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Abstract—Mobile devices are rapidly becoming the predom-
inant means of accessing the Internet due to advances in
wireless communication techniques. The development of Mobile
applications (“apps”) for various platforms is on the rise due
to growth in the number of connected devices. Numerous apps
rely on cloud infrastructure for data storage and sharing. Apart
from advances in wireless communication and device technology,
there is a lot of research on special data management techniques
that addressed the limitations of mobile wireless computing to
make the data appear seamless for accessing and retrieval.
This paper is an effort to survey the frameworks that support
data consistency and synchronization for mobile devices. These
frameworks offer a solution for the unreliable connection prob-
lem with customized synchronization and replication processes
and hence helps in synchronizing with multiple clients. The
frameworks are compared for the parameters of consistency
and data models (table, objects or both) support along with
techniques of synchronization protocol and conflict resolution.
The review paper has produced interesting results from the
selected studies in areas such as data consistency, handling offline
data, data replication, synchronization strategy. The paper is
focused on client-centric data consistency and the offline data
synchronization feature of various frameworks.
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I. I NTRODUCTION

The model of mobile cloud computing utilizes the services
of cloud computing. The mobile cloud environment consists of
portable computing devices, mobile Web and location-based
services, supported by wireless communication infrastructure,
to provide mobile devices online access to large storage space
and unlimited computing power [1]. A wireless network with
mobile clients is fundamentally a distributed system but suffer
from the primary challenges such as limited computational
capacity and storage of mobile devices, intermittent loss of
connectivity and battery power restrictions. The transmission
bandwidth of the mobile device is likely to be lesser than
the transmission bandwidth of the mobile support stations
(MSSs) and this leads to the phenomenon of communication
asymmetry. The effective management of data in systems
with the mobile client is affected by these limitations. The
environment of frequent disconnections and limited bandwidth,
impact the data and transaction management as well as the data
consistency guarantees.

To provide the illusion of uninterrupted data access, the
data management must hide the constraints of mobile wireless
computing. The technique of replicating data locally on the
mobile device enables the user to carry offline data without

the need to always be connected to the data server. The ability
to disconnect with the network, do local changes, and then
reintegrating (synchronize) these changes back into the system
makes the mobile gadget an essential extension to modern
distributed databases and collaborative tools [1].

Data synchronization is an empowering process that elim-
inates the critical requirement of having steady connectivity
and permits users to run data-centric mobile applications while
being offline. Hence data synchronization allows users to carry
out operations of additions, deletions, and updates on the
offline data, while disconnected from the network.

Generally, the mobile applications (which we generally
refer to as ‘Apps’) are developed according to the different
application programming interfaces (API) abstractions sup-
ported by the underlying mobile middleware. The middleware
may provide a simple file-based API (possibly extended with
replication-specific methods). It may also support complex
abstraction such as objects, tuples, relational entities or an
object which may contain pointers to other interdependent
objects. Middleware with database replication primarily pro-
vides query oriented CRUD APIs(Create, Read, Update and
Delete) to application developers for typical operations on
data with declaratively defined by SQL queries for the update,
creation/insertion, and deletion of records.

This section covers the introduction to replication, data-
centric and client-centric consistency models. Section IIand III
classify and describe various consistency and synchronization
frameworks in mobile cloud computing. In Section IV we
discuss research findings and recommendations followed by
related work (Section V) and conclusion with future work
(Section VI). Table I shows the list of acronyms used in the
paper.

A. Mobile Computing Environment and Limitations

Generally, a mobile cloud computing environment has
two unique sets of entities namely Fixed Hosts (FH) and
Mobile Hosts (MH) [1]. FHs are machines (Works stations and
Servers) with efficient computation power and reliable storage
of data and run large databases. FHs that are connected through
the fixed network. MHs with limited processing and storage
power(cellular phone, palmtops, laptops, notebooks) are not
continually communicating with the fixed network. They may
be disconnected for various reasons such as due to the battery
power saving measures and also due to disconnections during
frequent relocation between different cells. Additional dedi-
cated fixed hosts called mobile support stations (MSSs) acts
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TABLE I. L IST OF ACRONYMS.

Symbol Description
C Causal Consistency
CMP Consistency scheme with PRACTI property [2]
CRDT Conflict-Free Replicated Data Types
HU Hoarding Unit
E Eventual Consistency
FSC Fork-sequential consistency
MRC Monotonic read consistency
MWC Monotonic write consistency
PRACTI PR - Partial Replication, AC - Arbitrary Consistency, TI

-Topology Independence
RAWC Read after writes consistency
RYWC Read your writes consistency
S Strong Consistency
SC Sequential Consistency
T , O Table , Objects
WFRC Write Follows Read Consistency

Data Hoarding

Reintegration Disconnected
operation

Fig. 1. States of Disconnected Operation.

as the channel between the FH and MH through wireless LAN
(local area network) connections, cells or connections to the
network with standard modems.

When the network connectivity becomes unavailable or un-
acceptable, the MH enters the disconnected state. Disconnected
operation (see Fig. 1) is a three-stage changeover between the
following states [3]:

1) Data hoarding: This is the process of preloading or
prefetching the data in anticipation of a foreseeable
disconnection. Before going to offline mode (discon-
nection), the data structures necessary for operation
during disconnection are either replicated (catched)
or moved (partitioned) at the MH.

2) Disconnected operation: When the MH is offline (dis-
connected from the network), data might be changed,
added or even removed at either the MH or the FH.

3) Synchronization or Reintegration: When the con-
nection is reestablished, each operation executed at
the MH should be synchronized (reintegrated) with
appropriate updates executed at other sites in order
to attain seamless consistency.

For a given distributed system, the complexity of opera-
tions in each of the above three states is determined by the
interdependence of data operated on. The issues pertainingto
three states is summarized in Table II.

B. Replication

Replication is a basic strategy to support fault resilience,
high data availability and quick response for universally avail-
able services. Replication process creates many instancesof
the identical object in different machines, over a distributed
or local network ([3], [4], [5], [6], [7], [8]). The copies of

TABLE II. I SSUES INDISCONNECTEDOPERATION.(SOURCE [1])

State Problem Resolution
Unit of
caching/hoarding

System dependent (e.g. a file or a
database fragment)

Which items to cache
(hoard)?

Application dependent , based on pur-
pose of the system
Defined distinctly by the user
Generate from the knowledge of past
operations

H
oa

rd
in

g

When to execute
hoarding ?

Based on regular intervals
Before disconnection

Call for locally unavail-
able data

Add requests to queue for future ser-
vice
Raise an exception/error

What to log? Timestamps
Data Values
Operations

When to optimize the
log?

Before synchronization
Incrementally

How to optimize the
log?

System dependent

D
is

co
nn

ec
tio

n

How to synchronize? Re-execute an operational log
Reintegration
or Synchro-
nization

How to resolve con-
flicts?

Automatic resolution
Use application-semantics
Provide utility to aid the user

these multiple objects (replicas) are persistently maintained
over time in order to allow the workload to be divided
over the possible number of replicas. The replication strategy
involved in a different distributed system depends on the
requirements of data freshness tolerance. The use cases in
some applications need only read operations, while others high
ratio of writes(updates) compared to read. Banking systems
require that data is always consistent over time and some social
networks may tolerate stale data.

C. Consistency Models

The literature [9] [10] describes data-centric and client-
centric consistency as the two principle viewpoints on con-
sistency. The data-centric consistency manages the internal
state details by guaranteeing that all the replicas are sameand
ensures system maintains consistency for updates. Data-centric
consistency is important to system developers. Client-centric
consistency deals with only observing data updates as a black
box and hence application developers focus on client-centric
guarantees. Ordering and Staleness are the two criteria for
measuring guarantees of both data-centric and client-centric
consistency. Staleness is measured in the unit of time (t-
perceivability) or versions (k-staleness), calculated based on
how much a given copy is falling behind [11] [12].

D. Data-Centric Models (Server-Side Consistency Models)

1) Strong consistency - A system adopting a strong
consistency model is in a consistent state all times.
The strong consistency is a single-copy consistency
model that is not suitable for mobile applications
dealing with cloud data due to the availability and
performance issues as mandated by CAP theorem
[13].

2) Sequential consistency - This is a slightly weaker
form of strong consistency with the condition that,
same order of execution is maintained for all the se-
quentially related requests. Subsequently, the clients
observe the same order and sequence of updates.
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3) Causal consistency - In a system adopting the Causal
Consistency (CC), the same sequence of execution is
maintained on all replicas, for all the causally related
requests. The non-related requests are followed in
random order.

4) Grouping operations - This model deals with handling
the cases of, series of reading and write operations.
The Grouping Operation model allows raising the
level of granularity to span multiple reads and writes,
into an atomically executed unit.

E. Client-Centric Models (Client-Side Consistency Models)

1) Weak consistency - A weak consistency model does
not guarantee that subsequent accesses will return
the updated value. The term ‘inconsistency window’
[10] attribute to the time between the update and the
instant when it is guaranteed that any observer will
always see the refreshed value.

2) Eventual consistency - Eventual consistency is con-
sidered as another model of Weak consistency with
an added guarantee that when no new updates are
made to an object, eventually all replicas will see the
last. Eventual consistency provides the following four
main ordering guarantees [14]:

a) Monotonic Read Consistency (MRC) - In this
model after reading a version ‘n’ of an object,
the same client will never access a version
less than ‘n’ on a subsequent read.

b) Read Your Writes Consistency (RYWC) - In
this model, after writing version ‘n’, the same
client will never again read an older version
less than ‘n’. This is a unique case of the
causal consistency model [9] [10].

c) Monotonic Write Consistency (MWC) - In
this model, all writes by the same client guar-
anteed to be serialized in the order of time of
update It guarantees that a write operation is
always ended prior to any subsequent write
operation on the same data item [9] [10]

d) Write Follows Read Consistency (WFRC) - It
guarantees that an update succeeding a read
of version ‘x’ will never be carried out on
replicas that are prior to version ‘x’ [9].

The studies [15] [16] conclude that it is mandatory to guar-
antee all four client-centric models (MRC, RYWC, MWC, and
WFRC) for the system to achieve client-centric consistency.

II. CLASSIFICATION OF CONSISTENCY,
SYNCHRONIZATION AND REPLICATION SYSTEMS IN

MOBILE COMPUTING

This section classifies the current efforts into different types
such as systems for weakly connected clients, sync services
and systems supporting geo-replication. The studies are also
classified based on three PRACTI properties [2].

A. Systems for Weakly-Connected Clients

Many previous attempts have dealt with data replication
and management in systems where mobile clients intermit-
tently connected either to servers or to peers ([3], [4],[17], [2],

[18], [19]). Systems like Coda [3] and Ficus [19] address the
issues in handling disconnected operations and replicate files
providing high availability at the cost of consistency. Bayou
[4] is a distributed relational database system that provides
eventual data consistency, under offline mode. These systems
differ on their procedures to handle conflicts. For instance,
Bayou performs application-level conflict resolution, while
Coda and Ficus allow system level resolution of conflicts.
Some Systems (like Simba [20]) are aimed to provide more
control for mobile applications to select suitable consistency
abstractions for data synchronization services.

There are several studies which explicitly focus on the
efficiency of data management systems for weakly connected
clients ([21], [22], [23], [24]). In compliance to different
requirements of apps, Odyssey [23] system give OS support for
applications to modify the fidelity of their data to accommodate
resource changes, such as wireless network bandwidth fluctu-
ations and battery conditions. Cedar [24] increase the query
processing capability by identifying the commonality between
client and server query results and hence provides productive
mobile database access. In LBFS [21] (low-bandwidth network
file system), the content-based chunking technique prevents
redundant transfer of files and also detect inter-file similarities.

B. Geo-Replication

There are several studies which focus on the tradeoff
between consistency, availability, and performance for geo-
distributed services. These system handle data replications
within and across and data centers. Some systems primarily
aimed at providing low-latency causal consistency at scale
(e.g. , COPS [25] and Eiger [26]) and others (e.g., Red
Blue consistency [27], Walter [8], Transaction Chains [28],
and ) focus to reduce the latency involved in supporting
other forms of stronger-than-eventual consistency, including
serializability under limited conditions. Arbitrary consistency
selection systems (e.g., Pileus [29] and SPANStore [30] )
attempt to provide more control for applications to choose
suitable consistency across data centers, to meet SLAs or to
minimize operating costs.

C. PRACTI Paradigm

In a distributed system, an optimal replication system
should support all the three PRACTI [2] properties. 1) PR-
system (Partial Replication) allow any node to store a subset of
data and metadata. 2) AC-system (Arbitrary Consistency) pro-
vide flexibility of selection of consistency semantics (different
types of configurable consistency guarantees like both strong
and weak consistency) for applications. 3) The TI-systems
(Topology Independence) permit all nodes to send updates to
all other nodes (TI).

Applying PRACTI taxonomy to the current studies, the ex-
isting replication systems fall into the following four protocol
groups. Each system compliant to most two of the PRACTI
paradigm properties.

1) Server replication: Some systems use the log-based
peer-to-peer update exchange protocol for server-
side replication. This protocol follows full replication
mechanism and allow all nodes to store complete
data from any volume and also all nodes collect
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all updates. This protocol helps to achieve topology
independence (TI) in some systems (e.g., Bayou [4]
and Replicated Dictionary [31]), where any node to
send updates to any other node. Some Systems like
in TACT [32] and Lazy Replication [33]) use this
protocol to provide more control to select suitable
consistency guarantees for data synchronization (AC).
Since the protocol does not support efficient network
usage due to full replication, these systems may be
not suitable for devices with limited resources.

2) Some systems with client-server architecture (e.g.,
Coda [3] and Sprite [34]) and hierarchical caching
systems (e.g., hierarchical AFS [35]) implement a
protocol to selectively replicate/cache arbitrary sub-
sets of content (PR). Apart from supporting a group
of consistency policy by the system, a supplementary
extension of consistency guarantees are provided by
changing the basic architecture (AC). In order to
support consistency, the partial replication protocols
need intercommunication between a child and its
parent and also serialize control messages at the
central server node [36]. Due to these communication
complexities, the performance, availability and data
sharing features may be paralyzed in such systems.

3) In the Distributed hash table (DHT)-based storage
systems (e.g., PAST [37], CFS [38] and BH [39]), the
scalability is achieved by load balancing the server
across various nodes, on a per-object or per-block
basis. For high availability, the data is also replicated
to multiple nodes and such architecture becomes
challenging for providing the consistency guarantees.

4) Object replication systems (e.g., WinFS [40], Ficus
[41] and Pangaea [42]) permit nodes for selective
replication/caching of arbitrary subsets of data (PR)
and communication with every other peer (TI).These
protocols lack consistency guarantees since they do
not mandate ordering constraints on updates across
multiple objects.

D. Synchronization Service Frameworks

The existing services mainly offer sync services into three
categories: (1) File-only, (2) Table-only and combinationof
(3) Table and Object. Izzy [43] and Mobius [44] sync services
provide a platform for structured data like tables only, to ex-
pedite the development and deployment of data-centric mobile
apps. Mobius guarantee that all clients observe write operations
in the same order, maintaining the flexibility of local client
views to diverge (fork-sequential consistency [45]).Dropbox
sync service provides dedicated API for tables and do not
store files and tables together. Many Mobile apps are developed
using the file sync services of Google Drive [46], iCloud [47],
Dropbox[48] [49] and Box Sync[50]. StackSync [51] is an
open-source Personal Cloud framework that provides scalable
file synchronization and sharing. QuickSync [52] is a system
that focuses on improving the synchronization performance
of cloud storage, in wireless networks depending on network
conditions.

Sapphire [53] is a cloud-enabled distributed programming
platform for mobile and cloud applications. Sapphire makes
a smooth application execution using the techniques of code-
offloading, caching, and fault-tolerance. Sapphire lacks in data

management services but provides smooth application execu-
tion. The work on Pebbles[54] revealed that apps massively
depend on structured data (table) to manage unstructured
objects (files). Simba [20] extended the table interface of Izzy
[43] to provide a unified abstraction for both table and object,
the benefits of which are explored the context of local systems
in these studies [ [55], [56] ].

CouchDB [57] is a schema-free “document store” support-
ing eventual consistency and provide “document” sync with
coordination from its client TouchDB [58].

SwiftCloud [59] and Cloud types [60] provide cloud-
enabled programming interface to facilitate the mobile apps for
storing local replicas of data on the devices and subsequently
sync with the cloud servers. The programmer needs to handle
synchronization in SwiftCloud and Cloud types, while Simba
permits automatic synchronization.

Mobile operating systems provide some kinds of data
storage abstractions to developers. Apple expanded its iCloud
[47] service with CloudKit [61], a new means for applications
to store and access data stored in iCloud [47]. There are some
open source mobile back-end-as-a-service offering, such as
Parse Server platform [62] and StackSync [51].

Many commercial services provide back-end cloud storage
services to link mobile and web applications to the cloud, such
as IBM Bluemix Mobile Cloud Service [63] [64]. Services
of Firebase [65] and Kinvey [66], also aid app developers to
connect their apps to cloud backend.

III. D ISCUSSION ONL ITERATURE OFCONSISTENCY AND
SYNCHRONIZATION FRAMEWORKS

The existing literature from the database community and
distributed systems community focus on consistency models,
their implementations and their measurement. This paper fo-
cuses on the reference implementations helping the mobile
clients for end-to-end data consistency and data synchroniza-
tion service utilizing the cloud resources. The literaturehas
case studies investigating the difficulties related to consistent
replication across mobile devices with intermittent network
connectivity and bandwidth constraints. Some studies in the
literature address the frameworks designed to handle the cur-
rent constraints in Mobile app development.

Coda [3], was one of the initial client-server architecture
systems, to emphasize the difficulties in addressing the of-
fline operations. BlueFS [67] is another system that focuses
on energy efficiency in resource-constrained mobile devices.
Bayou [4] is based on client-server architecture and supports
a disconnected system and provides a programming interface
to application-specific conflict detection and resolution to
handle optimistic updates (eventual consistency). Odyssey [23]
support application-aware adaptation based on type-specific
operations. The Rover [68] toolkit is a client-server, mobile
applications development platform that relocatable dynamic
object (RDO) and queued remote procedure call (QRPC) for
data communication.

Simba [20] provides end-to-end data consistency frame-
work with a data abstraction for a combination of tabular and
object data models. Additionally, the applications written to
this abstraction are allowed to select from a set of distributed
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consistency schemes and sync data with the cloud. Simba
Server implementation of data Storage use OpenStack Swift
[69] for object data and Cassandra [6] to store tabular data.
Simba configure OpenStack Swift and Cassandra to utilize
three-way replication, in order to achieve high availability.
Also, the framework mentioned in [70] support using Cassan-
dra as a backend datastore. Our work [71] proposes to extend
Simba with support for large data objects.

Mobius [44] is designed as a cloud-enabled data replication
and messaging platform for the mobile applications. It provides
table consistency and uses PNUTS [7] as the back-end store.

A middleware framework for a mobile network that per-
forms reliable and real-time data synchronization is proposed
by Xue [72]. Izzy [43] and Mobius [44] frameworks provide
a platform for structured data like tables only, to expedite
the development and deployment of data-centric mobile apps.
Simba [20] is built upon the sync framework of Izzy and sup-
ports cloud-based data synchronization service, which reduces
development complexity of mobile apps.

Cimbiosys [17] is a peer-to-peer system platform (clients
share updates directly with each other) that enables various
apps to manage cloud-based data on personal computers and
mobile devices. Perspective [73] is another platform like
Cimbiosys that use filters for selective replication of dataon
mobile devices. PRACTI [2] is a unique replication system
that supports all the three ideal PRACTI properties of partial
replication, arbitrary consistency and topology-independence.

Currently, researchers are proposing new principles to deal
with weak consistency. Strong correctness guarantees can be
achieved without the use of costly global synchronization when
all operations in a program are purely monotonic. Built on
this monotonic principle, some data structures like sets and
sequences can be correctly replicated without the need of
synchronization.

The Conflict-Free Replicated Data Types (CRDTs) ([74]
[75] [76]) are asynchronous data types that do not need
synchronization for updates. They comply Strong Eventual
Consistency Model [75] and can be utilized to build other
data models, required by applications. Asynchronous quality
of CRDTs makes it more qualified for replication in eventual
consistency environments.

More recently researchers utilize these special data types
(CRDTs) to build the frameworks using Key-Value stores.
Riak [77] distributed database is used as a back-end store by
systems like SwiftCloud [59] to implement a Key-CRDT. In
order to support strong eventual consistency, the SwiftCloud
middleware, convert a Key-Value store in a Key-CRDT store,
into a data-model that utilize properties of CRDT. The system
allows clients to execute updates concurrently without synchro-
nization. By executing automatic conflict resolution specified
in CRDTs, the systems guarantees the clients with zero conflict
for simultaneous updates. Walter [8] and Gemini [27] are other
systems that use CRDT for providing eventual consistency.
Indigo [78] enhance SwiftCloud, wherein an application spec-
ifies the invariants, or consistency rules, that the system must
maintain.

Consistency As Logical Monotonicity (CALM) is another
technique used in built consistency frameworks. According

to the CALM theorem, logically monotonic programs are
guaranteed to be eventually consistent without the requirement
of any coordination protocols (distributed locks, two-phase
commit, paxos, etc.). Hence CALM approach ensures eventual
consistency by necessitating a monotonic logic [79]. In logic
languages (e.g. Bloom[80]) CALM analysis helps to analyze
whether the code flow is sufficient towards consistency without
the integrating co-ordination protocols [79].

The study claimed [81] that the use of revision diagrams
along with special abstract Cloud Types is a useful technique
for eventually consistent distributed programs. Revisions dia-
grams are semi lattices designed for the context of multiplever-
sions and eventual consistency and work same as the version
control systems. In this approach, the distributed state isstored
using special cloud abstract data types. These Cloud types
expose interface with well defines update and query operations
[60]. Cloud types provide eventually consistent storage and
hide the complex backend implementation details of network
and coordination protocols. They offer the functionality to
perform the optimized fork and join implementations and
storing of updates in the form of logs [60]. The prototype
implementation of this technique is available in TouchDevelop
language and as a library in C# [82]. While the CRDTs
help to carry out only commutative operations, the cloud
types support non-commutative operations still accomplishing
eventual consistency.

Open Data Kit (ODK) 2.0 [83] support to build Android-
based application-specific information modules for offlineop-
erations. StoArranger [84] is another system framework that
aid the programmers to manage cloud data storage on mobile
devices by addressing issues of rearranging, and coordinating
cloud storage communications. BlueMountain [85] is a modern
mobile data management platform supporting solutions for
file and database management, which allow to achieve wider
deployability and help app developers to spend more efforts
on app logic. Unidrive [86] is a client-side middleware system
which can integrate multi-cloud capabilities to mobile apps.
CacheKeeper [87] allows caching of browser data on mobile
devices using system-wide, kernel level caching support for
mobile applications.

Parse [62] is a back-end as a service platform that uses
MongoDB as the back-end datastore. Parse platform allow the
developer to create loosely or strongly typed objects and easily
save, update, query, and delete these in a backend data store.

Mobile apps are developed using the file sync services of
Google Drive [46], iCloud [47], Dropbox [48] [49] and Box
Sync[50]. StackSync [51] is an open-source Personal Cloud
framework that provides scalable file synchronization and shar-
ing. QuickSync [52] is a system that optimizes cloud storage
synchronization performance in wireless networks based on
network conditions. IBM Bluemix Mobile Cloud Service [63]
[64] provides back-end cloud storage services to link mobile
and web applications to the cloud. Other commercial platforms
such as Kinvey [66] and Firebase [65], help app developers to
connect the apps to cloud backend.
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TABLE III. C OMPARISON OF THREE REFERENCE IMPLEMENTATIONS.

Reference
Design

Strength Weaknesses

Simba [20] - Allow apps for the program-
matic delay tolerant data trans-
fer
- Uses a single persistent TCP
connection to the cloud data ,
resulting in bandwidth saving

Since multiple apps access the
same instance of client, certain
poorly written apps may ad-
versely affect other Simba apps

Mobius [44] - All in one solution with a
combination of messaging and
data platform
- Linear scalability for number
of applications, users and size
of data

Can be improved in the area
of cross-app synchronization,
optimization strategies and
caching

SwiftCloud [59] - Allow execution of transac-
tions in the client side as well
as at the data centers
- Efficient use of caching meth-
ods, executing both reads and
updates at the client

- Lack support for combined
weak and strong consistency,
and for object composition
- DC implementation is not
modular

IV. RESEARCHFINDINGS, DISCUSSION AND
RECOMMENDATIONS

This section discusses the selected case studies, based on
the criteria to understand the different technologies usedfor
building the frameworks. SwiftCloud uses the CRDT with
the Riak key store. Mobius uses PNUTS distributed database
and supports P2P communication model. Simba supports
configuring different consistency levels using Cassandra and
OpenStack Swift object storage. TouchDevelop library utilizes
the Cloudtypes using the Revision diagrams. BloomL library
covers the BloomL language supported framework. Due to
space constraints, we are only covering the three frameworks
Swiftcloud, Simba and Mobius. These reference solutions
are aimed at providing data replication, synchronization,and
offline services to ease the development complexity of mobile
apps. The solutions use the client side caching technique to
offer offline services. The solutions are backed by the cloud
storage to store the data. Table III summarizes the strengthand
weaknesses of the studied three reference implementations.
Table IV (See Appendix) summarizes the consistency and
data models (table, object or both) support in the various
reference implementations. Table IV also lists PRACTI prop-
erty supported by each framework along with mechanism of
synchronization protocol and conflict resolution.

A. Synchronization Services

Some of the solutions provide the sync services for struc-
tured data like table only (Mobius and SwiftCloud). Simba
supports both tabular and objects data models. Synchronization
operation execution required to be handled by the programmers
in case of Mobius and Swiftcloud. In contrast, Simba supports
automatic synchronization process in the background.

B. Consistency Support

In order to satisfy the diverse consistency needs the frame-
works should support different types of data and independently
define their consistency. Mobius provides per-record sequential
[88] and fork-sequential [45] consistency through the exclusive
type of read operations. Simba provides three consistency
semantics, resembling strong, causal and eventual consistency.
The extent of consistency specification permit may be per-row

or per-request, per-table.
Caching Policy and Offline support: The strategies of
caching (replication) data at the client side enable higher
availability and improve latency. Caching policies need to
take care of the consistency semantic (ordering, updates and
fetching of fresh updates). Solutions provide options to access
data from client-side storage or remotely. Cache policies can be
determined by the server-side back-end. The server-generated
policies can be context-aware, globally configurable and dy-
namic. These policies are created based on run-time usage or
access patterns of all users collected from each application.
Efficient write caching capabilities group possible numbers
of write operations in a one network message to reduce
bandwidth. A Prototype of Mobius clients uses the trained
decision tree model (policy selector) to determine whetherto
fetch locally or remotely. Mobius uses cost-sensitive decision
tree classifiers to write batch updates. In SwiftCloud the clients
can access the causally- consistent view of the stable version of
data (cached at multiple servers). In Mobius, MUD tables are
partitioned across mobile nodes and one or more server back-
ends. Data access during offline is from the local tables. The
write updates are stored locally and forwarded to the backend
on reconciliation of client. During offline, reads are delivered
from the local scout in SwiftCloud. Scout cache handles the
write updates. On network availability, finally, they will be
committed at its DC.

C. Limitations of Reference Frameworks

Even though incredible researches have been done in pro-
viding end-to-end data consistency solutions, many challenges
still remain. This section points out some of the challengesthat
are needed to be addressed in various reference frameworks.
For app developers, currently, Mobius [44] provide higher
level APIs (blocking or asynchronous) abstracted around the
basic MUD APIs. The researchers propose the opportunity to
support richer interfaces with the declarative query language.
Mobius can be improved in the area of cross-app synchro-
nization, optimization strategies and caching. Mobius canbe
improved in cache operations such as dynamic caching strate-
gies, clearance policies and push-based cache maintenance. For
bandwidth consumption and improving access, the outstanding
updates stored locally should be compressed. There should be
a smooth deterioration of response quality during disconnected
operation. For the scalability improvements, the authors of
Mobius [44] propose to improve partitioning schemes by
adapting their earlier efforts on automatic and fine-grained
partitioning ([89], [90]).

Simba’s [20] sync protocol does not support streaming APIs
to handle big size objects (e.g. Media file like Videos).
Simba proposes to handle atomic multi-row transactions as
prospective enhancement and currently support only atomic
transactions on individual rows.

SwiftCloud [59] can be enhanced with a better caching mech-
anism and support for transaction migration. Also, better data
encapsulation across software stack through API level, to
address efficient data access.
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V. RELATED WORK

The work of [91] conducts an analysis of concepts of
mobile client-server computing and mobile data access with
a detailed review of early research prototypes (Bayou [4],
Odyssey [23] and Rover [68] ) for mobile data management.
Our work extends this work by analyzing the consistency
support for the latest frameworks. The survey of contribu-
tions on data dissemination and support for data consistency
techniques for mobiles devices is discussed here [92]. The
paper [93] compares and analyze the several contributions to
models for mobile transaction. A survey of literature work
on synchronization between the mobile device and server-side
databases can be found here [94]. A survey of academic work
on mobile/cloud computing can be found here [95]. The paper
[96] conducts a comprehensive review of the data replication
techniques in the cloud environments. Recent review article
deals with the comparison of different categories of data
synchronization algorithms based on scalability, consistency,
accuracy parameters in ubiquitous network [97].

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a review of data consistency
and synchronization frameworks in Mobile Cloud Comput-
ing for Mobile Apps. We considered the latest studies done
from 2010 to 2017, and the advantages and disadvantages of
three reference implementations in the literature have been
presented. Then, the approaches to handle consistency sup-
port, sync services, conflict handling and offline operations in
reference solutions have been discussed. Furthermore, outof
the review, several findings and potential future works have
been identified. We believe that this is an important research
area, that will attract more contributions from the research
community.
The Conflict free replicated data type, logically monotonic
programs (CALM approach) and Revisions diagrams as semi
lattices are some of the techniques used in these frameworks.
Frameworks make use of the backend stores implemented us-
ing these technologies to support the data consistency features.
Out of the three frameworks explored,Simba is a superior
framework ensuring three types of consistency guarantees
(strong, causal and eventual consistency) for both table and
objects data models. Simba reduces programmer’s efforts asit
supports automatic synchronization process in the background.
Simba lacks multi-row transactions and streaming APIs to
access to large objects.
Swiftclouduses a client-assisted failover solution with CRDT
store to support both mergeable and strongly consistent trans-
actions. Programmers need to manage the synchronization
process. It utilizes properties of CRDTs to support automatic
conflict resolution. SwiftCloud needs to improve in providing
efficient data access through APIs.
Mobius provides table consistency and uses PNUTS as the
back-end store to support cloud-enabled data replication and
messaging platform. Mobius provides per-record sequential
and fork-sequential consistency through the exclusive type
of read operations. Programmers need to manage the syn-
chronization process. Mobius uses cost-sensitive decision tree
classifiers to write the batch update. Mobius needs improve-
ments in the area of caching and optimization strategies with
richer client interfaces. It has to be noted that the literature
review is limited by sources and keywords, terminologies used

in the search, and the search date. Hence it is possible to
include more relevant papers while replicating this study in
the future. Our final outputs of this research are limited to
the current availability of frameworks that address the data
consistency, synchronization , and other features. While the
current study did not deal with the full details of measurements
of numerical deviation, order deviation and staleness (latency)
of each framework, we intend to conduct detailed research
with simulations on the comparison of these performance
parameters for each platform.
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