System Interface Unit) and on the cockpit
display surfaces.

Floating point numbers are not supported by ACTS. For
floating point type of values, the tool was not considering the
decimal portion of the given input values for usage in the
constraints defined. This limitation of the tool also had to be
handled in the test harness.

Application S/W
(SUT)

Reference model
for

FUT Expected Output

Observed Output

Outputs

Compared

Test Case
Inputs

Fig. 7. Comparison of Expected and Observed Outputs for Test Report

Generation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

120 | P a g e

www.ijacsa.thesai.org

D. Automation of Test Report Generation

The outputs from SUT captured by the bus monitors are
compared with the expected output for automated test report
generation. As shown in Fig-7, for a set of input values for a
given test case if the corresponding outputs of the application
software are same as that of the reference model, then the test
is considered as PASS.

VI. BENEFITS OF AUTOMATED APPROACH

 Tester need not switch to multiple terminals for
providing inputs manually. Multiple Inputs from
different SIMs will be provided automatically when
test case is run from the CIT Suite.

 Sequence of inputs if required to be provided within a
timeframe can be conveniently given as there is no
human delay involved. The script has to be designed
such that those input variables are placed and executed
sequentially.

 The output that appears only for a short interval can
also be easily verified as the checking of the output is
automated.

 A particular testing scenario if need to be repeated,
then it is sufficient to only re-run the test case instead
of giving all the required inputs manually again.

 Regression testing for different variants of the target
vehicle can be done at a faster pace and more
efficiently.

 This process helps in effective CIT for RBT of MMC
with typical constraints on values of inputs as well as
intermediate and output parameters.

 The process of feeding the test data to the SUT
automatically from the CIT SUITE and generation of
Test report by comparing the output of the reference
model and the actual output from the SUT reduces

 The overall testing time drastically as shown in the
Table-1.

TABLE I. COMPARISON OF EFFORT INVOLVED IN MANUAL TESTING AND

AUTOMATED TESTING

Functionality Under Test
No. of Test

cases

Time for

Manual

Execution

(Mins)

Time for

automated

Execution

(Mins)

Jettisoning of selected
stores

14 70 7

MARK & UPDATE
Functions with different

types of sensors

45 240 20

Attack Functions in
different guided modes

56 560 56

Send Specific Data 60 180 10

VII. CONCLUSIONS

As the procedure involves generation of test cases by
development of the simulated reference model for the
functionality under test based on the detailed SRS, any
ambiguity in the SRS can be reported to the authors for
correction/elaboration. This helps in detailing the software
requirement specifications without any ambiguity which is the
main goal of RBT and hence the combinatorial test cases
designed using this method will generate the most optimal test
cases. Execution of these test cases shall not only provide the
benefits of CIT but also provide benefits of RBT.

Automation is beneficial only if the components of the
automated test rig and CITEF: SIMs, CCOM, Hyper-
terminals, SFUT, CC, IVG etc. are validated for correctness.
Errors in any of these components may result in the following
which are not acceptable.

 FALSE NEGATIVE errors: Not detecting the errors

present in the SUT which is very dangerous as errors in

mission critical and safety critical avionics systems when

encountered during flight can even lead to catastrophic

consequences.

 FALSE POSITIVE errors: Though the implementation in

the SUT is correct, this is highly undesirable as it results

in waste of time in analysing and tracing the reason for

the failure to a bug in the test facility.

Floating point numbers are not supported by ACTS. For
floating point type of values, the tool was not considering the
decimal portion of the given input values for usage in the
constraints defined. This limitation of the tool also had to be
handled in the test harness.

VIII. SCOPE FOR FUTURE WORK

Floating point numbers in constraints are not supported by
covering array generation tools. There is scope for further
work in development of tools for handling floating point data
type. The automation test facility can be enhanced for
optimisation of test cases in which multiple Functionalities
can be tested together instead of sequential execution.

ACKNOWLEDGMENT

We wish to acknowledge our gratitude to the management
of Aeronautical Development Agency (ADA), Bangalore for
permitting publication of this paper.

REFERENCES

[1] Sommerville Ian. "Software engineering", Pearson Education, Inc.,
publishing as Addison-Wesley, 2009.

[2] Predrag Skokovic, Marija Rakic-Skokovic, "Requirements - based
testing process in practice", IJIEM International journal of industrial
engineering and management, 2010, Vol. 1, p. 155-161.

[3] Yu-Wen Tung, , Wafa S Aldiwan, "Automating test case generation for
the new generation mission software system" DOI
10.1109/Aero.2000.879426, 2001.

[4] Xiao Qu, Myra B Cohen, Katherine M Woolf., "Combinatorial
interaction regression testing: A study of test case generation and
prioritization", IEEE, 2007.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

121 | P a g e

www.ijacsa.thesai.org

[5] Manuj Aggarwal, and Sangeeta Sabharwal, "Prioritization techniques in
combinatorial testing : A survey", 1st India International Conference on
Infromation Processing IICIP, 2016.

[6] Myra B Cohen, Matthew B Dwyer and Jiangfan Shi, "Interaction testing
of highly configurable systems in the presence of constraints", ISSTA ,
2007.

[7] Myra B Cohen and Charles J Colbourn, "Constructing test suites for
interaction testing", IEEE 25th International conference on software
engineering ICSE 03, 2003.

[8] Redge Bartholomew, "An industry proof-of-concept demonstration of
automated combinatorial test", IEEE, 2013 p. 118 to124.

[9] Angelo Gargantini, Justyna Petke, and Marco Radavelli,
"Combinatorial interaction testing for automated constraint repair", 10th
IEEE International conference on software testing, verification and
validation workshops, 2017.

[10] Aymeric Hervieu, Benoit Baudry and Arnaud Gotlieb, "Pacogen:
Automatic Generation of pairwise test configurations from feature
models". Proceedings of international symposium on software reliability
engineering (ISSRE'11) Nov 2011, Hiroshima, Japan. 2011. <hal-
00699558>.

[11] Dusica Marijan, Arnaud Gotlieb, Sagar Sen and Aymeric Hervieu,
"Practical pairwise tesing for software product lines" SPLC 2013,
Tokyo, Japan 2013 <hal-00859438>.

[12] Prasad Bokil, Priyanka Darke and Ulka Shrotri, "Automatic test data
generation for C programs", Third IEEE international conference on
secure softwawe integration and reliability improvement. 2009

[13] Dong Li, Linghuan Hu, Ruizhi Gao, W Eric Wong, D Richard Kuhn,
and Raghu N Kacker, "Improving MC/DC and fault detection strength
using combinatorial testing", IEEE International conference on software
quality, reliability and security, 2017, p 297 to 303.

[14] Mehra N Borazjany, Linbin Yu, Yu Lei, Raghu Kacker and, Rick Kuhn,
"Combinatorial testing of ACTS : A case study", IEEE Fifth
international conference on software testing, verification and validation ,
2012, p. 591 to 600

[15] https://www.softwaretestinghelp.com. Practical software testing, June
2018.

[16] Mats Grindal, Jeff Offutt, and Sten F Andler, "Combination testing
strategies : A survey", GMU Technical report ISE-TR-04-05, July 2004.

[17] Mats Grindal, Bitgitta Lindstrom, Jeff Offut and Sten F, Andler, "An
Evaluation of combination strategies for test case selection" GMU
Technical report, 2006-10-06.

[18] Sunint Kaur Khasla and Yvan Labiche, "An extension of category
partition testing for highly constrained systems", IEEE 17th
International symposium on high assurance systems engineering, 2016
p. 47 to 54.

[19] Bestoun S Ahmed, Kamal Z Zamli, Wasif Afzal, and Miroslav Bures ,
"Constrained interaction testing: A systematic literature study", 2017,
IEEE Access, DOI 10.1109/Access 2017.2771562 Vol. 5, p. 25706 to
25730.

[20] Sunint Kaur Khalsa and Yvan Labiche,"An Orchestrated survey of
available algorithms and tools for combinatorial testing", Research Gate,
2014.

