
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

118 | P a g e

www.ijacsa.thesai.org

Toward Exascale Computing Systems: An Energy

Efficient Massive Parallel Computational Model

Muhammad Usman Ashraf, Fathy Alburaei Eassa, Aiiad Ahmad Albeshri, Abdullah Algarni

Department of Computer Science

King Abdulaziz University (KAU)

Jeddah, Saudi Arabia

Abstract—The emerging Exascale supercomputing system

expected till 2020 will unravel many scientific mysteries. This

extreme computing system will achieve a thousand-fold increase

in computing power compared to the current petascale

computing system. The forthcoming system will assist system

designers and development communities in navigating from

traditional homogeneous to the heterogeneous systems that will

be incorporated into powerful accelerated GPU devices beside

traditional CPUs. For achieving ExaFlops (1018 calculations per

second) performance through the ultrascale and energy-efficient

system, the current technologies are facing several challenges.

Massive parallelism is one of these challenges, which requires a

novel energy-efficient parallel programming (PP) model for

providing the massively parallel performance. In the current

study, a new parallel programming model has been proposed,

which is capable of achieving massively parallel performance

through coarse-grained and fine-grained parallelism over inter-

node and intra-node architectural-based processing. The

suggested model is a tri-level hybrid of MPI, OpenMP and

CUDA that is computable over a heterogeneous system with the

collaboration of traditional CPUs and energy-efficient GPU

devices. Furthermore, the developed model has been

demonstrated by implementing dense matrix multiplication

(DMM). The proposed model is considered an initial and leading

model for obtaining massively parallel performance in an

Exascale computing system.

Keywords—Exascale computing; high-performance computing

(HPC); massive parallelism; super computing; energy efficiency;

hybrid programming; CUDA; OpenMP; MPI

I. INTRODUCTION

The high-performance computing (HPC) community
anticipates that a new supercomputing technology called the
exascale computing system will be available at the end of the
current decade. This powerful supercomputer system will
provide a thousand-fold computing power increase over the
current petascale computing system and will enable the
unscrambling of many scientific mysteries by computing 1
ExaFlops (10

18
calculations per second) [1], [22], [23]. This

ultrascale computing system will be composed of millions of
heterogeneous nodes, which will contain multiple traditional
CPUs and many-core General Purpose Graphics Processing
Units (GPGPU) devices. In the current petascale computing
system, the power consumption is approximately 25-60 MW,
by using up to 10 M cores. According to this ratio, the power
consumption demand of the exascale computing system will be
more than 130 Megawatts. On the way towards the exascale

supercomputing system, the United States Department of
Energy (US DoE) and other HPC pioneers defined some
primary constraints, including power consumption (PC) ≈ 25-
30 MW, system development cost (DC) ≈ 200 million USD,
system time to delivery (DT) ≈ 2020 and number of cores (NC)
≈ 100 million [25]. The primary limitation for the exascale
system is that it does not exist yet. However, in trying to
achieve ExaFlops-level performance under these strict
limitations, current technologies are facing several fundamental
challenges [24]. At a broad level, these challenges can be
categorized according to the themes that are listed in Table I.

TABLE I. EXASCALE COMPUTING CHALLENGES

Challenge Description

Power consumption

management

Managing power consumption through new

energy-efficient algorithms and devices

Programming models New programming models are required for

programming CPU + GPU-based
heterogeneous systems

Novel architectures New architectures and frameworks that can

be implemented with non-traditional
processors are required

Massive Parallelism New parallel programming approaches are

required that can provide massive parallelism

using new accelerated devices

Resiliency The system should be able to provide correct

computation in the face of faults in the

system

Memory management
mechanisms

To improve data diversity and bandwidth

One traditional way to enhance the system performance at
the exascale level is to improve clock speed. However, in the
future, the clock speed will be limited to 1 GHz. An alternative
approach is to increase the number of cores in the system.
According to the defined limitations for the exascale
computing system, the number of cores should not exceed 100
million. Generally, if we increase the number of resources
(cores) to enhance the performance, it ultimately will increase
the power consumption for computation. Another option is to
achieve „massive parallelism‟ in the system to improve system
performance at the exascale level. Parallelization through
different PP models has already been explored and examined,
with the aim of exploiting a future exascale computing system.
From the start of the current decade, in consideration of the
many HPC applications, which include climate and
environmental modeling, computation fluid dynamics (CFD)
[2], molecular nanotechnology and intelligent planetary

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

119 | P a g e

www.ijacsa.thesai.org

spacecraft [3], new versions of PP models such as High-
Performance FORTRAN (HPF) [4], [7] and an explicit
message passing interface (MPI) were introduced to attain
petaflop-level performance in the system.

To overcome the architectural challenges of petascale
systems, many new approaches were introduced, including
pure parallelism, in situ processing [5], and out-of-core and
multi-resolution techniques; however, pure parallelism was
conceived as a suitable paradigm. These suggested models
were not able to address the challenges of the higher-order
CFD applications that are required for computing thread-level
parallelism in a cluster system. A new hybrid PP model was
required for localizing the work from the distributed system in
the spectral element method and performing efficient
computations using multiple threads. Therefore, a hybrid
model of MPI (to parallelize data at the inter-node level) and
OpenMP (to parallelize at the intra-node level) was proposed
by Dong et al. [6]. The hybrid model of MPI and OpenMP [21]
for coarse-grained parallelism shows good scalability
compared to single-hierarchy-level parallelism (pure MPI and
pure OpenMP 3.0) with respect to both the problem size and
the number of processors for a fixed problem size. However,
the use of multiple threading in a hybrid paradigm increases
the thread management overhead in thread creation/destruction
and synchronization considerably with the increase in the
number of threads [9]. To update the thread-level parallelism
and address the overhead in thread creation/destruction and
synchronization, OpenMP 4.0 was released in 2013 [8]. This
new version was equipped with new features for error
handling, tasking extensions, atomics and support for
accelerated computation.

Recently, a dramatic change occurred in hardware
technology development and new powerful computational
devices were introduced, such as the General-Purpose
Graphical Processing Unit (GPGPU) by NIVIDIA [10], AMD
[48], ARM [49] and Many Integrated Cores (MIC) by Intel
[11], [12]. These devices are thousands-fold more powerful
than the traditional CPU devices. These Single-Instruction
Multiple-Data (SIMD)-architecture-based many-core devices
contain thousands of cores and are capable of performing
thread-level execution. The old GPU models were only used
for graphics processing, whereas the latest devices are able to
perform general-purpose processing as well. To program
GPUs, many PP models have been introduced, including
OpenCL [20], OpenACC [50], CUDA and OpenMP [16],
which are also available for GPU programming. So far, CUDA
is considered the most capable model for performing thread-
level optimization. Nevertheless, parallelized thread execution
has been transformed from conventional CPU cores to GPU-
accelerated devices. A detailed comparative study has been
conducted by Ashraf et al. [19].

II. NAVIGATION IN THE HIERARCHY LEVEL

Parallelism has brought about a great revolution in system
performance enhancement. Parallelism was introduced in the
90s. The Terascale computing systems were based on coarse-
grained parallelism, which was accomplished at the inter-node
level through single-hierarchy models such as MPI [31]. To
enhance the parallelism, a dual-hierarchy model was

introduced for petascale supercomputing systems [32]. The
objective of the petascale system was to achieve both coarse-
grained and fine-grained parallelism through inter-node and
intra-node processing. Many dual-hierarchy-level approaches
were proposed to achieve both types of parallelism, including
Hybrid MPI + OpenMP. In this dual-level hybrid model, MPI
was used to achieve coarse-grained parallelism and OpenMP
was used to achieve fine-grained parallelism at the thread level.
The major problem with this model was massive power
consumption while transferring data over CPU cores [33]. To
overcome the power consumption challenge, new energy-
efficient devices are introduced, such as GPGPU and MIC.
From the software perspective, new programming approaches
and models are required that can utilize these energy-efficient
accelerated devices with traditional CPU cores through
massive parallelism [23]. To achieve massive parallelism in the
system, the hierarchy level in PP models is shifted from dual to
tri-level, which is considered a promising level for future
exascale computing systems. To add a third level of parallelism
to the current homogeneous MPI + OpenMP model, a new tri-
level model has been considered, which will be a hybrid MPI +
OpenMP + X model [34].

Leading to a hybrid approach for massive parallelism, a
new tri-level hybrid PP model was proposed for symmetric
multiprocessor (SMP) cluster architectures in [12]. This model
was based on message passing for inter-SMP node
communication, loop directives by OpenMP for intra-SMP
node parallelization and vectorization for each processing
element (PE). The fundamental objective of this method was to
combine coarse-grained and fine-grained parallelism. MPI was
used to achieve coarse-grained parallelism and OpenMP was
used to achieve fine-grained parallelism by parallelizing loops
inside each SMP node. The hybrid approach is advantageous
over flat MPI as it does not allow the passage of messages in
all SMP nodes. This tri-level hybrid model was implemented to
solve 3D linear elastic problems [35] by achieving a
performance of 3.80 TFLOPS. In addition, tri-level hybrid and
flat MPI programming models achieve similar performance.
However, the hybrid model outperforms flat MPI in problems
with large numbers of SMP nodes. Due to its monolithic power
consumption, this model is not applicable to the exascale
computing system. However, according to Amarasinghe et al.
[36], unanimous implementation of existing models and
powerful GPU devices for better performance of the system
should be reinvestigated. For the future exascale system, the
tri-level „X‟ model will be considered as an additional model
that will be responsible for the programming of accelerated
GPU devices. To determine the X factor in the tri-level hybrid
model, critical studies were conducted, where several models
were proposed and compared with respect to performance,
computation, optimization and many other metrics [26]-[29].
Evaluations showed that the current compiler of over-
simplified OpenACC exceeded the performance of the
Compute Unified Device Architecture (CUDA) by
approximately 50%; moreover, it exceeded CUDA‟s
performance by up to 98%. Conversely, metrics such as
optimization and program flexibility, thread synchronization
and other advanced features are attainable in CUDA but not in
OpenACC. These metrics prevent full utilization of available
resources for HPC heterogeneous computing systems.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

120 | P a g e

www.ijacsa.thesai.org

Eventually, we finalized the X model as CUDA to compute
accelerated GPU devices. Fig. 1 shows the fundamental
navigational model for massive parallel programming.

Fig. 1. Hierarchy navigation in the programming model.

This tri-level hybrid model is capable of achieving both
coarse-grained and fine-grained parallelism through inter-node
and intra-node processing over a heterogeneous cluster system.
Leading to this architecture, we have proposed an initiative PP
hybrid (MPI, OpenMP and CUDA) model with an optimized
approach, which will be a promising framework for achieving
the desired performance for exascale computing systems
through massive parallelism.

A. MPI

MPI is a well-known traditional independent library that
has been used for communication among the explicit processes
in a distributed computing system. Historically, the standard
version of MPI is considered the MPI-1.0 version from 1994.
Many modifications, additions and clarifications have been
made in different versions. Recently, in 2015, a new, mature
version of MPI, namely, „MPI 3.1‟, was released, to which
many new features had been added, including environment
management, point-to-point message passing, process creation
and management, and collective communications [15].
Throughout HPC revolutionary development, MPI has been a
prominent model for message passing in distributed nodes and
multi-processor systems. In the future, it has been predicted
that MPI will remain the best option for message passing
among heterogamous devices over the cluster system, even
though the original MPI designer did not focus on the exascale
computing system, which requires some MPI specifications
such as the maintenance of global state per process, memory
management during communication within MPI processes, and
process synchronization [37]. These MPI specifications must
be adapted for the exascale computing system.

B. OpenMP

Open Specification for Multi-Processing (OpenMP) is one
of the most frequently used models for SIMD thread-level
parallel execution, which determines the set of directives,
environment variables and multiple library routines. These
specifications are supported in FORTRAN and C/C++ for
using shared memory parallelism. The most recent version,
namely, OpenMP 4.5, contains various new features, including
error handling, tasking extensions, atomics and accelerated
computation [38]. A new synchronization strategy has been
introduced, where multiple tasks are grouped and synchronized
using the „taskgroup‟ construct [13]. In this way, many new
constructs are added into the OpenMP 4.5 version that

manages the threads efficiently. Similarly, loop parallelization
with unbalanced amounts of work is also optimized as
„taskloop‟ using new directives [14]. One shortcoming of
OpenMP is that it can be applied only for shared memory
platforms on a single node, and not for cluster systems, which
limits the use of the MPI option for cluster computing.
However, it is anticipated that OpenMP will be promising
model for exascale application, to achieve massive parallelism
at the thread level.

C. CUDA

Recently, NIVIDA introduced CUDA (Compute Unified
Device Architecture), which is a unique thread-level parallel
computing platform for programming massive parallel
computing accelerated GPUs. CUDA is supported by
FORTRAN and C/C++ for programming accelerated GPGPUs.
The current CUDA release, namely, CUDA 8.0, which is the
most feature-packed and powerful, is available with novel
profiling capabilities. In addition, it supports the Pascal GPU
architecture and lambda heterogeneous compilers [17], [18]. In
CUDA parallel programming, an application that contains the
sequential program „CUDA Kernel‟ is available, which
executes programs in parallel on GPU devices. The Single
Program Multiple Data (SPMD)-based kernel is initialized by
passing multiple parameters, including grid size and block size.
Based on modern GPU architecture, the GPU Block dispatcher
schedules the grid by assigning each thread to one of the
computational cores, and these threads are synchronized by
self-cooperation. Each block has its own shared memory,
which is accessible to every core inside it. Threads process data
using this shared memory within that block and return the
results to the scheduler. This processed data is stored in GPU
global memory, which is accessible to host CPU cores. CPU
cores read data from GPU global memory and transfer data
from GPU to CPU cores and memory. In this way, we can
achieve massive parallelism through heterogeneous CPU +
GPU computation using CUDA.

III. TRI-LEVEL HYBRID PARALLEL PROGRAMMING MODEL

In this section, we present the proposed tri-level hybrid PP
model for the exascale computing system. Based on the
hierarchy navigation in previous parallel programming models,
the proposed approach is a hybrid of MPI, OpenMP and
CUDA.

A. Inter-Node Computation

In the proposed model, initially, some fundamental
specifications, such as the number of nodes, number of CPUs
per node, number of CPU cores, number of accelerated GPU
devices, and memory levels, are the requirements of the system
on which the model is to be implemented. After obtaining these
fundamental specifications of the system, the parallel
computing process is initiated. The top-level inter-node
parallelism was achieved through the standard-specification
MPI library to parallelize the distributed nodes. Immediately
after MPI initialization, some necessary statements were
executed to define the MPI communication size and the ranks
of the available processes in MPI communication. Usually, the
process with rank „0‟ is considered the master process, while
the rest of the processes are considered slave processes. Before

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

121 | P a g e

www.ijacsa.thesai.org

broadcasting begins, data and many other necessary parameters
are distributed over connected nodes in the system. For task
mapping, the master process communicates with all slave
processes to distribute/gather data. To maintain
synchronization while sending and receiving data, blocking
methods „MPI_Send‟ and „MPI_Recv‟ were respectively used,
instead of non-blocking methods „MPI_Isend‟ and
„MPI_Irecv‟. These communication methods are better
synchronized and more reliable for producing pure error-free
parallelism.

B. Intra-Node Computation

 Once the data have been shared over all distributed nodes,
the second level of multi-threaded intra-node parallel
processing is initiated through OpenMP, which uses shared
memory among multiple CPU cores of the system. At this
stage, multiple OpenMP pragmas were used to achieve fine-
grained parallelism by defining all looping and independent
parallel computing statements within the OpenMP parallel
region. As this is middle-level parallelism, the resources of the
current and next levels of parallelism are correlated. Before
entering the third step, the number of available CPU threads in
the system is determined, followed by the estimation of the

number of accelerated GPU devices that are installed in the
system. For the optimization of resources and results, the
numbers of CPU threads and GPU devices should be same.
Consequently, determination of the numbers of CPU threads
and GPU devices can facilitate the adjustment of their strengths
by using the following pre-defined functions:

cudaGetDeviceCount (numGPU); //get number of GPUs

omp_set_num_threads(numGPU);// Set number of Threads

cudaThreadSynchronize(); // synchronize CUDA threads

C. Accelerated GPU Computation

Within the outer scope of OpenMP, another thread level of
parallelism was created through the shared memory system
over accelerated GPU devices, which provide finer granularity
using GPU cores. This complicated heterogeneous CPU+GPU
computation is supported by different programming models
using FORTRAN and C/C++. In our proposed model, we used
CUDA to perform this heterogeneous computation, where the
SIMD-based data segment was transferred from Host to GPU
core using built-in CUDA methods. Fig. 2 presents the
workflow of tri-hybrid parallel programming as follows.

Fig. 2. Workflow of the hybrid parallel programming model.

At the same time, some fundamental information, including
grid size and block size, were broadcasted with the CUDA
kernel to restrict computation according to given specifications.
To create a generic kernel, we defined template datatypes,
which were provided by C++, that accept any datatypes as
parameters and perform computations accordingly. Once
parallel data computation was completed through GPU cores, it

used a similar datatype from GPU to Host cores that entered
again in OpenMP region. After finishing this complicated
heterogeneous computation among CPUs and GPUs, the MPI
master process collected all processed data and exited the
parallel zone. The detailed sequence of these three levels of
parallelism is illustrated in Fig. 2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

122 | P a g e

www.ijacsa.thesai.org

IV. EXPERIMENTAL SETUP

This section describes the experimental setup that was used
to implement the proposed model. Moreover, we quantified
different HPC-related metrics, including performance (number
of GFlops/s) and energy efficiency (GFlops/Watt) in the
system. A detailed description of these metrics is presented in
this section.

A. Experimental Platform

The proposed tri-level hybrid model was implemented on
an Aziz-Fujistu Primergy CX400 Intel Xeon Truescale QDR
supercomputer, which was manufactured by Fujistu, at the
HPC center of King Abdul-Aziz University, Jeddah, Saudi
Arabia [39]. In 2015, Aziz was ranked 360

th
 in the list of the

top-500 HPC supercomputers [40]. The Aziz supercomputer is
comprised of 380 regular (thin) and 112 large (fat) compute
nodes. Recently, Aziz was upgraded with two SIMD-
architecture-based accelerated GPU compute nodes (NVIDIA
Tesla K20 GPU, 2496 CUDA Cores). Moreover, 2 MIC nodes,
each with an Intel Xeon Phi Coprocessor with 60 cores, were
installed. Aziz consists of a total of 11904 cores. The memories
that are offered by regular and large nodes are 96 GB and 256
GB, respectively. Each node that contains an Intel E5-2695v2
processor with 2.4 GHz and 12 Cores is run by the Cent 6.4
operating system. Aziz is linked using three different networks:
the InfiniBand network, the User network and the Management
network. Moreover, all nodes are interconnected with one
another. The file system is parallelized through the InfiniBand
network. In addition, the login system and job submission are
handled through the user network, while the management
network is used for management purposes only. Aziz is
capable of achieving 211.3 TFlops/s Linpack performance and
228.5 TFlops/s theoretical peak performance [41].

B. Performance Measurement

Performance is the first and fundamental metric of HPC
systems, which is measured in Flops (number of floating-point
operations per second) in the current experiments. Usually, in a
parallel programing system, Flops are calculated at the peak
performance of the system and for implementing algorithms.
Let Fp denote the Flops at peak performance and Fm denote the
Flops for implementing algorithms. Fc can be calculated as:

Using the peak performance of 211.3 TFlops/s of the Aziz
supercomputer, we measured the performance range by
executing target-dense MM with different datasets.

C. Power Measurement

Limiting power consumption is one of the vital challenges
for current and future supercomputing technologies. The
primary objective of future research for the exascale computing
system is the optimal selection of hardware and software for
achieving high performance under the power consumption
limitations [42]. Many HPC pioneers have initiated and
developed energy-efficient devices, such as NVIDIA GPGPU
[43], AMD GPU [44], and Intel MIC [45]. Similarly, software
development communities are trying to develop new

programming models that can provide outstanding
performance under energy constraints.

Generally, a system is evaluated according to its energy
consumption, which indicates the power rate at which
processing was executed, as described in (2).

 ∫

From the above equation, we can calculate the total energy
consumption of a system by integrating the energy
consumption, which is composed of the bandwidth, memory
contention, parallelism and behavior of the application in the
HPC parallel system, as described in (3).

 ∫

On the basis of the dictated factors and the fundamental

energy evaluation (2), we quantified these factors in the

current study with respect to system performance and power

consumption. The power consumption is the sum of the

products of the power of each component and the

corresponding duration [28]. The measurement of power

consumption is divided into two categories:

1. System Specification.

2. Application Specification.

Since the system specification has GPU devices installed in
it, the power consumption is calculated by (4):

 ∑

 ∑
 (4)

From (4), it can be speculated that the approximate power
consumption of a system is the sum of the products of the
installed GPUs, CPUs and motherboard. The power
consumption varies with the workload; however, on the
application side, it can be quantified using (5):

 ∑

 ∑
 () (5)

According to (4) and (5), the power consumption in watts
was measured at the idle state of the system, where only 5
watts of power were consumed by the motherboard and the
remaining power was consumed by the cores of system.

V. EXPERIMENTAL RESULTS

In this section, we investigate the proposed tri-level hybrid
parallel programming model via implementation of linear
algebraic Dense Matrix Multiplication (DMM) [46]. The
purpose of this study was to execute the DMM in the proposed
model on a heterogeneous-architecture-based Aziz
supercomputer and to determine the performance and power
consumption, which are vital metrics for emerging exascale
computing systems. We recorded different datasets of DMM
through multiple CUDA kernels, which demonstrated that
multiple kernels could produce energy-efficient results
simultaneously. Moreover, during execution, the parallel
performance of multiple kernels and the power consumption
were evaluated, which indicated that the best performance was
attained using a small and optimized number of kernels in an

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

123 | P a g e

www.ijacsa.thesai.org

energy-efficient way. This is due to the optimized computation
over heterogeneous CPU and GPU cores using the CUDA
platform. In contrast, using many kernels provided lower
performance due to unnecessary communication among non-
optimized CUDA kernels. A simple implementation of DMM,
along with the defined parameters, is presented in Table II.

TABLE II. A NAÏVE CODE AND PARAMETERS OF IMPLEMENTED DMM

Kernel Naive Code Parameters &

Domains

DMM

Do i = 1; n

 Do j = 1; n

 Do k = 1; n

z(i, k)=z(i , k) + x(i, j) *

y(j, k)

ti, tj, tk (i,j,k

tiles)

ui,uj(i,j, unrolls)

matrix-Size

(msize)

msize ϵ [1000,

2000, 3000…

10000]

However, we were unable to find a detailed optimization
strategy for DMM due to space limitations, as explained by
Tiwari et al. [30]. To explore the implementation strategy for
DMM, we reused the z array in the buffer registers and the x
and y arrays in the caches. These kernel configurations were
obtained by varying parameters. In our implementations, the
achieved performance ranged from 200 to 1100 GFlops for all
implemented kernels for datasets of sizes 1000 to 10000, and
the average was 716 GFlops, as shown in Fig. 3.

Fig. 3. Performance in DMM through multiple Kernel configurations.

During DMM computation, 4 CPU threads per node with 4
kernels achieved the best performance compared to all other
configured kernels and achieved 68% of the peak performance
with 1086 Gflops. Using 12 kernels produced efficient
performance, but increased the energy efficiency due to
unneeded communication in data processing.

Along with performance, we quantified another primary
metric, namely, energy consumption, which was 28 Joules. At

maximum DMM for a dataset of size 10000 through an
optimized 4-kernel configuration, the quantified energy
efficiency was 8.3 Gflops/W. The increment of resources
affected energy efficiency dramatically and reduced it to 5.6
Gflops/W, as shown in Fig. 4.

Fig. 4. Energy efficiency in DMM for different multiple-kernel

configurations.

Based on performance and energy efficiency, a tradeoff
between the two metrics [47] can be determined as follows:

Following this tradeoff, we calculated the ratio between
performance and energy efficiency, which describes the
performance that is achievable for a given energy efficiency, as
shown in Fig. 5. Each vertical and horizontal line represents
information about performance and energy efficiency,
respectively. We can fix the configuration and parameters at
any intersecting point to provide maximum performance and
energy efficiency. These evaluations determined that the best
performance-energy efficiency that can be achieved using the
proposed model on the Aziz supercomputer reached 1086
GFlops, which corresponds to an energy efficiency of 8.3
GFlops/W.

Fig. 5. Performance-energy efficiency tradeoff.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

124 | P a g e

www.ijacsa.thesai.org

VI. EXASCALE COMPUTING SYSTEM DEMAND

The biggest challenge for the study of the emerging
exascale computing system is that such a system does not exist
yet. Therefore, predictive exascale-level data can be obtained
using current computing systems (Terascale, petascale). In this
section, a critical statistical analysis of experimental results that
were obtained from the Aziz supercomputer is conducted. This
statistical analysis is based on the metrics, including
performance and energy efficiency that are required to satisfy
the demands of the exascale computing system. The
architecture of our experimental platform is heterogeneous
(CPU + GPU) and is based on a cluster system that contains
11904 cores, which are integrated over 494 connected nodes.
Using processing devices and memory structure, this system
can provide 211.3 Tflops/s Linpack performance and 228.5
Tflops/s theoretical peak performance. In our experiments, we
implemented DMM using different kernel sizes and obtained
68% of the peak performance with 1086 Gflops by consuming
28 joules of energy, which yielded 8.3 Gflops/Sec energy
efficiency. This energy efficiency was determined using the
fundamental formula that is given as follows:

However,

 or W = J / S (6)

TABLE III. EXASCALE SYSTEM CONFIGURATION

Feature Specification

Number of Cabinets 200

Nodes per Cabinet 384

Number of Nodes 76800

Number of Network slice 4

Total router count 19200

Peak PFlops 1258

Max Power Consumption of Processors 230 W

Max Power Consumption / Node 300 W

Max Power Consumption / System 25 MW

According to (6) and the system configurations, our system
consumed 130 watts at the best performance and energy
efficiency. According to the exascale system constraints and
predictive configurations, as listed in Table III, our system
required a thousand-fold increase in current resources to
perform exaFlops computations.

Based on the ratio of current computation and required
resources, the predictive performance and power consumption
were calculated, which are presented in Table IV.

TABLE IV. METRIC ANALYSIS FOR DIFFERENT PLATFORMS

Metric

Platforms

Aziz Supercomputer
Exascale

Achieved Predictive

Performance 1086 Gflops ≈ 230 Pflops 1 ExaFlops

P. Consumption 130 Watt ≈ 27 M.W ≈ 25 M.W

Energy

Efficiency
8.3 Gflops/W

≈ 8.5

Pflops/M.W

≈ 40

Pflops/M.W

 Table IV describes a statistical analysis of current and
future platforms for massive computation. The currently
available Aziz platforms are categorized into achieved and
predictive domains. Both platforms are analyzed on the basis
of the metrics that were used in DMM. In the predictive
platform, the scalability of the Aziz supercomputer was
considered according to the configurations of the exascale
computing system, which facilitated the determination of a
predictive benchmark against each metric. The predictive
benchmark does not depend on the demand of the exascale
system. Therefore, it can be considered an initial step in
achieving the required computational level for the exascale
system. In the current study, our evaluations have raised
numerous challenging questions, which will open new avenues
of research for scientific communities, developers and vendors
in the future:

 Which programming layer is responsible for managing
the dynamic behavior of resources and code
irregularity, and how?

 Sometime algorithms provide better performance with
less energy efficiency. What optimized method should
be adopted to satisfy the trade-off between the metrics?

 Memory management plays a vital role in enhancing
system performance. To increase the efficiency of
memory management, what additional hooks are
required?

 How can data be managed to reduce power
consumption when GPU cores occupy complete the
warp for small executions?

These questions suggest new challenges regarding the
satisfaction of HPC metrics through massive parallelism.
However, we should reconsider our implemented algorithms,
frameworks, benchmarks, energy management algorithms,
communication mechanisms, memory management
mechanisms and load balancing mechanisms, since these
factors are paramount concerns for exascale systems.

VII. CONCLUSIONS

HPC technology is being shifted from the petascale to the
extreme “exascale” computing system. On the road to the
exascale system, due to some strict limitations on energy
consumption, system cost, number of cores and time to
delivery, there are many vital challenges for vendors and
development communities. One of these major challenges is to
achieve massive parallelism through energy-efficient
mechanisms. In this study, we have proposed a new Tri-Level
hybrid (MPI + OpenMP + CUDA) parallel programming
model. The proposed model is applicable for heterogeneous
(CPU + GPU) distributed systems, to achieve massive
parallelism with coarse, fine and finer granularity. To evaluate
the proposed model, we implemented DMM with different
datasets through multiple kernels. All implementations were
performed on an Aziz - Fujitsu PRIMERGY CX400, Intel
Xeon E5-2695v2 12C 2.4 GHz, Intel TrueScale QDR
supercomputer. We evaluated our model using HPC metrics,
including performance, power consumption and energy
efficiency. Moreover, we provided some predictive results as

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

125 | P a g e

www.ijacsa.thesai.org

to the performance that will be achievable through exascale-
level scalability in the current system. Based on the results of
our implementations, the proposed model can be considered a
pioneering model for HPC applications. As the exascale system
does not yet exist and all the implementations and results are
predictive, we must reconsider the generic challenges,
including the implementation of algorithms, frameworks,
benchmarks, energy management algorithms, and
communication mechanisms.

By future perspectives, we have specified some additional
questions that are open challenges, while achieving extreme
performance with energy efficiency through massive
parallelism in the HPC system. Moreover, fixed optimization
in a heterogeneous computing system is not possible.
Nevertheless, an adaptive framework is required for adjusting
the model to the system configuration and the application
requirements.

REFERENCES

[1] Perarnau, Swann, Rinku Gupta, and Pete Beckman. "Argo: An Exascale
Operating System and Runtime." (2015).

[2] Zhou, Min. Petascale adaptive computational fluid dynamics. Diss.
RENSSELAER POLYTECHNIC INSTITUTE, 2009.

[3] Dongarra, Jack J., and David W. Walker. "The quest for petascale
computing." Computing in Science & Engineering 3.3 (2001): 32-39.

[4] Jin, Haoqiang, et al. "High performance computing using MPI and
OpenMP on multi-core parallel systems." Parallel Computing 37.9
(2011): 562-575.

[5] [5] Ma, Kwan-Liu, et al. "In-situ processing and visualization for
ultrascale simulations." Journal of Physics: Conference Series. Vol. 78.
No. 1. IOP Publishing, 2007.

[6] Dong, Suchuan, and George Em Karniadakis. "Dual-level parallelism for
high-order CFD methods." Parallel Computing 30.1 (2004): 1-20.

[7] Shafto, Mike, et al. "Modeling, simulation, information technology &
processing roadmap." NASA, Washington, DC, USA, Tech. Rep 11
(2012).

[8] Martineau, Matt, Simon McIntosh-Smith, and Wayne Gaudin.
"Evaluating OpenMP 4.0's Effectiveness as a Heterogeneous PP Model."
Parallel and Distributed Processing Symposium Workshops, 2016 IEEE
International. IEEE, 2016.

[9] Jin, Shuangshuang, and David P. Chassin. "Thread Group
Multithreading: Accelerating the Computation of an Agent-Based Power
System Modeling and Simulation Tool--C GridLAB-D." 2014 47th
Hawaii International Conference on System Sciences. IEEE, 2014.

[10] Hoegg, Thomas, et al. "Flow Driven GPGPU Programming combining
Textual and Graphical Programming." Proceedings of the 7th
International Workshop on Programming Models and Applications for
Multicores and Manycores. ACM, 2016.

[11] Shan, Hongzhang, et al. "Thread-level parallelization and optimization of
NWChem for the Intel MIC architecture." Proceedings of the Sixth
International Workshop on Programming Models and Applications for
Multicores and Manycores. ACM, 2015.

[12] Nakajima, Kengo. "Three-level hybrid vs. flat mpi on the earth simulator:
Parallel iterative solvers for finite-element method." Applied Numerical
Mathematics 54.2 (2005): 237-255.

[13] Terboven, C., Hahnfeld, J., Teruel, X., Mateo, S., Duran, A., Klemm, M.,
Olivier, S.L. and de Supinski, B.R., 2016, October. Approaches for Task
Affinity in OpenMP. In International Workshop on OpenMP (pp. 102-
115). Springer International Publishing.

[14] Podobas, Artur, and Sven Karlsson. "Towards Unifying OpenMP Under
the Task-Parallel Paradigm." International Workshop on OpenMP.
Springer International Publishing, 2016.

[15] Dinan, James, et al. "An implementation and evaluation of the MPI 3.0
onesided communication interface." Concurrency and Computation:
Practice and Experience (2016).

[16] Concise Comparison Adds OpenMP Versus OpenACC To CUDA Versus
OpenCL Debates “techenablement.com/concise-comparision-adds-
openmp-versus-openacc-to-cuda-versus-opencl-debates/”, 12 Nov 2016.

[17] Fleuret, François. "Predicting the dynamics of 2d objects with a deep
residual network." arXiv preprint arXiv:1610.04032 (2016).

[18] NVIDIA Accelerated Computing “developer.nvidia.com/cuda-
downloads”, 02 Nov 2016.

[19] Ashraf, Muhammad Usman, Fadi Fouz, and Fathy Alboraei Eassa.
"Empirical Analysis of HPC Using Different Programming Models."
(2016).

[20] Ashraf, Muhammad Usman, and Fathy Elbouraey Eassa. "OpenGL Based
Testing Tool Architecture for Exascale Computing." International Journal
of Computer Science and Security (IJCSS) 9.5: 238.

[21] Ashraf, Muhammad Usman, and Fathy Elbouraey Eassa. "Hybrid Model
Based Testing Tool Architecture for Exascale Computing
System."International Journal of Computer Science and Security (IJCSS)
9.5 (2015): 245.

[22] Shalf, John, Sudip Dosanjh, and John Morrison. "Exascale computing
technology challenges." International Conference on High Performance
Computing for Computational Science. Springer Berlin Heidelberg, 2010.

[23] Reed, Daniel A., and Jack Dongarra. "Exascale computing and big
data."Communications of the ACM 58.7 (2015): 56-68. Cappello, Franck,
et al. "Toward exascale resilience." International Journal of High
Performance Computing Applications (2009).

[24] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve,
Saurabh Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello,
Bill Carlson, Andrew A Chien, Paul Coteus, Nathan A DeBardeleben,
Pedro C Diniz, Christian Engelmann, Mattan Erez, Saverio Fazzari, Al
Geist, Rinku Gupta, Fred Johnson, Sriram Krishnamoorthy, Sven Leyer,
Dean Liberty, Subhasish Mitra, Todd Munson, Rob Schreiber, Jon
Stearley, and Eric Van Hensbergen. Addressing failures in exascale
computing. International Journal of High Performance Computing
Applications, 28(2):129{173, May 2014.

[25] Reed, Daniel, et al. DOE Advanced Scientific Computing Advisory
Committee (ASCAC) Report: Exascale Computing Initiative Review.
USDOE Office of Science (SC)(United States), 2015.

[26] Hoshino, Tetsuya, et al. "CUDA vs OpenACC: Performance case studies
with kernel benchmarks and a memory-bound CFD application." Cluster,
Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM
International Symposium on. IEEE, 2013.

[27] Herdman, J. A., et al. "Accelerating hydrocodes with OpenACC, OpenCL
and CUDA." High Performance Computing, Networking, Storage and
Analysis (SCC), 2012 SC Companion:. IEEE, 2012.

[28] Lashgar, Ahmad, Alireza Majidi, and Amirali Baniasadi. "IPMACC:
Open source OpenACC to CUDA/OpenCL translator." arXiv preprint
arXiv:1412.1127 (2014).

[29] [29] Christgau, Steffen, et al. "A comparison of CUDA and OpenACC:
accelerating the tsunami simulation easywave." Architecture of
Computing Systems (ARCS), 2014 Workshop Proceedings. VDE, 2014.

[30] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. Hollingsworth. A Scalable
Auto-Tuning Framework for Compiler Optimization. In IPDPS‟09,
Rome, Italy, May 2009.

[31] Gabriel, Edgar, et al. "Open MPI: Goals, concept, and design of a next
generation MPI implementation." European Parallel Virtual
Machine/Message Passing Interface Users‟ Group Meeting. Springer
Berlin Heidelberg, 2004.

[32] Mininni, Pablo D., et al. "A hybrid MPI–OpenMP scheme for scalable
parallel pseudospectral computations for fluid turbulence." Parallel
Computing 37.6 (2011): 316-326.

[33] Hennecke, Michael, et al. "Measuring power consumption on IBM Blue
Gene/P." Computer Science-Research and Development 27.4 (2012):
329-336.

[34] Jacobsen, Dana A., and Inanc Senocak. "Multi-level parallelism for
incompressible flow computations on GPU clusters." Parallel Computing
39.1 (2013): 1-20.

[35] Nguyen‐Thoi, T., et al. "A face‐based smoothed finite element method
(FS‐FEM) for 3D linear and geometrically non‐linear solid mechanics

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

126 | P a g e

www.ijacsa.thesai.org

problems using 4‐node tetrahedral elements." International journal for
numerical methods in Engineering 78.3 (2009): 324-353.

[36] Amarasinghe, Saman, et al. "ASCR programming challenges for exascale
computing." Report of the 2011 Workshop on Exascale Programming
Challenges. 2011.

[37] Message passing Interface, https://computing.llnl.gov/tutorials/mpi/ , 20
June, 2017 [03 Aug, 2017]

[38] Royuela, Sara, et al. "OpenMP Tasking Model for Ada: Safety and
Correctness." Ada-Europe International Conference on Reliable Software
Technologies. Springer, Cham, 2017.

[39] Fujitsu to Provide High-Performance Computing and Services Solution to
King Abdulaziz University, http://www.fujitsu.com/global/about/
resources/news/press-releases/2014/0922-01.html, 22 Sep, 2014 [06 July,
2017]

[40] King Abdulaziz University, https://www.top500.org/site/50585, June
2015 [03 Aug, 2017]

[41] Aziz - Fujitsu PRIMERGY CX400, Intel Xeon E5-2695v2 12C 2.4GHz,
Intel TrueScale QDR, https://www.top500.org/system/178571, June 2015
[03 Aug, 2017]

[42] L. A. Barroso. The price of performance. Queue, 3(7):48–53, September
2005.

[43] Foley, Denis, and John Danskin. "Ultra-Performance Pascal GPU and

NVLink Interconnect." IEEE Micro 37.2 (2017): 7-17.

[44] Rohr, David, et al. "An energy-efficient multi-GPU supercomputer."
High Performance Computing and Communications, 2014 IEEE 6th Intl
Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on
Embedded Software and Syst (HPCC, CSS, ICESS), 2014 IEEE Intl Conf
on. IEEE, 2014.

[45] Chrysos, George. "Intel® Xeon Phi™ coprocessor-the architecture." Intel
Whitepaper 176 (2014).

[46] Gallivan, Kyle A., Robert J. Plemmons, and Ahmed H. Sameh. "Parallel
algorithms for dense linear algebra computations." SIAM review 32.1
(1990): 54-135.

[47] Anzt, Hartwig, et al. "Experiences in autotuning matrix multiplication for
energy minimization on GPUs." Concurrency and Computation: Practice
and Experience 27.17 (2015): 5096-5113.

[48] Rajovic, Nikola, et al. "The low power architecture approach towards
exascale computing." Journal of Computational Science4.6 (2013): 439-
443.

[49] Rajovic, Nikola, et al. "Tibidabo: Making the case for an ARM-based
HPC system." Future Generation Computer Systems 36 (2014): 322-334.

[50] Wolfe, Michael, et al. "Implementing the OpenACC Data Model."
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
2017 IEEE International. IEEE, 2017.

