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Abstract—The combinatorial optimization problems are very 

important in the branch of optimization or in the field of 

operation research in mathematics. The quadratic assignment 

problem (QAP) is in the category of facilities location problems 

and is considered as one of the significant complex’s 

combinatorial optimization problems since it has many 

applications in the real world. The QAP is involved in allocating 

N facilities to N locations with specified distances amid the 

locations and the flows between the facilities. The modified 

discrete differential evolution algorithm has been presented in 

this study based on the crossover called uniform like a crossover 

(ULX). The proposed algorithm used to enhance the QAP 

solutions through finding the best distribution of the N facilities 

to N locations with the minimized total cost. The employed 

criteria in this study for the evaluation of the algorithm were 

dependent on the accuracy of the algorithm by using the relative 

percent deviation (PRD). The proposed algorithm was applied to 

41 different sets of the benchmark QAPLIB, while the obtained 

results indicated that the proposed algorithm was more efficient 

and accurate compared with Tabu Search, Differential 

Evolution, and Genetic algorithm. 

Keywords—Quadratic assignment problem; combinatorial 

optimization problems; differential evolution algorithm 

I. INTRODUCTION 

There are several specific problems for COPs, such as the 
quadratic assignment problem (QAP), routing problem (RP), 
etc. The QAP was introduced by [1] and the model of this 
problem has been applied in many aspects of life and is 
famous on campus and in hospital layout QAP is a complex 
problem that has attracted the attention of researchers since its 
first formulation [2], [3], [4], [5], and [6]. There are many 
challenges facing the installation of facilities to location, such 
as a lack of layout in the buildings, which leads to an increase 
in computational complexity [7]. The methods that found 
solutions to the QAP problem were classified into two 
categories as follows: the category that obtains the exact 
solution to QAP was called the exact methods, including the 
bounded dynamic branches and processes, Lagrangian-based 
relaxation methods, linear and quantitative programming 
methods. However, in these methods, the size of the problem 
requires a long calculation period if there are more than 30 
methods [8], [9], [10], and [11]. The second category obtains 
the approximate solution or near the optimal solution with 
reasonable calculation time and are known as the approximate 

methods. The approximate methods have been divided into 
three categories [12]: 

 Local Search Algorithm, such as Tabu Search; 

 Swarm Intelligence, such as Ant Colony Optimization; 

 Evolutionary Algorithm, such as the differential 
evolution algorithm. 

The differential evolution (DE) method is one of the latest 
evolutionary optimization methods reported by [13]. DE is a 
global optimizer that relies on population and random space 
continuously [14]. Due to its efficiency and strength, DE has 
increasingly become common and has been utilized in 
numerous fields such as the function of continuous real value 
and the problems of combinatorial optimization with a discrete 
decision. In a study, [15] proposed an algorithm regarding the 
discrete differential evolution (DDE) for computation of the 
variation of the flow-shop preparation problem. The overall 
operation of this method was not as efficient as other methods, 
which could be due to the employment of low mutation 
probability (0.2). In contrast, the operation of the DDE 
algorithm was observed to be competitive when using the 
local search. An earlier work [16] modified the DE to a 
discrete optimization problem and was applied to solve the 
QAP. 

However, the proposed method, which utilized the 
property Tabu List, was not able to use the crossover. Hence, 
the mutant vector directly became a trial vector and can solve 
nearly all the instances from Nug15 to Nug30 in QAPLIB. 
Nevertheless, the obtained results were not superior to the 
max-min ant system hybrid with the random selection and the 
local search. In another study [17], modified DDE with the 
local search-based modification using insertion and swap was 
used. Employment of DDE with local search further improved 
the results of two types of sparse and dense examples of 
QAPLIB. 

The study aimed to modify the DDE for management of 
the complex problems while being capable of the exact search 
space with minimum cost. Moreover, the execution of the 
proposed algorithm led to enhancement of solving instances of 
QAP from the benchmark QAPLIB. The remaining of the 
study has been organized as follows. Section II provides a 
description of QAP, while section III presents the materials 
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and methods. The computational results have been discussed 
in section IV, while the conclusion has been provided in 
section V. 

II. QUADRATIC ASSIGNMENT PROBLEM (QAP) 

QAP is considered as one of the site problems which 
reduce the momentum within the places of high mobility such 
as hospitals, campuses, and several facilities to be allocated to 
these sites by calculating the matrix of distances between 
location and the flows between facilities. Solving the QAP 
indicates examining the assignment that reduces the cost of 
transportation among the facilities.  In order to have a QAP 
instance, visibility and a list of distances of accessible 
locations and material flow among facilities (Fij) must be 
available. Each N facility is interchangeable, and there are N 
locations that can only provide for one facility. Moreover, 
there are N facilities set and N locations set and for each 
location pair the specification of distance (Dij) and for each 
facility pair, a flow (Fij) is itemized. The difficulty in 
assigning entire facilities to alternative positions is aimed at 
minimizing the sum of distances increased by conforming 
flows [5]. Formally, let and be two N*N matrices and let P be 
the set of permutation of {1, 2, …, n}. Then, the mathematical 
model of QAP can be written as 

     ( )   
 

n

i

n

j1 1

      ( ) ( )            (1) 

Overall permutations  P
n
 

A. Mathematical Model Assumptions 

 N is the dimension of the problem case 

 The objective function is Mini Sum 

 π signifies a potential permutation over (1, 2,...,n) and 
π(i) relates to the index of the location to which facility 
i is allocated 

 π is an ideal way of representing a solution to a QAP 
problem 

 Each facility is allocated to precisely one location and 
vice-versa 

 The solution space is discrete and finite 

 The number of location and facilities are known 

 All decision variables of the model are binary (0–1) 
variables 

B. Mathematical Model Outputs (Decision Variables) 

   ={
                                          
                                                             

          (2) 

III. MATERIALS AND METHODS 

A. Materials 

Since the first formulation of the QAP model, numerous 
researchers have performed studies in this are to generate 
algorithms with a capacity of locating practical solutions. 
Several algorithms were created along with numerous problem 

instances. Several researchers from the Graz University of 
Technology created the QAPLIB (http://anjos.mgi. Polymtl. 
ca/qaplib/) in order to deliver these data and explanations to 
the scientific community. Then and there, the QAPLIB was an 
up-to-date source which possessed all the available QAP 
instances. Majority of the available algorithms for the purpose 
of solving the QAP were examined on these benchmark 
instances. In excess of over 100 instances were obtained either 
from real life applications or randomly produced problem 
instances. In this study, five categories of instances were 
solved by the QAPLIB with problem sizes fluctuating from 12 
to 80 locations as follows 

 Randomly generated instances such as (Tai25a, Tai30a, 
Tai40a, Tai50a, Tai60b, Tai64c, Lipa70a, Lipa80a). 

 Real-life instances such as (Chr12c, Chr15a, Bur26a, 
Kra30a, Kra30b, Ste36a). 

 With grid-based distance matrix such as (Nug12, 
Nug14, Nug15, Nug16a, Nug16b, Nug17, Nug18, 
Nug20, Nug25, Sko49). 

 The entries in flow matrices of the rectangular 
distanced problems are pseudorandom numbers 
(Sko49, Wil50). 

 Manhattan distances of rectangular grids such as 
(Had12, Had14, Had20). 

 

Fig. 1. Flowchart of DDE Algorithm. 
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B. Methods 

Various metaheuristics have been used and developed for 
finding the best solution of QAP and the likelihood of 
receiving a satisfying solution value within an acceptable time 
span. In this study, the modified of discrete differential 
evolution (DDE) has been proposed, which includes the type 
of the crossover (ULX) [18] to get the diversity of the search 
space. Moreover, the algorithm can solve the permutation of 
the QAP. The DDE algorithm is simple in nature and by 
mutating the target population it produces the mutant 
population. Then, a crossover operator is required to 
incorporate the mutated solution with the target solution in 
order to produce a trail solution. Finally, the selection was 
based on the survival of the fittest among the trial and target 
solutions. Fig. 1. shows the main steps of the proposed 
approach to solve QAP. 

1) Initial population: The DDE algorithm begins with 

initializing of the primary target population πi = [π1 ,π2 ,.., πNP] 

with the dimension of NP. Every individual contains an n-

dimensional vector with parameter values randomly and 

equally established among pre-defined search range. The 

initial population of DDE algorithm is shown in Table 1. 

TABLE I. INITIAL POPULATION 

π1 6 3 1 4 2 5 

π2 2 1 6 5 4 3 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

πn 4 6 2 3 5 1 

a) A permutation was directly encoded as an individual 

vector; 

b) The dimension of the individual was equivalent to the 

size of the QAP problem; 

c) In the initialization stage, the population was 

generated as a random permutation. 

2) Mutation individual: The differential deviation was 

attained in the form of perturbations of the optimum solution 

from the former generation in the objective population. Since 

perturbations are stochastically achieved, every individual in 

the mutant population was anticipated to be characteristic. In 

order to attain the mutant individual, the subsequent equation 

could be employed 

  
   {

       (  
   )       (    )

     (  
   )                    

           (3) 

where   
    is the optimum solution from the former 

generation in the objective population; Pm is the perturbation 
probability; the insert ( ) and swap ( ) are merely the solo 
additions and swap shifts. A constant arbitrary number r was 
produced among [0,1]. If r was lower than Pm, then a sole 
insertion shift was employed in order to produce the mutant 

individual   
 ; else, a sole swap shift was employed. 

3) Crossover 
The crossover operator with the crossover was proposed 

by [18] and is known as the uniform like crossover (ULX). 
The crossover was obtained as the follows First, all items were 
allocated to a similar location and both parents were copied to 
this position in the child. 

a) Second, the unassigned positions of a permutation 

were scanned from left to right: for the unassigned position, an 

item was selected randomly, consistently from those in the 

parents if they were not yet incorporated in the child. 

b) Third, remaining items were randomly allocated. 

4) Generation a trail individual: After the perturbation 

phase, the trial individual was attained as follows:  

  
   {

                            (    )

   
                                    

           (4) 

where CR is the crossover operator; and Pc is the crossover 
probability. When a uniform random number r was less than 
the Pc the crossover operator was utilized to produce the trial 

individual   
  . Otherwise, the trial individual was selected as  

  
 =    

 . Hence, the trial individual was made up of the 
outcome of the perturbation operators or from the crossover 
operator. 

5) Selection: The selection was based on fitness function 

and the following equation can be used 

  
   {

  
             ( (  

 )     (  
   ))

   
                                       

            (5) 

The selection was grounded on the existence of the rightest 
amongst the trial and target individuals. 

6) Verification of the stopping criterion: The stopping 

criterion is dependent on the finish of the specified number of 

repetitions. The algorithm could be stopped if the solution was 

not improved. 

IV. COMPUTATIONAL RESULTS 

The algorithm which was proposed was encoded in 
MATLAB on a PC with Intel(R) Core (TM) i7-3770 CPU @ 
3.40 GHz and 4.00 GB RAM under MS Windows 10. This 
section has been presented two stages, the first stage included 
the parameters which used by the proposed algorithm. Then, 
the second stage has been presented the discussion of results 
which obtained by using the proposed algorithm. 

TABLE II. PARAMETER SETTING OF DDE ALGORITHM FOR QAP 

Parameters Value 

Population Size 100 

Number of Particles 30 

Maximal iterative Number 1000 

Probability of Mutation Pm [0,1] 

Probability of Crossover Pc [0,1] 
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A. Parameter setting 

The parameters to be determined in the DDE has been 
shown in table 2 as follows: 

B. Results and Discussions 

The operations of the DDE are tabulated in Table 3,4, and 
5. The RPD field denotes the Relative Percent Deviation 
between the best-found solution S by proposed algorithm and 
the optimal (or the Best-Known Solution BKS) as a formula:  

    
(          (      ) )

        (      )
                   (6) 

The precision of the algorithm was estimated by utilizing 
the rate of RPD. Smaller values of the average RPD was more 
robust for the evaluated algorithm. In the cases, (Nug12, 
Nug14, Nug15, Nug16a, Nug16b, Nug17, Nug18, Nug20, 
Nug25) the proposed DDE selects the optimal solution with 
gap 0%. Then, the performance of DDE finds the optimal 
solution in an instance (Bur26a, Bur26b, Bur26c, Bur26d, 
Bur26e, Bur26f, Bur26g, Bur26h) with gap 0%. On the other 
hand, the performance of DDE has been applied in 12 
instances in this work (Tai25a, Tai30a, Tai40a, Tai50a, 
Tai60b, Sko49, Wil50, Lipa70a, Lipa80a, Chr15a, Esc128, 
Kra30b). 

The attained results of these instances were suitable for 
finding the optimum solution and excellent accuracy. Finally, 
the different instances of QAP (Tai64c, Lipa40b, Chr12c, 
Esc16i, Had12, Had14, Had20) were solved by DDE. The 
results of the DDE were compared with the Tabu Search 
Algorithm (TS) which belongs to a local search. Other 
algorithms were compared with DDE such as Genetic 
Algorithm (GA), and Differential Evolution Algorithm (DE), 
which belong to evolutionary methods.  The Tabu Search 
which belongs to local search algorithms, was applied in [19] 
to solve some of instances of QAP from benchmark (QAPLIB) 
such as (Nug12, Nug14, Nug15, Nug16a, Nug16b, Nug17, 
Nug18, Nug20, Nug25, Bur26a, Bur26b, Bur26c, Bur26d, 
Bur26e, Bur26f, Bur26g, Bur26h, Tai25a, Tai30a, Tai40a, 
Tai50a), while optimum results were obtained in the cases 
(Nug14, Nug17) with gap 0%. Next, in the size of problem 
less than 30 (Nug12, Nug15, Nug16a, Nug16b, Nug18, Nug20, 
Nug25, Bur26a, Bur26b, Bur26c, Bur26d, Bur26e, Bur26f, 
Bur26g, Bur26h, Tai25a) the TS was unable to access the 
optimal solution, and the gap of the results between these 
cases and the results in QAPLIB was between 0% to 5%. 

On the other hand, the performance of TS was inferior to 
the cases (Tai30a, Tai40a, Tai50a) and the gap between these 
cases were between 4% to 8%. Moreover, the average of 
relative percent deviation between the solution by TS and the 
optimal solution or best-known solution in benchmark 
QAPLIB was 1.41%.  Based on the dataset above, the 
performance of the proposed algorithm was better than the 
algorithm TS and it located the best solution for 17 out of 21 
cases (Nug12, Nug14, Nug15, Nug16a, Nug16b, Nug17, 
Nug18, Nug20, Nug25, Bur26a, Bur26b, Bur26c, Bur26d, 
Bur26e, Bur26f, Bur26g, Bur26h) at the gap 0%. The obtained 
results were better than the algorithm TS in the cases (Tai25a, 
Tai30a, Tai40a, Tai50a). Finally, the average of relative 
percent deviation between the solution by DDE and the 

optimal solution or best-known solution in benchmark 
QAPLIB was 0.69%. Table 3 illustrates the comparison 
between the TS and DDE as follows 

Fig. 2 displays the relative percentage deviation (relative 
difference) of the solution quality for various problem sizes 
for TS and DDE algorithms. The obtained results indicated 
that the DDE algorithm possessed a suitable solution quality, 
which was higher than the TS algorithm for solving QAP 
instances. 

TABLE III. SUMMARY OF COMPARISON OF DDE VERSUS TS 

Instances QAPLIB RPD of 

TS [19] 

RPD of 

DDE 
Optimal BKS 

Nug12 578  0.39 0 

Nug14 1014  0 0 

Nug15 1150  0.39 0 

Nug16a 1610  0.87 0 

Nug16b 1240  1.37 0 

Nug17 1732  0 0 

Nug18 1930  0.69 0 

Nug20 2570  1.04 0 

Nug25 3744  1.55 0 

Bur26a 5426670  0.09 0 

Bur26b 3817852  0.19 0 

Bur26c 5426795  0.26 0 

Bur26d 3821225  0.02 0 

Bur26e 5386879  0.03 0 

Bur26f 3782044  0.05 0 

Bur26g 10117172  0.01 0 

Bur26h 7098658  0.01 0 

Tai25a 1167256  4.26 2.05 

Tai30a  1818146 4.75 3.55 

Tai40a  3139370 6.12 3.88 

Tai50a  4938796 6.94 5.04 

Average 

RPDs 

  1.41 0.69 

 

Fig. 2. Comparison of RPDs for DDE Versus TS. 
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TABLE IV. SUMMARY OF COMPARISON OF DDE VERSUS DE 

Instances 
QAPLIB RPD of DE 

[17] 

RPD of 

DDE 

Optimal BKS 

Esc32e 2  0 0 

Esc32g 6  0 0 

Esc32h 438  15.07 0 

Esc64a 116  24.14 0 

Tai64c  1855928 0.19 0 

Lipa40b 476581  24.73 0 

Sko49  23558 12.5 3.45 

Wil50  49482 7.58 1.36 

Tai60b 630211362 630211362 26.45 3.61 

Lipa70a 171605  1.76 1.08 

Lipa80a 253195  1.59 1.04 

Average 

RPDs                                                                          
  10.36 0.95 

In a study by [17], DE was applied to solve 11 sets of 
benchmark instances as follows: Esc32e, Esc32g, Esc32h, 
Esc64a, Tai64c, Lipa40b, Sko49, Wil50, Tai60b, Lipa70a, and 
Lipa80a. The obtained results in the cases of Esc32e and 
Esc32g were an optimal solution with gap of 0%. Then, in the 
cases Esc32h, Esc64a, Lipa40b, Tai60b, Sko49, and Wil50, 
the results were inferior to the results in benchmark with the 
gap between 7.58 to 26.45%. Finally, the performance of DE 
was satisfactory in the cases of Tai64c, Lipa70a, and Lipa80a, 
while the gap of these results was between 0.19 to 1.76%. 

The obtained results showed that the average of relative 
percent deviation between the solution by DE and the optimal 
solution or best-known solution in the benchmark was 
10.36 %.  By means of applying the proposed algorithm to the 
same cases that were solved by the algorithm DE, the 
execution of the proposed algorithm was superior to the DE 
algorithm, where the optimal solution was found for 6 cases 
out of 11 cases (Esc32e, Esc32g, Esc32h, Esc64a, Tai64c, 
Lipa40b) and the gap was 0%. On the other hand, the results 
for the five remaining cases (Sko49, Wil50, Tai60b, Lipa70a, 
Lipa80a) were noble and were superior to those obtained by 
DE, with the gap between 1.04 to 3.45%. The obtained results 
showed that the average of the relative percent deviation 
between the solution by DDE and the best solution in the 
benchmark was 0.95 %. Table 5 presents the comparison 
between the DE and DDE. 

 

Fig. 3. Comparison of RPDs for DE Versus DDE. 

TABLE V. SUMMARY OF COMPARISON OF DDE VERSUS GA 

Instances 
QAPLIB RPD of GA 

[20] 

RPD of 

DDE Optimal BKS 

Bur26h 7098658  0.39 0 

Chr12c 11156  0 0 

Chr15a 9896  0.39 0 

Esc128 64  0.87 0 

Esc16i 14  1.37 0 

Esc32h 438  0 0 

Esc64a 116  0.69 0 

Had12 1652  1.04 0 

Had14 2724  1.55 0 

Had20 6922  0.09 0 

Kra30b 91420  0.19 0 

Average 

RPDs 
  13.14 4.38 

Fig. 3 displays the relative percentage deviation (relative 
difference) of the solution quality for various problems sizes 
for DE and DDE algorithms. The obtained results indicated 
that the DDE algorithm possessed a suitable solution quality, 
which was higher than the DE algorithm for solving QAP 
instances. 

In a study by [20], GA was applied to solve 11 sets of 
benchmark instances, as follows: (Bur26h, Chr12c, Chr15a, 
Esc128, Esc16i, Esc32h, Esc64a, Had12, Had14, Had20, 
Kra30b). The obtained results showed for the three cases 
(Chr12c, Esc32h, Kra30b) the gap was between 6.09 to 9%, 
while the average of relative percent deviation between the 
solution by GA and the optimal solution in benchmark 
QAPLIB was 13.14%.  The results of the proposed algorithm 
in this study are shown in Table 6. It was observed that DDE 
(4.38% grand average RPD) outperformed the GA (13.14% 
grand average RPD) on all 11 instances. The proposed 
algorithm was effective in selecting the optimal solution for 
eight out of 11 cases (Bur26h, Chr12c, Esc128, Esc16i, 
Esc32h, Esc64a, Had12, Had14, Had20). 

Fig. 4 displays the relative percentage deviation (relative 
difference) of the solution quality for various problems sizes 
for GA and DDE algorithms. The obtained results indicated 
that the DDE algorithm possessed a suitable solution quality, 
which was higher than the GA algorithm for solving QAP 
instances. 

 
Fig. 4. Comparison of RPDs for DDE Versus GA. 
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The limitations of this study involve the absence of 
assurance in obtaining the optimum solutions in a 
predetermined amount of time. Nevertheless, asymptotic 
convergence proofs are accessible for problems, which are 
computationally expensive and require a massive amount of 
computational resources. 

V. CONCLUSION 

In this study, a modified discrete differential evolution 
(DDE) algorithm has been proposed for obtaining an 
operational solution to the QAP. Through beginning with an 
initial population of DDE, the single insertions and swap shift 
were applied to generate the mutation individually. However, 
uniform-like crossover (ULX) was employed as a crossover 
operator in this algorithm in order to obtain diversity in the 
search space and find the best solution of QAP. The obtained 
results of five classes of benchmark QAPLIB instances 
indicated the efficiency of the proposed algorithm. From the 
41 instances which were investigated, 31 instances were 
solved optimally. Then a comparative study between DDE and 
three algorithms (TS, DE, and GA) were presented for similar 
instances. 

The found results indicated that DDE outperformed TS, 
DE, and GA on all category instances. Moreover, DDE was 
found to be better than other algorithms in terms of the 
solution quality. Further studies regarding the utilization of 
DDE along with other algorithms could be carried out in order 
to provide better results. 
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