
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

198 | P a g e

www.ijacsa.thesai.org

Comparative Study of Data Sending Methods for

XML and JSON Models

Anca-Raluca Breje
1
, Robert Győrödi

2
, Cornelia Győrödi

3
, Doina Zmaranda

4
, George Pecherle

5

Department of Computer Science and Information Technology

University of Oradea Oradea, Romania

Abstract—Data exchange between different devices and

applications has become a necessity nowadays. Data is no longer

stored locally on the device, but in the cloud. In order to

communicate with the cloud and exchange data, web services are

being used. To keep the communication consistent across

different devices and platforms, the data needs to be formatted

using a standard data format, such as JSON or XML. This paper

compares both standards and provides an in depth analysis of

their performance. In order to perform the analysis a web API

was built in the PHP framework Laravel, which was then tested

with the help of the API development environment called

Postman for different number of transferred items.

Keywords–XML; JSON; data model; data transfer; application

programming interface

I. INTRODUCTION

Mobile applications have taken a large scale lately and
they often require to be connected to a database hosted on a
server. Common approaches imply that access to these data to
be accomplished via web APIs [1], and consequently, these
web APIs must have a very good response time to ensure that
there are no delays in displaying the required data to the end-
user.

In order to have the data that reaches the applications
usable, it needs to be formatted according to a standard that
can be parsed, read and used by both the API and the
application that will access it. Two of the most popular
formatting standards for applications that use web APIs are
JSON and XML. Both JSON and XML formats have strengths
and drawbacks that qualify them for specific purposes and
each of them can be used according to the need of the system
[2]. It is well known nowadays that JSON power stays into its
simple structure that makes it suitable for simple data
transmission [3]. On the other hand, one of the main
advantages of XML is represented by its flexibility, given by
the possibility of storing (theoretically) all possible data types,
unlike JSON where storing is limited to common data types
[4]. This flexibility comes with a cost, XML format being
much more difficult to parse and to convert to objects, due to
its strict structure definition (tree-like), than the much more
simplistic JSON format [5].

Another well-known advantage of XML format is
represented by the large availability of technologies that could
be used for validating XML documents, such as XML
namespaces or XMLSchema [6]. Even if for JSON format, in

the last years, similar technologies emerged, such as JSON
Schema, their range of functions are still not comparable with
XML technologies ones [7].

Starting from these two well-known technologies, a
performance comparison between JSON and XML data
formats, from both runtime and memory usage point of view,
is presented in this paper. The paper starts by reviewing the
related work, as presented in Section II. A specific testing
architecture was specifically developed for running the tests:
the algorithm and data structure that are involved are
described in Section III. Section IV presents the API
developed for accessing the database while Section V
illustrates issues related to validation. In Section VI several
tests were run, and the obtained results were analysed from
several perspectives. Furthermore, Section VII resumes the
conclusions of the study.

II. RELATED WORK

Several comparisons based on different scenarios were
done between the two formats in [8]. Also, a comprehensive
analysis of XML and JSON for web technology is described in
[2]. In [9], the process data exchange between a mobile
application and remote servers using JSON format is
described. A performance comparison between the two
interchange formats for simple structures is described in [10].
As outlined in [11], switching between a format to another is
possible by using converters, meanwhile preserving data
content. Common conclusion that results is that generally,
JSON with its simple format behaves faster and uses fewer
resources than XML. However, with is much more complex
structure and validation techniques, XML remains actual for
applications that are manipulating various types of data.

In this idea, this paper presents a benchmark performance
comparison between JSON and XML data formats, from both
runtime and memory usage point of view, when different
types of data were involved. Thus, the performance tests
carried on in this paper explore the execution time and
memory footprint when using XML and JSON for data
sending methods for various applications. Besides other
comparative studies existing in the literature, we tried to
consider into comparison, for both formats, two additional
issues: data validation and data compression. The main goal is
to assess the performance impact on the two methods when
including data validation and also when compression on the
server is enabled.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

199 | P a g e

www.ijacsa.thesai.org

III. TEST PERFORMANCE ALGORITHM AND DATA

No matter what format is chosen, conversion of data needs
using some specific server-side language, such as PHP.
Consequently, to be able to analyse the two data sending
formats, a web API using the PHP framework Laravel was
built [12]. The developed API supports both formats for the
four basic operation that are related to data storage, namely
data request, sending and inserting data in the database,
sending and updating data in the database, deleting data.

Each of the four operations was tested through the
developed web API, which for this paper was called using an
API development environment called Postman.

These operations were then analysed based on two criteria:
data receiving speed and the size of the data received.

To test the data parsing performance of the two formats,
JSON and XML, we used the following generic algorithm

var XML / var JSON;
var TIME BEFORE = get current timestamp
validate XML/JSON;
decode XML/JSON;
var TIME AFTER = get current timestamp
display TIME AFTTER - TIME BEFORE

This performance test uses the PHP language to execute
the parsing of an array with three elements that is encoded in
XML and JSON format. The functions used for the test were
json_decode for the JSON data and simplexml_load_string for
the XML data.

Fig. 1 illustrates the structure of the database table that is
used in the application, containing sample data of some
people, and it has the following columns: id, first name, last
name, email, gender, country. In order to illustrate the impact
of using different types of data for both XML and JSON
formats, columns of several other types were included into the
table: timestamp, date, float and text.

The table data is handled using SQL queries written in
PHP using the Eloquent ORM, which is part of the Laravel
framework [12].

Fig. 1. Users Table with Different Column Types.

IV. API URLS AND HTTP REQUEST METHODS

The API built for the testing of the two models, is divided
in two big parts, the part that expects data and send back data
formatted as JSON, and the other part that expects data and
sends it back formatted as XML, the URL bases for the two
parts are the following [1]:

 http://localhost/api/json

 http://localhost/api/xml

When calling one of the API URLs, the method with
which the API is called must be also specified, the available
methods are the following [13]

 GET – for requesting data

 POST – for adding new data

 PUT – for updating existing data

 DELETE – for deleting data

Fig. 2 explains the interaction between the request of the
API and the data stored in the database.

Fig. 2. API Request Diagram.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

200 | P a g e

www.ijacsa.thesai.org

V. DATA VALIDATION

To make sure the data received by the API is correct and it
contains all the needed elements, validation schemas were
used.

For the JSON format data, we used JSON Schema which
is a vocabulary to annotate and validate JSON documents
[14]. A library that implements JSON Schema that is
compatible with Laravel is JSON Schema for PHP [15]. An
example of how the name field is defined in the JSON
schema, to be validated in the input, is the following

[
 "type"=>"array",
 "properties"=>(object)[
 "first_name"=>(object)[
 "type"=>"string"
],
 "last_name"=>(object)[
 "type"=>"string"
],
 …
]
]

For the XML format data, we used a XSD schema which
defines the elements of the correct XML document. A library
that implements XSD Schema and is compatible with Laravel
is PHP Xml validator [16]. An example of how the name field
is defined in the XML schema, to be validated in the input, is
the following

<xs:element name="record" minOccurs="0"
maxOccurs="10000">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="id" minOccurs="0"
maxOccurs="1"/>
 <xs:element ref="first_name"
minOccurs="0" maxOccurs="1"/>
 <xs:element ref="last_name" minOccurs="0"
maxOccurs="1"/>
…
 </xs:sequence>
 </xs:complexType>
</xs:element>
…
<xs:element name="first_name"
type="xs:string"/>
<xs:element name="last_name" type="xs:string"/>

VI. COMPARISON BETWEEN TRANSMISSION OF DATA FOR

XXL AND JSON MODELS

A. Data Request (GET)

For the GET method, the data is obtained by calling one of
the following URLs (the example is using the cURL function),
where the limit parameter represents how many elements we
want to get from the database with the API.

To request data in JSON format

curl -X GET
http://localhost/api/json/people?limit=1000

To request data in XML format:

curl -X GET
http://localhost/api/xml/people?limit=1000

In order to obtain the data, the called API web function
will execute a database query, which returns a number of rows
less than or equal to the value in the limit parameter.

The data returned by the SQL query is then converted
using simple_load_string() for XML and json_decode() PHP
functions to the required format and returned as a response to
the API call.

Formatting data in the XML format can consume more
memory than in JSON format. Moreover, adding attributes to
the XML tags contributes to the final data size of the XML
result text, to lowering the performance of the applications
that use it.

In contrast to the XML format, JSON is more simplistic
and easier to use in applications, with lower impact on
application performance, especially because JSON is a format
based on JavaScript objects, which most programming
languages (PHP, JS, C #, etc.), can use without the need of
including any external libraries [17].

As can be seen in Fig. 3 and Table 1, the XML format for
the same data and for the same number of items takes up more
storage space, but not more than 20% more than the JSON
format. This also affects the data response time, the impact on
this being noticeably higher, being more than three times
higher (in the case of 10,000 items).

Fig. 3. XML and JSON Graph for Response Size in KB – GET Method

without GZIP Compression.

TABLE I. XML AND JSON RESPONSE SIZE IN KB – GET METHOD –

WITHOUT GZIP COMPRESSION

Records no. JSON XML
% XML

over JSON

1000 281 KB 337 KB 119

5000 1402 KB 1689 KB 120

10000 2805 KB 3205KB 114

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

201 | P a g e

www.ijacsa.thesai.org

Fig. 4. XML and JSON Graph for Response Time in seconds GET Method

without GZIP Compression.

TABLE II. XML AND JSON RESPONSE TIME IN SECONDS GET METHOD

WITHOUT GZIP COMPRESSION

Records no. JSON XML
% XML

over JSON

1000 0.49 s 1.03 s 210

5000 0.82 s 2.95 s 359

10000 1.63 s 5.1 s 312

As presented in Fig. 4 and Table 2, for JSON format, the
call response time for 1000 items is 0.49 s, the response size is
281 KB, and for XML format, for the same number of items,
the response time is 1.03 s, the response size is 337 KB.

For the GET method, we also tried requesting the data
from a server that has the gzip compression activated to see if
any if there are benefits in having a server-side compression.

Before using the gzip compression, the deflate module
needs to be enabled (on an Apache server) and also the data
that should be compressed needs to be specified on the
.htaccess file of the project or on the virtual host
configuration.

In order to have the compression for the JSON and XML
format we are using, the following lines were added in the
.htaccess file of the project:

<IfModule mod_deflate.c>
 AddOutputFilterByType DEFLATE
 application/json application/xml
</IfModule>

To see if the gzip compression was used on the data from
the response, the header of the response can be checked
(Fig. 5), if the Content-Encoding is set to gzip, it means the
gzip compression was correctly enabled for the data type sent
from the server in the response.

As it is shown in Table 3 and Table 4, the size of the
response changed after the gzip was applied, and the response
time is better if gzip is enabled, namely for JSON the response
size is approximately 5 times smaller and the response time is
25% to 35% faster.

Fig. 5. Response Headers after the GZIP Compression is Enabled.

TABLE III. XML AND JSON RESPONSE SIZE IN KB – GET METHOD – WITH

GZIP COMPRESSION

Records no. JSON XML
% XML

over JSON

1000 52.9 KB 73.4 KB 139

5000 263.1 KB 356.8 KB 135

10000 529.3 KB 731.3KB 138

TABLE IV. XML AND JSON RESPONSE TIME IN SECONDS–GET METHOD

WITH GZIP ENABLED

Records no. JSON XML
% XML

over JSON

1000 0.32 s 0.6 s 187

5000 0.61 s 2.21 s 362

10000 1.22 s 4.14 s 339

For XML, the results are similar, the response size is
around 4.6 times smaller, the response time is 20% to 40%
better. Based on the results, if the server allows the gzip
compression, it would be recommended to use it for both
JSON and XML data request.

B. Send and Insert Data (POST)

For the POST method, sending and inserting data is done
by calling the following URL (cURL function), while putting
in the body of the call the data that is being sent and is going
to be inserted.

To send and insert data in JSON format:

curl -X POST http://localhost/api/json/people
To send and insert data in XML format:

curl -X POST http://localhost/api/xml/people

Data sent to the web API is processed using PHP functions
and inserted into the database through SQL INSERT queries,
and as a result, a success message is returned if everything
went well. Because the web API must know that it will receive
data in JSON or XML format, we will specify this fact in the
header of the call by setting the content type property as it
follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

202 | P a g e

www.ijacsa.thesai.org

 Content-type: application/json-for JSON

 Content-type: application/xml-for XML

The data that is sent to the web API, formatted as JSON
needs to have the following shape:

[{
 "first_name":"Lucille",
 "last_name":"Baddoe",
 "email":"lbaddoe0@earthlink.net",
 "gender":"Female",
 "country":"China",
 "bdate":"1989-05-12",
 "salary": 7433.55,
 "review":"Lorem ipsum...",
 },
 ...]

As for the XML, data the need to be formatted like the
example below:

<?xml version="1.0”?>
<root>
 <Collection>
 <row_0>
 <first_name>Elise</first_name>
 <last_name>McGurn</last_name>
 <email>emcgurn0@a8.net</email>
 <gender>Female</gender>
 <country>Philippines</country>
 <bdate>1989-05-12</bdate>
 <salary>7433.55</salary>
 <review>Lorem ipsum...</review>
 </row_0>
 …
 </Collection>
</root>

Fig. 6. XML and JSON Graph for Response Time in Seconds – POST

Method.

TABLE V. XML AND JSON RESPONSE TIME IN SECONDS–POST

METHOD

Records no. JSON XML
% XML over

JSON

1000 1.25 s 2.21 s 176

5000 5.09 s 8.78 s 172

10000 11.11 s 17.02 s 153

Data sent in the XML format is bigger as size that the data
send as JSON this will also affect the call response time, as
the data needs more time to get to the server. This can be seen
in Fig. 6 and Table 5 where for the same number of elements,
the time is bigger for the call that send data as XML to the
server.

The response time was bigger each try for the data sent as
XML, for 10,000 records sent to be inserted the time for JSON
was 11.11 seconds and for XML it was 17.02 seconds, this
means that the call using JSON formatted data is 1.53 times
faster for 10,000 records. Even if using XML format implies
more than 50% more response time, it should be noticed that
this percent does not increase much if number of records
increases, remaining more or less at similar levels or even
decreasing. Consequently, the (negative) impact of using
XML format is decreasing as the number of implied records
increase.

C. Send and Update Data (PUT)

For the PUT method, sending and inserting data is done by
calling the following URL (cURL function) and putting into
the body of the call the data that is being sent and is going to
be inserted.

To send and update data in JSON format

curl -X PUT http://localhost/api/json/people
To send and update data in XML format

curl -X PUT http://localhost/api/xml/people

The data that is sent to the server is updated if is found in
the database by the ID that is specified for each record, as a
response message we get a success one if all the records were
updated successfully or an error one if the operation could not
be executed.

The data that is sent to the web API, formatted as JSON
needs to have the following shape:

[
 { "id":1,
 "first_name":"Lucille",
 "last_name":"Baddoe",
 "email":"lbaddoe0@earthlink.net",
 "gender":"Female",
 "country":"China",
 "bdate":"1989-05-12",
 "salary": 7433.55,
 "review":"Lorem ipsum...",
 },
 …
]

As for the XML, data the need to be formatted like the
example below:

<?xml version="1.0"?>
<root>
 <Collection>
 <row_0>
 <id>1</id>
 <first_name>Elise</first_name>
 <last_name>McGurn</last_name>

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

203 | P a g e

www.ijacsa.thesai.org

 <email>emcgurn0@a8.net</email>
 <gender>Female</gender>
 <country>Philippines</country>
 <bdate>1989-05-12</bdate>
 <salary>7433.55</salary>
 <review>Lorem ipsum...</review>
 </row_0>
 …
 </Collection>
</root>

As can be seen from Fig. 7 and Table 6, for the PUT
method, the response time for sending data and updating it, for
both the XML format and the JSON format, has a similar
value for a small number of elements, the difference between
them appears only for a larger number of items, where the
JSON format has a better time.

Fig. 7. XML and JSON Graph for Response Time in Seconds–PUT Method.

TABLE VI. XML AND JSON RESPONSE TIME IN SECOND –PUT METHOD

Records no. JSON XML
% XML over

JSON

1000 1.9 s 2.73 s 143

5000 9.73 s 17.43 s 179

10000 18.9 s 25.44 s 134

D. Data Deletion (DELETE)

The deletion of the elements in the database is done by
calling one of the following API URLs (cURL function),
where the limit parameter represents how many elements will
be deleted from the database through the API.

To delete data in JSON format

curl -X DELETE
http://localhost/api/json/people?limit=1000

To delete data in XML format

curl -X DELETE
http://localhost/api/xml/people?limit=1000

To delete the records, the called API function will execute
a database query that deletes a number of rows less than or
equal to the value sent in the limit parameter.

Fig. 8. XML and JSON Graph for Response Time in Seconds–Delete

Method.

TABLE VII. XML AND JSON RESPONSE TIME IN SECOND–DELETE

METHOD

Records no. JSON XML
% XML over

JSON

1000 0.4 s 0.55 s 137

5000 0.49 s 0.58 s 118

10000 0.58 s 0.7 s 120

As can be seen in Fig. 8 and Table 7, for the DELETE
method, the response time, both the XML format and the
JSON format, has a similar value for all tested values for
example when deleting 1000 or 5000 elements. For the
deletion of 10000 elements, the response time is 0.58 s for
JSON and 0.7 s for XML. However, the impact of using XML
implies only around 20% more response time than for JSON.

Time response values are similar because the functions
used to encode and to decode data in JSON or XML format
are less used for this method, here the execution time of the
SQL DELETE query is having a greater importance in the
response time of the API.

VII. CONCLUSIONS

In conclusion, the case study from this paper presents a
comparison of the data transfer methods for XML and JSON
models.

The comparison of the two formats was achieved by
building a web API in the PHP framework called Laravel.
This API supports both formats for four operations that are
related to data transfer: data request (GET method), send and
insert data (POST method), send and update data (PUT
method), deleting data (DELETE method).

Each of the four operations was tested through the API,
which was called for this paper using an API development
environment called Postman.

These operations were then analysed by two criteria, the
response speed, in seconds, and the size of the data received,
in KB. The data is also validated to prevent wrong data to be
sent to the server. The tests are done with and without gzip
server compression, because not all servers have this option

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

204 | P a g e

www.ijacsa.thesai.org

enabled. The obtained results for each test were analysed and
discussed in detail; as an overall evaluation, we noticed that
for all operations, except the deletion one, the JSON format is
more effective both in terms of data size and time of web API
response time, which was in some cases 30 to 40% faster for
JSON than the XML format, being generally lower as number
of records implied is increasing. However, for some
applications that require sending heterogenous complex
structures, for which XML format offer better support, the
above percentage impact over performance must be assumed.
Consequently, when speaking about the necessity of XML
utilization, an issue that could be investigated in the future
implies the use of a converter for switching from XML to
JSON. The possibility of using such converters and their
impact on performance issues represent a future development
that will be further investigated.

REFERENCES

[1] B. Matthias, “Restful Api Design”, CreateSpace Independent Publishing
Platform, ISBN-10: 1514735164, ISBN-13: 978-1514735169, 2016

[2] Z.U. Haq, G.F. Khan and T. Hussain, “A Comprehensive analysis of
XML and JSON web technologies”, New Developments in Circuits,
Systems, Signal Processing, Communications and Computers, pp. 102-
109, 2013

[3] H. S. Padda1 and G. K. Gupta, “Analysing Impact of Delimiters on the
Size of JSON Data Interchange Format”, International Research Journal
of Engineering and Technology, Vol. 2, No. 8, -ISSN: 2395-0056,
www.irjet.net, 2015

[4] A. Simec and M. Maglicic, “Comparison of JSONamd XML Data
Formats”, Central European Conference on Information and Intelligent
Systems; Varazdin, Croatia, pp. 272-275, 2014

[5] D. Peng, L.Cao, and W Xu, “Using JSON for Data Exchanging in Web
Service Applications”, Journal of Computational Information Systems 7:
16, ISSN 5883-5890, 2011

[6] P. Bourhis, J. L. Reutter, F. Suárez and D.Vrgoč , “JSON: Data model,
Query languages and Schema specification”, Proceedings of the 36th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pp. 123-135, 2017

[7] M. Šabanović, M. Saračević and E. Azizović, “Comparative analysis of
AMF, JSON and XML technologies for data transfer between the server
and the client”, Periodicals Of Engineering and Natural Sciences, Vol. 4,
No.2, 2016

[8] S. Zunke and V. D’Souza, “JSON vs XML: A Comparative
Performance Anaysis of Data Exchange Formats”, IJCSN International
Journal of Computer Science and Network, Volume 3, Issue 4, ISSN
2277-5420, www.IJCSN.org, 2014

[9] K. Ishwarjit, K. Sharanpreet and K. Gurinder, “Accessing Remote
Database in IOS Application using JSON Parsing with Objective-C”,
International Journal of Advanced Technology in Engineering and
Science, Vol. no. 5, No. 1, www.ijates.com, 2017

[10] N. Nurseitov, M. Paulson, R. Reynolds and C. Izurieta, “Comparison of
JSON and XML Data Interchange Formats”: A Case Study, ISCA 22nd
International Conference on Computers and Their Applications in
Industry and Engineering, pp. 157-162, 2009

[11] B. Šandrih, D. Tošić and V. Filipović, “Towards Efficient and Unified
XML/JSON Conversion - A New Conversion”, IPSI BgD Transactions
on Internet Research (TIR) vol. 13, no. 1, ISSN 1820-4503, 2017

[12] W. Natham, “Learning Laravel 5 - Building Practical Applications”, 5th
edition, 2017

[13] G. David, T. Brian, S. Marjorie, A. Anshu and R. Sailu, “HTTP: The
Definitive Guide”, O'Reilly Media, ISBN-13: 978-1565925090, ISBN-
10: 9781565925090, 2002

[14] JSON Schema - http://json-schema.org/

[15] https://github.com/justinrainbow/json-schema

[16] https://packagist.org/packages/seromenho/xml-validator

[17] M. Tom, “JSON at Work”, O'Reilly Media, ISBN-13: 978-1449358327,
ISBN-10: 1449358322, 2017

