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Abstract—In this paper, a REST-based Web Service 

developed in previous work was integrated with a newly 

developed browser extension that works in modern browser 

(Firefox and Google Chrome) using Greasemonkey. It uses 

previous collected datasets which comprised of 17.000 postings 

and comments from 10 Indonesian actresses whom followers are 

more than 10 million on Instagram. The performance of the 

developed web services has been evaluated and the average 

response time is 1678.133ms using AWS platform located in Ohio 

(US East 2). The proposed work is working as expected and in 

accuracy test, it has reached 63.125% in overall, 72% for non-

stemmed data and 70% for stemmed data using 1000 test data 

with a processing time needed for classification is under 2s. The 

new extension works in Firefox and Chrome and it can utilize the 

web services to classify spam comments in Instagram. 
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I. INTRODUCTION 

Social media is no longer just a mean for sharing 
information along relatives and colleagues, but it has 
transformed into a bigger scope and touching every aspect of 
human life. Social media is already used in many situations, 
like emergency situation [1], traveling [2], and health [3]. 
However, it comes with a price. According to [4], [5], and [6] 
there are a lot of spam comments in media social, such as 
YouTube, Facebook, Twitter, and Instagram. These spammers 
may cause some information misleading, mixed information, 
wasting valuable network resources, and decreasing the quality 
of online social networking sites [7], [8], and [9]. 

Nowadays, most people are using Instagram because of its 
characteristic of being an image-based social media. A picture 
speaks for thousand words by nature. According to [10], 
Instagram has reached 1 billion monthly users in June 2018, a 
significant raise from 800 million in September 2017. It shows 
that Instagram is gaining a huge popularity among many 
people, including Indonesian actress who proactively engaged 
with their fans to help them gain more popularity and brings 
more business opportunities for them. 

Instagram is gradually introducing new features as posted 
in their press web sites (https://instagram-press.com/), but 
rarely seen a posting about spam detection. One of the reasons 
is that because spam may come in many ways and sometimes 
it’s context-based, so it’s hard to find a good balance for 
creating an algorithm that can detect spam comments 
nowadays, especially in Indonesian language.  There is no 

implemented solution for automated Indonesian language spam 
detection in Instagram yet. Many previous work [11], [6], [12] 
used Instagram data for spam detection, but so far, there are no 
real implemented solution for spam detection. The research 
done so far was more focused on testing the accuracy of each 
model. Especially on Indonesian-based language, which 
according to [13] is still considered as one of the resource-poor 
languages. 

In this paper, an implemented solution for automated 
Indonesian language spam detection is proposed by building an 
integration between a REST-based web service and a browser 
extension that can be used to detect Instagram spam comments 
in Indonesian language. This research contributes in enriching 
Indonesian language related researches and creates a ready to 
use Instagram spam detector. Browser extension is the option 
we chose since it allows us to interact with the content on 
Instagram without breaking same-origin policy [14]. 

II. RELATED WORK 

Hardinata and Tirtawangsa [11] developed spam detector in 
Indonesian Twitter trending topics. The spam detector works 
by detecting spam that utilized trending topics hashtags.  The 
spam detection process involved human input that collected 
using monster game interface.  Zhang and Sun [15] has 
published their work on a model to decrease number of spam 
posts in Instagram, but only applicable for English language. 
Ali and Okiriza [12] published their work on detecting spam 
comments on Indonesia’s Instagram post using three different 
algorithms: Naïve Bayes, SVM, and XGBoost. They concluded 
that SVM and XGBoost got the best scores of 0.9601 and 
0.9512. In all the researches, not a single of them proposed a 
real implemented and practical solution since they all are 
focusing on the accuracy of the models being tested. 

This work was started in 2017 by building Indonesian spam 
comments detector using Naïve Bayes [16] and collected more 
than 25.000 postings and comments from Indonesian actress 
with more than 10 million followers. After data cleansing 
process, the final data used are 17.000 postings. From this 
datasets, some experiments were conducted using different 
algorithms and it was concluded that K-Nearest Neighbors (k-
NN) gave the best results with 88.4% of accuracy [17], 
followed by Support Vector Machine with 78.5% [18], and 
Naïve Bayes with 75.5% [16].  
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Fig. 1. Web Service Architecture. 

Next, a REST-based web service to detect Indonesian 
language Instagram spam comments using k-NN algorithm 
design was designed and deployed on top of AWS platform 
and evaluate the performance based on response time. [19]. 

III. METHODOLOGY 

A. Architecture 

This work is using the same AWS architecture that was 
developed in previous work [19] for the web service 
architecture, which was deployed on US-East 2 region (Ohio). 
The system is using Tomcat as the main web server and all 
datasets are stored in the S3 bucket for durability and 
performance reason. The architecture is illustrated in Fig. 1.  

The web service does not deploy SSL certificate for this 
machine as there are no confidential data that are 
communicated, and the system never stored any data 
transmitted to the server during spam detection process. The 
dataset is stored in the S3 bucket which is only accessible via 
the web server and not directly accessible for public. 

All the communication between client (browser) and the 
server will be done using REST [20] which has some 
advantages over SOAP such as better throughput and response 
time, as demonstrated on [21] and [22].   

B. Algorithm 

In this work, k-NN algorithm is used based on previous 
work [17] that gives best results compared to other algorithms 
(Support Vector Machine [18] and Naïve Bayes [16]). K-NN is 
learning directly while performing classification process by 
finding some adjacent data object or patterns based on the 
input and choose a class with the highest number of patterns 
[19]. K-NN can be implemented as follows (Fig. 2): 

1) Load the data 

2) Initialize the value of k 

 
Fig. 2. k-NN Algorithm 

3) For getting the predicted class, iterate from 1 to total 

number of training data points: 

a) Calculate the distance between test data and each row 

of training data. Here we will use Euclidean distance as our 

distance metric since it’s the most popular method. The other 

metrics that can be used are Chebyshev, cosine, etc. 

b) Sort the calculated distances in ascending order based 

on distance values 

c) Get top k rows from the sorted array 

d) Get the most frequent class of these rows 

e) Return the predicted class 

C. Browser Extension 

The browser extension is developed using Greasemonkey 
and works as follows: 

 Script will check visited page. If it is coming from 
Instagram, it will add a new entry in the browser’s 
context menu (accessed via right click) 

 When user highlighted some text in Instagram posting, 
the extension will read the highlighted text and send it 
to the web service in AWS 

 Web service will process the request and reply the 
results back to the browser 

 Browser extension will display the results to user in 
form of a dialog box. 

D. Evaluation 

Several tests were conducted to evaluate some metrics. The 
first test was performed using SOAPUI tool which is used to 
perform load testing, method testing, simple load testing, burst 
load testing, thread load testing, variance load testing, and data-
driven testing. It used 160 data for data-driven test. 

The second test was testing the web service accuracy by 
using PHP scripts to automate the test. The test used 1000 
random data taken from dataset using shuffled sampling. The 
dataset was generated using 10 smaller dataset which consisted 
of 100 data to reduce the slow processing time. Afterwards, it’s 
merged with the rest. Next, the dataset is tested against 8 test 
datasets which have been stored in the web service already. 
The parameters used for the k-NN validation shown in Table 1. 
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TABLE I.  TESTING PARAMETERS 

Parameters Values 

Number of data 1000 

Output criteria Accuracy 

Sampling type Shuffled Sampling 

Dataset type 8 types 

Dataset Criteria 
Unbalanced non-stemmed, unbalanced-stemmed, 

balanced non-stemmed, and balanced stemmed 

The 8 datasets that were used are as follow: 

 Generated using PHP 

o Unbalanced non-stemmed data 
o Unbalanced stemmed data 
o Balanced non-stemmed data 
o Balanced stemmed data 

 Generated using R 

o Unbalanced non-stemmed data 
o Unbalanced stemmed data 
o Balanced non-stemmed data 
o Balanced stemmed data 

IV. RESULTS AND DISCUSSIONS 

A. Web Service Accuracy 

The results of the web service accuracy after tested against 
8 datasets can be seen on the Table II through Table IX. 

TABLE II.  DATASET 1: UNBALANCED-NON STEMED DATA GENERATED USING PHP 

TEST DATA 
STEM 

% 
NON-STEM 

% 
T F T F 

1-100 71 29 71% 73 27 73% 

101-200 68 32 68% 68 32 68% 

201-300 83 17 83% 83 17 83% 

301-400 85 15 85% 85 15 85% 

401-500 74 26 74% 73 27 73% 

501-600 72 28 72% 72 28 72% 

601-700 61 39 61% 61 39 61% 

701-800 87 13 87% 87 13 87% 

801-900 75 25 75% 75 25 75% 

901-1000 58 42 58% 57 43 57% 

 73%  73% 

TABLE III.  DATASET 2: UNBALANCED STEMMED DATA GENERATED USING PHP 

TEST DATA 
STEM 

% 
NON-STEM 

% 
T F T F 

1-100 66 34 66% 67 33 67% 

101-200 53 47 53% 54 46 54% 

201-300 49 51 49% 48 52 48% 

301-400 44 56 44% 46 54 46% 

401-500 43 57 43% 43 57 43% 

501-600 58 42 58% 54 46 54% 

601-700 44 56 44% 38 62 38% 

701-800 55 45 55% 55 45 55% 

801-900 45 55 45% 45 55 45% 

901-1000 53 47 53% 55 45 55% 

 51%  51% 
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TABLE IV.  DATASET 3: BALANCED NON-STEMMED DATA GENERATED USING PHP 

TEST DATA 
STEM 

% 
NON-STEM 

% 
T F T F 

1-100 71 29 71% 73 27 73% 

101-200 68 32 68% 66 34 66% 

201-300 76 24 76% 75 25 75% 

301-400 82 18 82% 83 17 83% 

401-500 69 31 69% 69 31 69% 

501-600 71 29 71% 72 28 72% 

601-700 60 40 60% 60 40 60% 

701-800 88 12 88% 88 12 88% 

801-900 88 12 88% 88 12 88% 

901-1000 65 35 65% 62 38 62% 

 74%  74% 

TABLE V.  DATASET 4: BALANCED STEMMED DATA GENERATED USING PHP 

TEST DATA 
STEM 

% 
NON-STEM 

% 
T F T F 

1-100 69 31 69% 69 31 69% 

101-200 55 45 55% 53 47 53% 

201-300 51 49 51% 47 53 43% 

301-400 48 52 48% 43 57 43% 

401-500 50 50 50% 40 60 40% 

501-600 48 52 48% 45 55 45% 

601-700 62 38 62% 58 42 58% 

701-800 53 47 53% 47 53 47% 

801-900 48 52 48% 45 55 45% 

901-1000 55 45 55% 51 49 51% 

 54%  49% 

TABLE VI.  DATASET 5: UNBALANCED NON-STEMMED DATA GENERATED USING R 

TEST DATA 
STEM 

% 
NON-STEM 

% 
T F T F 

1-100 86 14 86% 86 14 86% 

101-200 78 22 78% 77 23 78% 

201-300 81 19 81% 84 16 84% 

301-400 89 11 89% 86 14 86% 

401-500 83 17 83% 83 17 83% 

501-600 81 19 81% 77 23 77% 

601-700 79 21 79% 79 21 79% 

701-800 83 17 83% 85 15 85% 

801-900 84 16 84% 84 16 84% 

901-1000 75 25 75% 74 26 74% 

 82%  82% 
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TABLE VII.  DATASET 6: UNBALANCED STEMMED DATA GENERATED USING R 

TEST DATA 
STEM 

% 
NON-STEM 

% 
T F T F 

1-100 86 14 86% 86 14 86% 

101-200 78 22 78% 77 23 77% 

201-300 81 19 81% 84 16 84% 

301-400 89 11 89% 86 14 86% 

401-500 83 17 83% 83 17 83% 

501-600 81 19 81% 77 23 77% 

601-700 79 21 79% 79 21 79% 

701-800 83 17 83% 85 15 85% 

801-900 84 16 84% 84 16 84% 

901-1000 75 25 75% 74 26 74% 

 82%  82% 

TABLE VIII.  DATASET 7: BALANCED NON STEMMED DATA GENERATED USING R 

TEST DATA 
STEM 

% 
NON-STEM 

% 
T F T F 

1-100 83 17 83% 86 14 86% 

101-200 77 23 77% 77 23 77% 

201-300 82 18 82% 79 21 79% 

301-400 87 13 87% 82 18 82% 

401-500 82 18 82% 77 23 77% 

501-600 77 23 77% 71 29 71% 

601-700 77 23 77% 76 24 76% 

701-800 83 17 83% 80 20 80% 

801-900 83 17 83% 78 22 78% 

901-1000 69 31 69% 66 34 66% 

 80%  77% 

TABLE IX.  DATASET 8: BALANCED STEMMED DATA GENERATED USING R 

TEST DATA 
STEM 

% 
NON-STEM 

% 
T F T F 

1-100 84 16 84% 82 18 82% 

101-200 80 20 80% 73 27 73% 

201-300 84 16 84% 79 21 79% 

301-400 84 16 84% 81 19 81% 

401-500 80 20 80% 75 25 75% 

501-600 83 17 83% 71 29 71% 

601-700 86 14 86% 80 20 80% 

701-800 83 17 83% 73 27 73% 

801-900 83 17 83% 74 26 74% 

901-1000 75 25 75% 65 35 65% 

 82%  75% 
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B. Web Service Comprehensive Testing 

a) Method Testing 

This test is used to ensure the output of all the web service 
are according to what we expected in terms of formatting and 
the content itself. This is the simplest test but also crucial to be 
performed so that the system gives the same output as what it 
is expected to do. The result of the method testing can be seen 
on Table X.  All the methods we developed have produced 
expected results. 

TABLE X.  METHOD TESTING RESULTS 

No Method 
Expected 

Results 

Actual 

Results 
Remarks 

1 Version (GET) 
JSON 200 

OK 

JSON 200 

OK 
Match 

2 No (GET) 
JSON 200 

OK 

JSON 200 

OK 
Match 

3 Dataset (GET) 
Text Plain 

200 OK 

Text Plain 

200 OK 
Match 

4 File (GET) 
JSON 200 

OK 

JSON 200 

OK 
Match 

5 Classify (POST) 
JSON 200 

OK 

JSON 200 

OK 
Match 

b) Load Testing 

This test is used to see how the system behaves under high 
load. The instance used in this work is t2 micro which only 
have 1 vCPU and 1 GB of RAM. In the first test, we used the 
Version method to represents GET method, with the following 
parameters: 

 Number of threads: 10 

 Intervals: 10 s 

 Variance: 0.5 

 Time limit: 1 s 

 Burst delay: 60 s 

 Burst duration: 10 s 

In load testing, there are 4 sub tests: simple, burst, thread, 
and variance. The result of the load testing are shown in Fig. 3, 
Fig. 4, Fig. 5, and Fig. 6. 

 
Fig. 3. Simple Load Testing Result. 

 
Fig. 4. Burst Load Testing Result. 

In simple load test, it has minimal request of 252 ms, 
maximum request is 3280 ms, and average request is 521,58 
ms. 

 
Fig. 5. Thread Load Testing Result. 

 
Fig. 6. Variance Load Testing Result. 

In burst load test, it has minimal request of 582 ms, 
maximum request is 582 ms, and average 582 ms. 

In thread load test, it has minimal request 253 ms, 
maximum request is 3277 ms, and average is 503,58 ms. There 
are 11 requests that has more than 1000 ms (more than time 
limit of the system). The average request time is around 3 
seconds. 

In variance load test, it has minimal request of 251 ms, 
maximum request is 671 ms, and average is 494,93 ms.  There 
are 9 requests that has more than 1000 ms (more than time 
limit of the system).  The average request time is around 3 
seconds. 

The second test is the Classify method to represents POST 
method, with the following parameters: 

 Number of threads: 5 

 Intervals: 60ms 

 Variance: 0.5 

 Limit: 120-180s 

 Burst delay: 10s 

 Burst duration: 10s  

The result of the load testing is shown in Fig. 7, Fig. 8, Fig. 
9, and Fig. 10. 

In simple load test, it has minimal request about 0.5-6s, 
maximum request is 0.5-8ms, and average 0.5-6ms. In thread 
load test are, it has minimal request about 0.2-4s, maximum 
request is 0.2-3 ms, and average 0-0.7 ms.  The system cannot 
continue all of the test data as it only finish 19 of 160 test data 
in 120s. In thread load test, it has minimal request about 0.4-
11s, maximum request is 0.4-12ms, and average 0.4-12ms.  
The system cannot continue to load all the test data as it only 
finishes 87 of 160 test data in 120s. In variance load test, it has 
minimal request about 0.4-11s, maximum request is 0.4-12ms, 
and average 0.4-12ms.  The system cannot continue all the test 
data as it only finished 87 of 160 test data in 120s. 

The load testing results are summarized in Table XI and 
Table XII.  The description for the Table are: I is minimum 
load time, X is maximum load time, and A is Average load 
time. 
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Fig. 7. Simple Load Testing on Classify Method. 

 

Fig. 8. Burst Load Testing of Classify Method. 
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Fig. 9. Thread Load Testing of Classify Method. 

 
Fig. 10. Variance Load Testing of Classify Method. 

TABLE XI.  SUMMARY OF SIMPLE AND BURST TESTING 

Methods 

Average (in milliseconds) 

Simple Burst 

I X A I X A 

GET Version  252 3280 521 582 582 582 

POST 

Classify 
1255 7403 3355 404 1425 386 

TABLE XII.  SUMMARY OF THREAD AND VARIANCE TESTING 

Methods 

Average (in milliseconds) 

Thread Variance 

I X A I X A 

GET Version  253 3277 503 251 671 494 

POST 

Classify 
913 1547 1319 484 1558 304 
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Version method is considerably faster than Classify method 
because it only returns static text, while Classify method is 
more slower because it does spam detection process. This 
characteristics is also shown in the simple and burst testing and 
thread and variance testing results.  The Classify method 
performance is also affected by the length of the input and the 
size of the datasets used for spam detection process. 

c) Data Driven Testing 

Data driven test is using test data that has been stored in 
some external storage and use it iteratively. 8 datasets were 
used in which each dataset consists of 20 test data and divided 
into 2 more categories: 10 data categorized as SPAM and 10 
data categorized as NON-SPAM so in total, it has 160 tests. 
The metrics measured were response time and accuracy. The 
results can be seen in Table XIII. 

The result of this accuracy on data driven test with 
SOAPUI are:  the accuracy is 63.125 % and average response 
time is about 2 seconds. 

C. Browser Extension Development 

The browser extension was developed extensively for 
Mozilla Firefox since it was using Greasemonkey plugin 
although it is also working in Google Chrome. 

The extension is dynamically detecting the URL loaded in 
the address bar. If it is coming from Instagram’s URL, it will 

add a new entry in the context menu (right click menu) as the 
user highlight some comment as shown in Fig. 11. When user 
clicked the entry, it will send the text to the Classify method in 
our web services and it will return the results (‘spam’ or ‘not 
spam’) in clear text and show it to user Fig. 12. In Google 
Chrome, the results are displayed as inFig. 13. 

The browser extension developed is working as expected 
and able to do the spam detection process utilizing REST-
based web service that were deployed in earlier work.  The 
extension’s user interface still need some improvements to 
make it easier to use for common user. 

 
Fig. 11. New Entry in Firefox's Context Menu. 

TABLE XIII.  DATA DRIVEN TESTING RESULT 

STEP TEST ID RESULT CATEGORY TIME 

Step 1 [Classify-SPAM-1-1]  OK SPAM 1162 ms 

Step 2 [Classify-SPAM-1-2]  OK SPAM 521 ms 

Step 3 [Classify-SPAM-1-3]  OK SPAM 1638 ms 

Step 4 [Classify-SPAM-1-4] FAILED NONSPAM 1543 ms 

Step 5 [Classify-SPAM-1-5] OK SPAM 2208 ms 

Step 6 [Classify-SPAM-1-6]  OK SPAM 2271 ms 

Step 7 [Classify-SPAM-1-7]  OK SPAM 1554 ms 

Step 8 [Classify-SPAM-1-8]  OK SPAM 1921 ms 

Step 9 [Classify-SPAM-2-1]  OK SPAM 2468 ms 

Step 10 [Classify-SPAM-2-2]  FAILED NONSPAM 1125 ms 

... ... ... ... ... 

... ... ... ... ... 

Step 150 [Classify-NOSPAM-9-6]  FAILED SPAM 2211 ms 

Step 151 [Classify-NOSPAM-9-7]  FAILED SPAM 1512 ms 

Step 152 [Classify-NOSPAM-9-8]  FAILED SPAM 1883 ms 

Step 153 [Classify-NOSPAM-10-1]  FAILED SPAM 1964 ms 

Step 154 [Classify-NOSPAM-10-2] OK NONSPAM 1123 ms 

Step 155 [Classify-NOSPAM-10-3]  OK NONSPAM 4039 ms 

Step 156 [Classify-NOSPAM-10-4]  OK NONSPAM 1660 ms 

Step 157 [Classify-NOSPAM-10-5]  OK NONSPAM 1988 ms 

Step 158 [Classify-NOSPAM-10-6]  FAILED SPAM 3511 ms 

Step 159 [Classify-NOSPAM-10-7]  FAILED SPAM 1863 ms 

Step 160 [Classify-NOSPAM-10-8]  FAILED SPAM 1797 ms 

AVERAGE ACCURACY / TIME 63.125% 1991,244 ms 
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Fig. 12. Result of Classify Method in Mozilla Firefox. 

 

Fig. 13. Result of Classify Method in Google Chrome. 

V. CONCLUSIONS 

In this paper, a browser extension for Firefox & Chrome 
has been successfully developed and integrated into a REST-
based web service [19] deployed on top of AWS Platform. 
Accuracy of the web service were measured using three 
datasets (whole datasets, 1000 stemmed dataset and 1000 non-
stemmed dataset) and achieved accuracy level of 63.125% for 
whole datasets, 72% for non-stemmed dataset, and 70% for 
stemmed dataset. The average response time is under 2s, 
minimum load time test is between 0.2 – 1.2s, and, maximum 
load time test is between 3 – 7s.  Although the browser 
extension is working as expected, the user interface and data 
accuracy still have room for improvements. 
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