
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

373 | P a g e

www.ijacsa.thesai.org

Integration of REST-Based Web Service and Browser

Extension for Instagram Spam Detection

Antonius Rachmat Chrismanto
1
, Willy Sudiarto Raharjo

2
, Yuan Lukito

3

Program Studi Informatika, Fakultas Teknologi Informasi

Universitas Kristen Duta Wacana

Yogyakarta, Indonesia

Abstract—In this paper, a REST-based Web Service

developed in previous work was integrated with a newly

developed browser extension that works in modern browser

(Firefox and Google Chrome) using Greasemonkey. It uses

previous collected datasets which comprised of 17.000 postings

and comments from 10 Indonesian actresses whom followers are

more than 10 million on Instagram. The performance of the

developed web services has been evaluated and the average

response time is 1678.133ms using AWS platform located in Ohio

(US East 2). The proposed work is working as expected and in

accuracy test, it has reached 63.125% in overall, 72% for non-

stemmed data and 70% for stemmed data using 1000 test data

with a processing time needed for classification is under 2s. The

new extension works in Firefox and Chrome and it can utilize the

web services to classify spam comments in Instagram.

Keywords—Instagram; spam comments; REST service; web

service testing; browser extension

I. INTRODUCTION

Social media is no longer just a mean for sharing
information along relatives and colleagues, but it has
transformed into a bigger scope and touching every aspect of
human life. Social media is already used in many situations,
like emergency situation [1], traveling [2], and health [3].
However, it comes with a price. According to [4], [5], and [6]
there are a lot of spam comments in media social, such as
YouTube, Facebook, Twitter, and Instagram. These spammers
may cause some information misleading, mixed information,
wasting valuable network resources, and decreasing the quality
of online social networking sites [7], [8], and [9].

Nowadays, most people are using Instagram because of its
characteristic of being an image-based social media. A picture
speaks for thousand words by nature. According to [10],
Instagram has reached 1 billion monthly users in June 2018, a
significant raise from 800 million in September 2017. It shows
that Instagram is gaining a huge popularity among many
people, including Indonesian actress who proactively engaged
with their fans to help them gain more popularity and brings
more business opportunities for them.

Instagram is gradually introducing new features as posted
in their press web sites (https://instagram-press.com/), but
rarely seen a posting about spam detection. One of the reasons
is that because spam may come in many ways and sometimes
it’s context-based, so it’s hard to find a good balance for
creating an algorithm that can detect spam comments
nowadays, especially in Indonesian language. There is no

implemented solution for automated Indonesian language spam
detection in Instagram yet. Many previous work [11], [6], [12]
used Instagram data for spam detection, but so far, there are no
real implemented solution for spam detection. The research
done so far was more focused on testing the accuracy of each
model. Especially on Indonesian-based language, which
according to [13] is still considered as one of the resource-poor
languages.

In this paper, an implemented solution for automated
Indonesian language spam detection is proposed by building an
integration between a REST-based web service and a browser
extension that can be used to detect Instagram spam comments
in Indonesian language. This research contributes in enriching
Indonesian language related researches and creates a ready to
use Instagram spam detector. Browser extension is the option
we chose since it allows us to interact with the content on
Instagram without breaking same-origin policy [14].

II. RELATED WORK

Hardinata and Tirtawangsa [11] developed spam detector in
Indonesian Twitter trending topics. The spam detector works
by detecting spam that utilized trending topics hashtags. The
spam detection process involved human input that collected
using monster game interface. Zhang and Sun [15] has
published their work on a model to decrease number of spam
posts in Instagram, but only applicable for English language.
Ali and Okiriza [12] published their work on detecting spam
comments on Indonesia’s Instagram post using three different
algorithms: Naïve Bayes, SVM, and XGBoost. They concluded
that SVM and XGBoost got the best scores of 0.9601 and
0.9512. In all the researches, not a single of them proposed a
real implemented and practical solution since they all are
focusing on the accuracy of the models being tested.

This work was started in 2017 by building Indonesian spam
comments detector using Naïve Bayes [16] and collected more
than 25.000 postings and comments from Indonesian actress
with more than 10 million followers. After data cleansing
process, the final data used are 17.000 postings. From this
datasets, some experiments were conducted using different
algorithms and it was concluded that K-Nearest Neighbors (k-
NN) gave the best results with 88.4% of accuracy [17],
followed by Support Vector Machine with 78.5% [18], and
Naïve Bayes with 75.5% [16].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

374 | P a g e

www.ijacsa.thesai.org

Fig. 1. Web Service Architecture.

Next, a REST-based web service to detect Indonesian
language Instagram spam comments using k-NN algorithm
design was designed and deployed on top of AWS platform
and evaluate the performance based on response time. [19].

III. METHODOLOGY

A. Architecture

This work is using the same AWS architecture that was
developed in previous work [19] for the web service
architecture, which was deployed on US-East 2 region (Ohio).
The system is using Tomcat as the main web server and all
datasets are stored in the S3 bucket for durability and
performance reason. The architecture is illustrated in Fig. 1.

The web service does not deploy SSL certificate for this
machine as there are no confidential data that are
communicated, and the system never stored any data
transmitted to the server during spam detection process. The
dataset is stored in the S3 bucket which is only accessible via
the web server and not directly accessible for public.

All the communication between client (browser) and the
server will be done using REST [20] which has some
advantages over SOAP such as better throughput and response
time, as demonstrated on [21] and [22].

B. Algorithm

In this work, k-NN algorithm is used based on previous
work [17] that gives best results compared to other algorithms
(Support Vector Machine [18] and Naïve Bayes [16]). K-NN is
learning directly while performing classification process by
finding some adjacent data object or patterns based on the
input and choose a class with the highest number of patterns
[19]. K-NN can be implemented as follows (Fig. 2):

1) Load the data

2) Initialize the value of k

Fig. 2. k-NN Algorithm

3) For getting the predicted class, iterate from 1 to total

number of training data points:

a) Calculate the distance between test data and each row

of training data. Here we will use Euclidean distance as our

distance metric since it’s the most popular method. The other

metrics that can be used are Chebyshev, cosine, etc.

b) Sort the calculated distances in ascending order based

on distance values

c) Get top k rows from the sorted array

d) Get the most frequent class of these rows

e) Return the predicted class

C. Browser Extension

The browser extension is developed using Greasemonkey
and works as follows:

 Script will check visited page. If it is coming from
Instagram, it will add a new entry in the browser’s
context menu (accessed via right click)

 When user highlighted some text in Instagram posting,
the extension will read the highlighted text and send it
to the web service in AWS

 Web service will process the request and reply the
results back to the browser

 Browser extension will display the results to user in
form of a dialog box.

D. Evaluation

Several tests were conducted to evaluate some metrics. The
first test was performed using SOAPUI tool which is used to
perform load testing, method testing, simple load testing, burst
load testing, thread load testing, variance load testing, and data-
driven testing. It used 160 data for data-driven test.

The second test was testing the web service accuracy by
using PHP scripts to automate the test. The test used 1000
random data taken from dataset using shuffled sampling. The
dataset was generated using 10 smaller dataset which consisted
of 100 data to reduce the slow processing time. Afterwards, it’s
merged with the rest. Next, the dataset is tested against 8 test
datasets which have been stored in the web service already.
The parameters used for the k-NN validation shown in Table 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

375 | P a g e

www.ijacsa.thesai.org

TABLE I. TESTING PARAMETERS

Parameters Values

Number of data 1000

Output criteria Accuracy

Sampling type Shuffled Sampling

Dataset type 8 types

Dataset Criteria
Unbalanced non-stemmed, unbalanced-stemmed,

balanced non-stemmed, and balanced stemmed

The 8 datasets that were used are as follow:

 Generated using PHP

o Unbalanced non-stemmed data
o Unbalanced stemmed data
o Balanced non-stemmed data
o Balanced stemmed data

 Generated using R

o Unbalanced non-stemmed data
o Unbalanced stemmed data
o Balanced non-stemmed data
o Balanced stemmed data

IV. RESULTS AND DISCUSSIONS

A. Web Service Accuracy

The results of the web service accuracy after tested against
8 datasets can be seen on the Table II through Table IX.

TABLE II. DATASET 1: UNBALANCED-NON STEMED DATA GENERATED USING PHP

TEST DATA
STEM

%
NON-STEM

%
T F T F

1-100 71 29 71% 73 27 73%

101-200 68 32 68% 68 32 68%

201-300 83 17 83% 83 17 83%

301-400 85 15 85% 85 15 85%

401-500 74 26 74% 73 27 73%

501-600 72 28 72% 72 28 72%

601-700 61 39 61% 61 39 61%

701-800 87 13 87% 87 13 87%

801-900 75 25 75% 75 25 75%

901-1000 58 42 58% 57 43 57%

 73% 73%

TABLE III. DATASET 2: UNBALANCED STEMMED DATA GENERATED USING PHP

TEST DATA
STEM

%
NON-STEM

%
T F T F

1-100 66 34 66% 67 33 67%

101-200 53 47 53% 54 46 54%

201-300 49 51 49% 48 52 48%

301-400 44 56 44% 46 54 46%

401-500 43 57 43% 43 57 43%

501-600 58 42 58% 54 46 54%

601-700 44 56 44% 38 62 38%

701-800 55 45 55% 55 45 55%

801-900 45 55 45% 45 55 45%

901-1000 53 47 53% 55 45 55%

 51% 51%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

376 | P a g e

www.ijacsa.thesai.org

TABLE IV. DATASET 3: BALANCED NON-STEMMED DATA GENERATED USING PHP

TEST DATA
STEM

%
NON-STEM

%
T F T F

1-100 71 29 71% 73 27 73%

101-200 68 32 68% 66 34 66%

201-300 76 24 76% 75 25 75%

301-400 82 18 82% 83 17 83%

401-500 69 31 69% 69 31 69%

501-600 71 29 71% 72 28 72%

601-700 60 40 60% 60 40 60%

701-800 88 12 88% 88 12 88%

801-900 88 12 88% 88 12 88%

901-1000 65 35 65% 62 38 62%

 74% 74%

TABLE V. DATASET 4: BALANCED STEMMED DATA GENERATED USING PHP

TEST DATA
STEM

%
NON-STEM

%
T F T F

1-100 69 31 69% 69 31 69%

101-200 55 45 55% 53 47 53%

201-300 51 49 51% 47 53 43%

301-400 48 52 48% 43 57 43%

401-500 50 50 50% 40 60 40%

501-600 48 52 48% 45 55 45%

601-700 62 38 62% 58 42 58%

701-800 53 47 53% 47 53 47%

801-900 48 52 48% 45 55 45%

901-1000 55 45 55% 51 49 51%

 54% 49%

TABLE VI. DATASET 5: UNBALANCED NON-STEMMED DATA GENERATED USING R

TEST DATA
STEM

%
NON-STEM

%
T F T F

1-100 86 14 86% 86 14 86%

101-200 78 22 78% 77 23 78%

201-300 81 19 81% 84 16 84%

301-400 89 11 89% 86 14 86%

401-500 83 17 83% 83 17 83%

501-600 81 19 81% 77 23 77%

601-700 79 21 79% 79 21 79%

701-800 83 17 83% 85 15 85%

801-900 84 16 84% 84 16 84%

901-1000 75 25 75% 74 26 74%

 82% 82%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

377 | P a g e

www.ijacsa.thesai.org

TABLE VII. DATASET 6: UNBALANCED STEMMED DATA GENERATED USING R

TEST DATA
STEM

%
NON-STEM

%
T F T F

1-100 86 14 86% 86 14 86%

101-200 78 22 78% 77 23 77%

201-300 81 19 81% 84 16 84%

301-400 89 11 89% 86 14 86%

401-500 83 17 83% 83 17 83%

501-600 81 19 81% 77 23 77%

601-700 79 21 79% 79 21 79%

701-800 83 17 83% 85 15 85%

801-900 84 16 84% 84 16 84%

901-1000 75 25 75% 74 26 74%

 82% 82%

TABLE VIII. DATASET 7: BALANCED NON STEMMED DATA GENERATED USING R

TEST DATA
STEM

%
NON-STEM

%
T F T F

1-100 83 17 83% 86 14 86%

101-200 77 23 77% 77 23 77%

201-300 82 18 82% 79 21 79%

301-400 87 13 87% 82 18 82%

401-500 82 18 82% 77 23 77%

501-600 77 23 77% 71 29 71%

601-700 77 23 77% 76 24 76%

701-800 83 17 83% 80 20 80%

801-900 83 17 83% 78 22 78%

901-1000 69 31 69% 66 34 66%

 80% 77%

TABLE IX. DATASET 8: BALANCED STEMMED DATA GENERATED USING R

TEST DATA
STEM

%
NON-STEM

%
T F T F

1-100 84 16 84% 82 18 82%

101-200 80 20 80% 73 27 73%

201-300 84 16 84% 79 21 79%

301-400 84 16 84% 81 19 81%

401-500 80 20 80% 75 25 75%

501-600 83 17 83% 71 29 71%

601-700 86 14 86% 80 20 80%

701-800 83 17 83% 73 27 73%

801-900 83 17 83% 74 26 74%

901-1000 75 25 75% 65 35 65%

 82% 75%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

378 | P a g e

www.ijacsa.thesai.org

B. Web Service Comprehensive Testing

a) Method Testing

This test is used to ensure the output of all the web service
are according to what we expected in terms of formatting and
the content itself. This is the simplest test but also crucial to be
performed so that the system gives the same output as what it
is expected to do. The result of the method testing can be seen
on Table X. All the methods we developed have produced
expected results.

TABLE X. METHOD TESTING RESULTS

No Method
Expected

Results

Actual

Results
Remarks

1 Version (GET)
JSON 200

OK

JSON 200

OK
Match

2 No (GET)
JSON 200

OK

JSON 200

OK
Match

3 Dataset (GET)
Text Plain

200 OK

Text Plain

200 OK
Match

4 File (GET)
JSON 200

OK

JSON 200

OK
Match

5 Classify (POST)
JSON 200

OK

JSON 200

OK
Match

b) Load Testing

This test is used to see how the system behaves under high
load. The instance used in this work is t2 micro which only
have 1 vCPU and 1 GB of RAM. In the first test, we used the
Version method to represents GET method, with the following
parameters:

 Number of threads: 10

 Intervals: 10 s

 Variance: 0.5

 Time limit: 1 s

 Burst delay: 60 s

 Burst duration: 10 s

In load testing, there are 4 sub tests: simple, burst, thread,
and variance. The result of the load testing are shown in Fig. 3,
Fig. 4, Fig. 5, and Fig. 6.

Fig. 3. Simple Load Testing Result.

Fig. 4. Burst Load Testing Result.

In simple load test, it has minimal request of 252 ms,
maximum request is 3280 ms, and average request is 521,58
ms.

Fig. 5. Thread Load Testing Result.

Fig. 6. Variance Load Testing Result.

In burst load test, it has minimal request of 582 ms,
maximum request is 582 ms, and average 582 ms.

In thread load test, it has minimal request 253 ms,
maximum request is 3277 ms, and average is 503,58 ms. There
are 11 requests that has more than 1000 ms (more than time
limit of the system). The average request time is around 3
seconds.

In variance load test, it has minimal request of 251 ms,
maximum request is 671 ms, and average is 494,93 ms. There
are 9 requests that has more than 1000 ms (more than time
limit of the system). The average request time is around 3
seconds.

The second test is the Classify method to represents POST
method, with the following parameters:

 Number of threads: 5

 Intervals: 60ms

 Variance: 0.5

 Limit: 120-180s

 Burst delay: 10s

 Burst duration: 10s

The result of the load testing is shown in Fig. 7, Fig. 8, Fig.
9, and Fig. 10.

In simple load test, it has minimal request about 0.5-6s,
maximum request is 0.5-8ms, and average 0.5-6ms. In thread
load test are, it has minimal request about 0.2-4s, maximum
request is 0.2-3 ms, and average 0-0.7 ms. The system cannot
continue all of the test data as it only finish 19 of 160 test data
in 120s. In thread load test, it has minimal request about 0.4-
11s, maximum request is 0.4-12ms, and average 0.4-12ms.
The system cannot continue to load all the test data as it only
finishes 87 of 160 test data in 120s. In variance load test, it has
minimal request about 0.4-11s, maximum request is 0.4-12ms,
and average 0.4-12ms. The system cannot continue all the test
data as it only finished 87 of 160 test data in 120s.

The load testing results are summarized in Table XI and
Table XII. The description for the Table are: I is minimum
load time, X is maximum load time, and A is Average load
time.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

379 | P a g e

www.ijacsa.thesai.org

Fig. 7. Simple Load Testing on Classify Method.

Fig. 8. Burst Load Testing of Classify Method.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

380 | P a g e

www.ijacsa.thesai.org

Fig. 9. Thread Load Testing of Classify Method.

Fig. 10. Variance Load Testing of Classify Method.

TABLE XI. SUMMARY OF SIMPLE AND BURST TESTING

Methods

Average (in milliseconds)

Simple Burst

I X A I X A

GET Version 252 3280 521 582 582 582

POST

Classify
1255 7403 3355 404 1425 386

TABLE XII. SUMMARY OF THREAD AND VARIANCE TESTING

Methods

Average (in milliseconds)

Thread Variance

I X A I X A

GET Version 253 3277 503 251 671 494

POST

Classify
913 1547 1319 484 1558 304

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

381 | P a g e

www.ijacsa.thesai.org

Version method is considerably faster than Classify method
because it only returns static text, while Classify method is
more slower because it does spam detection process. This
characteristics is also shown in the simple and burst testing and
thread and variance testing results. The Classify method
performance is also affected by the length of the input and the
size of the datasets used for spam detection process.

c) Data Driven Testing

Data driven test is using test data that has been stored in
some external storage and use it iteratively. 8 datasets were
used in which each dataset consists of 20 test data and divided
into 2 more categories: 10 data categorized as SPAM and 10
data categorized as NON-SPAM so in total, it has 160 tests.
The metrics measured were response time and accuracy. The
results can be seen in Table XIII.

The result of this accuracy on data driven test with
SOAPUI are: the accuracy is 63.125 % and average response
time is about 2 seconds.

C. Browser Extension Development

The browser extension was developed extensively for
Mozilla Firefox since it was using Greasemonkey plugin
although it is also working in Google Chrome.

The extension is dynamically detecting the URL loaded in
the address bar. If it is coming from Instagram’s URL, it will

add a new entry in the context menu (right click menu) as the
user highlight some comment as shown in Fig. 11. When user
clicked the entry, it will send the text to the Classify method in
our web services and it will return the results (‘spam’ or ‘not
spam’) in clear text and show it to user Fig. 12. In Google
Chrome, the results are displayed as inFig. 13.

The browser extension developed is working as expected
and able to do the spam detection process utilizing REST-
based web service that were deployed in earlier work. The
extension’s user interface still need some improvements to
make it easier to use for common user.

Fig. 11. New Entry in Firefox's Context Menu.

TABLE XIII. DATA DRIVEN TESTING RESULT

STEP TEST ID RESULT CATEGORY TIME

Step 1 [Classify-SPAM-1-1] OK SPAM 1162 ms

Step 2 [Classify-SPAM-1-2] OK SPAM 521 ms

Step 3 [Classify-SPAM-1-3] OK SPAM 1638 ms

Step 4 [Classify-SPAM-1-4] FAILED NONSPAM 1543 ms

Step 5 [Classify-SPAM-1-5] OK SPAM 2208 ms

Step 6 [Classify-SPAM-1-6] OK SPAM 2271 ms

Step 7 [Classify-SPAM-1-7] OK SPAM 1554 ms

Step 8 [Classify-SPAM-1-8] OK SPAM 1921 ms

Step 9 [Classify-SPAM-2-1] OK SPAM 2468 ms

Step 10 [Classify-SPAM-2-2] FAILED NONSPAM 1125 ms

...

...

Step 150 [Classify-NOSPAM-9-6] FAILED SPAM 2211 ms

Step 151 [Classify-NOSPAM-9-7] FAILED SPAM 1512 ms

Step 152 [Classify-NOSPAM-9-8] FAILED SPAM 1883 ms

Step 153 [Classify-NOSPAM-10-1] FAILED SPAM 1964 ms

Step 154 [Classify-NOSPAM-10-2] OK NONSPAM 1123 ms

Step 155 [Classify-NOSPAM-10-3] OK NONSPAM 4039 ms

Step 156 [Classify-NOSPAM-10-4] OK NONSPAM 1660 ms

Step 157 [Classify-NOSPAM-10-5] OK NONSPAM 1988 ms

Step 158 [Classify-NOSPAM-10-6] FAILED SPAM 3511 ms

Step 159 [Classify-NOSPAM-10-7] FAILED SPAM 1863 ms

Step 160 [Classify-NOSPAM-10-8] FAILED SPAM 1797 ms

AVERAGE ACCURACY / TIME 63.125% 1991,244 ms

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

382 | P a g e

www.ijacsa.thesai.org

Fig. 12. Result of Classify Method in Mozilla Firefox.

Fig. 13. Result of Classify Method in Google Chrome.

V. CONCLUSIONS

In this paper, a browser extension for Firefox & Chrome
has been successfully developed and integrated into a REST-
based web service [19] deployed on top of AWS Platform.
Accuracy of the web service were measured using three
datasets (whole datasets, 1000 stemmed dataset and 1000 non-
stemmed dataset) and achieved accuracy level of 63.125% for
whole datasets, 72% for non-stemmed dataset, and 70% for
stemmed dataset. The average response time is under 2s,
minimum load time test is between 0.2 – 1.2s, and, maximum
load time test is between 3 – 7s. Although the browser
extension is working as expected, the user interface and data
accuracy still have room for improvements.

ACKNOWLEDGMENT

This research is partially funded by UKDW Research and
Community Service (LPPM) unit under grant no.
072/D.01/LPPM/2018 and Faculty of Information Technology.

REFERENCES

[1] L. Vries, S. Gensler and P. S. Leeflang, "Popularity of Brand Posts on
Brand Fan Pages: An Investigation of the Effects of Social Media
Marketing," Journal of Interactive Marketing, vol. 26, no. 2, pp. 83-91,
2012.

[2] Z. Xiang and U. Gretzel, "Role of social media in online travel
information search," Tourism Management, vol. 31, no. 2, pp. 179-188,
2010.

[3] W.-y. S. Chou, Y. M. Hunt, E. B. Beckjord, R. P. Moser and B. W.
Hesse, "Social Media Use in the United States: Implications for Health
Communication," Journal of Medical Internet Research, vol. 11, no. 4,
2009.

[4] M. Chakraborty, S. Pal, R. Pramanik and C. R. Chowdary, "Recent
developments in social spam detection and combating techniques: A
survey," Information Processing & Management, vol. 52, no. 6, pp. 1053-
1073, 2016.

[5] M. Salehi, S. Shehnepoor, R. Farahbakhsh and N. Crespi, "NetSpam: A
Network-Based Spam Detection Framework for Reviews in Online
Social Media.," in IEEE Transactions on Information Forensics and
Security, 2017.

[6] W. Zhang and H. M. Sun, "Instagram spam detection," in 22nd IEEE
Pacific Rim International Symposium on Dependable Computing,
Christchurch, New Zealand, 2017.

[7] A. R. Chrismanto and Y. Lukito, "Klasifikasi Komentar Spam Pada
Instagram Berbahasa Indonesia," in Seminar Nasional Teknologi
Informasi Kesehatan (SNATIK), Yogyakarta, 2017.

[8] F. Fathaliani and M. Bouguessa, "A Model-Based Approach for
Identifying spammers in social networks," in IEEE International
Conference on Data Science and Advanced Analytics (DSAA), Paris,
France, 2015.

[9] N. Agarwal and Y. Yiliyasi, "Information quality challenges in social
media," in The 15th International Conference on Information Quality,
Little Rock, Arkansas, USA, 2010.

[10] J. Constine, "TechCrunch," 20 June 2018. [Online]. Available:
https://techcrunch.com/2018/06/20/instagram-1-billion-users/. [Accessed
1 November 2018].

[11] R. Hardinata and J. Tirtawangsa, "A game with purpose to filter spams
from Indonesian Twitter trending topics," in 2016 4th International
Conference on Information and Communication Technology (ICoICT),
Bandung, Indonesia, 2016.

[12] A. A. Septiandri and O. Wibisono, "Detecting spam comments on
Indonesia's Instagram posts," Journal of Physics: Conference Series, vol.
801, no. 1, 2017.

[13] A. Barth, "The Web Origin Concept," Infosec Institute, December 2001.
[Online]. Available: https://tools.ietf.org/html/rfc6454. [Accessed 1
November 2018].

[14] W. S. Raharjo and A. Ashari, "IMPLEMENTASI ANNOTEA CLIENT
BERBASIS WEB UNTUK MENGATASI ATURAN SAME ORIGIN
POLICY," in KNASTIK, Yogyakarta, Indonesia, 2009.

[15] Z. Wuxain and S. Hung-Min, "Instagram Spam Detection," in IEEE 22nd
Pacific Rim International Symposium on Dependable Computing
(PRDC), Christchurch, New Zealand, 2017.

[16] A. Rachmat and Y. Lukito, "Deteksi Komentar Spam Bahasa Indonesia
Pada Instagram Menggunakan Naive Bayes," Ultimatics, vol. 9, no. 1,
2017.

[17] A. R. Chrismanto and Y. Lukito, "KLASIFIKASI KOMENTAR SPAM
PADA INSTAGRAM BERBAHASA INDONESIA MENGGUNAKAN
K-NN," in Seminar Nasional Teknologi Informasi Kesehatan (SNATIK)
2017, Yogyakarta, 2017.

[18] A. R. Chrismanto and Y. Lukito, "Identifikasi Komentar Spam Pada
Instagram," Lontar Komputer, vol. 8, no. 3, pp. 219-231, 2017.

[19] A. R. Chrismanto, W. S. Raharjo and Y. Lukito, "Design and
Development of REST-based Instagram Spam Detector for Indonesian
Language," in 3rd International Seminar on Application for Technology
of Information and Communication (iSemantic), Semarang, Indonesia,
2018.

[20] R. Fielding, Architectural Styles and the Design of Network-based
Software, California: University of California, 2000.

[21] S. Malik and D.-H. Kim, "A comparison of RESTful vs. SOAP web
services in actuator networks," in 2017 Ninth International Conference on
Ubiquitous and Future Networks (ICUFN), Milan, Italy, 2017.

[22] S. Kumari and S. K. Rath, "Performance comparison of SOAP and REST
based Web Services for Enterprise Application Integration," in 2015
International Conference on Advances in Computing, Communications
and Informatics (ICACCI), Kochi, India, 2015.

