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Abstract—Attaching Date and Time to varying data plays a 

definite role in representing a dynamic domain and resources on 

the database systems. The conventional database stores current 

data and can only represent the knowledge in static sense, 

whereas Time-varying database represents the knowledge in 

dynamic sense. This paper focuses on incorporating interval-

based timestamping in First Normal Form (1NF) data model. 

1NF approach has been chosen for the easily implementation in 

relational framework as well as to provide the temporal data 

representation with the modeling and querying power of 

relational data model. Simulation results revealed that the 

proposed approach substantially improved the performance of 

temporal data representation in terms of required memory 

storage and queries processing time. 
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I. INTRODUCTION 

Temporal Database (TDB) is database modeling technique 
that is considered as repositories of time-dependent data. 
Several research works have been conducting in this research 
area starting from the 1970s [1]. Some of these works deal with 
storage structure and temporal DBMS prototype, while others 
concentrated on query processing temporal time indexing [2]-
[6]. The research work by Snodgrass in [7] treats the problems 
of temporal databases models, integrity constraints, storage 
structures, and implementation techniques using different 
DBMS. A debate within the last three decades was on how to 
model, implement and query temporal database in efficient 
way [8]. Since conventional relational database is used to store 
and process the data that refer to the current time [2], 
commercial DBMS and standards for the query language do 
not fully support temporal features [3], [21]. There are two 
fundamental methods of creating temporal database 
applications. The first one is an integrated method where the 
time-varying features of the data are supported by an extended 
or modified internal model in DBMS. The second method is 
the stratum method, in which the temporal features of the data 
are implemented in top of standard DBMS by a layer over 
DMBS which then changes the outcome into its temporal data 
[9]. The greatest efficiency is offered by the first method 
however the second method has greater popularity due to its 
realism. 

A number of temporal data models have been proposed 
since the early 1980s. These data models are based on schema 

extension approach of relational data model. There are two 
common approaches for these extensions, tuple timestamping 
with First Normal Form (1NF), and attribute timestamping 
with Non-First Normal Form (N1NF). The study in [17] 
generalized the models under 1NF approach into Tuple 
Timestamping Single Relation (TTSR), and Tuple 
Timestamping Multiple Relations (TTMR) according to the 
way of data representations. TTSR approach is not efficient 
since it introduces redundancy, where attribute values that 
change at different time are repeated in multiple tuples. 
However, TTMR approach have solved the problem of data 
redundancy in TTSR, the problem with this approach is that the 
fact about a real world entity is spread over several tuples in 
several relations, and combining the information for an object a 
variation of join known as temporal intersection join would be 
needed which is generally expensive to be implemented. For 
N1NF, the problem with this approach, as stated in Jensen [6], 
there are some difficulties of temporal data models capturing 
an object in a single tuple such that “the models may not be 
capable of directly using existing relational storage structures 
or query evaluation techniques that depend on atomic attribute 
values”. The study in [3] shows an approach of partial 
implementation of temporal database capabilities in top of 
widely used commercial DBMS, the model in this study is 
categorized under TTSR. This study also lacks most of 
temporal features as well as data redundancy of the proposed 
representational data model. The study in [10], [19] show an 
approach of temporal database representation in standard SQL 
under TTMR approach, the study explains number of examples 
of temporal data and how temporal manipulations of such data 
can be effected using standard SQL. A Column Level 
Temporal System (CLTS) proposed by Kvet in [20] is TTMR 
approach, the main issue of this model is to keep the duplicity 
of data minimal. As reducing the duplicities of the data is 
considered one of the important factors which improve 
processing speed to get a current snapshot and all data during 
life cycle of the database object [22]. Atay and Tansel in [18] 
proposed the Nested Bitemporal Relational Data Model 
(NBRDM) under N1NF approach [18], NBRDM model 
attached bitemporal data to attributes and defined a bitemporal 
relational algebra and a bitemporal relational calculus language 
for the proposed data model. 

In this paper, we describe an approach for implementing 
temporal database in the framework of relational data model 
over the most widely used commercial DBMSs (Oracle 
RDBMS). The proposed approach does not significantly 
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change the procedures of designing and developing 
information systems. The major contributions of this research 
project can be formulated as follows: 

 Describe the meaning and use of temporal features in 
the framework of relational data model. 

 The approach is restricted to use the existing technology 
of designing and implementing databases applications. 

 Incorporating temporal aspects need to minor 
modifications without affecting the performance of the 
parts of the system that do not use temporal data. 

 The proposed implementation approach represents the 
temporal database in a data model that has expressive 
power, has less storage memory comparing to other 
works under TTSR approach, and efficient query 
processing. 

 The implementation is easy, does not cost much, and 
based on relational database not on XML files as 
in [11]. 

This paper utilizes the following concepts on temporal 
database theory: the representation of real world time as a line. 
Every point in the line is referred to as an instance, a period is 
the time separating two instances, and an interval is the 
duration of loose segment of the time-line. Temporal data types 
in a temporal database can be identified as an instant of time, 
period and interval [7]. It is conceivable that time extends 
infinitely into the past of the future, as such when the relational 
database model has time introduced to it, it should be limited to 
delineate a particular time. Time-line chronons is the term for 
the reading of the time-line clock in the time-line. A time 
instance is delineated by each tick of a clock. To increase 
familiarity with temporal description times on a time line clock 
are expressed though a calendar. 

The time line clock chronon is defined as day, month, and 
year on the Gregorian calendar. The date “22nd of June 2009” 
is an example. Granules are time points and the dividing 
scheme that splits the time line into a measurable collection of 
time segments is referred to as granularity and is an aspect of 
all temporal information [12]. Temporal databases are depicted 
by the discrete time model because it is easy and comparatively 
simple to use [9]. Temporal databases have formulated a 
taxonomy of time which identifies when a particular event 
happens or when a given statement can be regarded at factual. 
User-defined time is one interpretation of the time feature 
employed in temporal databases. It is expressed in the data that 
is of the date/time kind (the birth date column for example) and 
does not suggest anything correlated to the validity of the other 
columns or temporal time, wherein the column(s) that contain 
date/time information types are employed to mark the related 
tuple’s time aspects. There are three categories of temporal 
time. Valid time: where in the related time is employed to 
determine when a particular statement (event-based) happened 
or when a particular statement (interval based) is regarded as 
being factual in the real world [13]. Transaction time: the 
related time is in reference to the period when the data was 

actually retained inside the database. Bitemporal-time: the 
related time is connected to the yield of valid-time and 
transaction time in the model of bitemporal data. Tuples are 
regarded as valid at instances of that time by rollback databases 
[7], [8]. 

II. METHODOLOGY  

Designing any database systems usually goes through three 
phases, namely, (1) Conceptual design; (2) Logical design; and 
finally (3) Physical design. The temporal aspects of database 
schemas are complex and difficult; therefore it is an error-
prone to design. In designing temporal database, the same steps 
as the mentioned above can be followed, in addition to that, 
defining new features concerning the time aspects because both 
conventional conceptual model and relational data model do 
not fully support time-varying aspects. The following steps 
summarize the proposed methodology for designing temporal 
database in relational data model. 

 Designing the conceptual model for the business logic 
of the system and map it into conventional relational 
data model using the mapping methodology described 
in [5], [7], [10], where all temporal aspects that need to 
be modeled are ignored at this step. All conventional 
methods which are used to construct good relational 
database schema by analyzing the design and applying 
different forms of normalization should take place in 
this step. 

 Adding the temporal aspect for all the database objects 
that need to keep the historical changes of the entities’ 
data. 

To make this process clear, an example (proof of concept) 
of the conceptual data model shown in Fig. 1 for EMPLOYEE 
and DEPARTMENT relations are mapped into relational data 
model shown in Fig. 2. Adding the temporal aspects to these 
two relations is shown in Fig. 4. These approaches can apply to 
any other domain of database technology like biomedical 
domain, business intelligent, metrological and any other 
domains. 

 
Fig. 1. The conceptual schema of EMPLOYEE and DEPARTMENT 

database entities. 
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Fig. 2. The relational schema of EMPLOYEE and DEPARTMENT database 

relations. 

III.  REPRESENTATIONS METHODOLOGY 

The methodology of representing temporal database in this 
paper is accomplished by using Tuple Timestamp Historical 
Relational (TTHR) data model. Fig. 3 shows the conceptual 
structure of TTHR model. The database applications is directly 
connected to the main tables which hold the current valid time 
data, this feature gives the advantages that TTHR can be 
adapted to any functioning database systems without any 
changes to the infrastructure. The historical changes of each 
time-varying attributes in any table are stored in corresponding 
temporal database table (auxiliary tables) as shown in Fig. 3. 
The data representation of temporal database in TTHR is 
accomplished by firstly, defining the database object (entities 
/relations) for which we want to track the historical changes of 
the stored data, then we add for each such relations two 
additional columns Lifespan Start Time (LSST) and Lifespan 
End Time (LSET), which indicate the beginning and the end of 
the time interval within which the database object exists in the 
modeled reality [14], [19]. Secondly, for each such entity 
/relation, we create an additional relation with the same name 
as in the basic schema with the suffix VT, we use VT to 
indicate the valid time model. Example, the relational table 
EMPLOYEE in Fig. 2, is represented into temporal database 
(Fig. 4) by  adding two additional columns LSST and LSET, 
after that we create a new table, the schema representation of  
Table_VT as an example of EMPLOYEE_VT will be:  
EMPLOYEE_VT= (SSN, index, Update_A_VST, VET). 

 
Fig. 3. The conceptual structure of TTSR Model. 

The data in the basic table keeps the latest updated data 
(current data), whereas Table_VT stores the historical changes 
of the validity of the updated attributes in the basic table. 

 
Fig. 4.  The relational schema of EMPLOYEE and DEPARTMENT 

database relations. 

A. Modification Operation 

Modify temporal data database is a challenges because of 
the time dimension [15]. In this representational data model, 
we consider the insertion, deletion, and update of records in the 
table of the basic schema, the data in the Table_VT are updated 
automatically using database triggers or application’s function. 
The following is the rules of data modification operations:  

Insertion Operation:  Inserting a new record into a table of 
the basic schema is accomplished as in conventional database, 
in addition to that the value of LSST field is set to the current 
date, and the value of the LSST field is set to a very far future 
time, for example, 1/1/3000. This date is always greater than 
the current date for the lifespan of the application. Inserting 
data into Table_VT is accomplished as consequences of 
updating any attribute in the table of the basic schema as it will 
be explained in updating operation. Thus, the data in the table 
of the basic schema always represents the latest current valid 
data. 

Updating Operation: updating a record in a table of the 
basic schema results into the following actions: 1) If the 
updated data is an indexed attribute(s) as shown in Fig. 4, then 
the old value of this attribute and its index with the same value 
of the primary key and VST and VET fields are inserted into 
Table_VT, the value of VST and VST can be calculated as 
follows: (a) if this is the first time to update this attribute (this 
attribute has not been updated before or no record for this 
attribute is found in Table_VT ), then VST value will have the 
same value as LSST in the table of the basic schema, and VET 
will be having the value of the current time. (b) If this attribute 
has been updated before, then VST will be having the value of 
VET plus one time granule of the latest update of this attribute. 
An example of this case is shown in Fig. 3, when the value of 
the SALARY attribute indexed by 5 has been updated (at time 
point '1/1/1996') for Richard, and then we look at Table_VT at 
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that time point, since no record has been found for this attribute 
and for this object, thus a new record for the updated value of 
this attribute and corresponding database object has been 
inserted into Table_VT table with these values: 

 

( : 99, : 5, _ : 4,000, : '1/ 7 /1990',
: '1/1/1996')

SSN index Update A VST
VET . 

 

Another scenario is shown in Fig. 4, for database object Jon 
when the SALARY attribute indexed by 5 has been updated (at 
time point '1/1/1998'), then we look for the latest update for 
SALARY attribute for Jon in Table_VT which is on 
'31/12/1990', We add one day (assumed in our example the 
time granularity is one day). The new row is will be having 
these values: 

( : 89, : 5, _ : 5,000, : '1/1/1991',
: '1/1/1998')

SSN index Update A VST
VET . 

 

2) If the updated data is LSET attribute with instance time 
not equal to 1/1/3000, then this action is considered as logical 
delete of this record and this record stops to be a life or valid, 
as if one employee has resigned from the company. 

 Delete Operation: Delete a record form the basic schema is 

accomplished by setting the value of LSET to current time as 

explained in update operation. 

In our proposed schema representation Table_VT tables 
keep the historical changes of the validity of the updated 
attributes in the basic table. Each record in Table_VT 
represents the validity of the changed attributes in the basic 
table during the time interval [VST, VET]. The historical 
changes of the validity is continuous, the timestamp in VST 
field coincides with the value of VET field of the preceding 
record with the same primary key. Fig. 3 shows the schema 
representation and the update operations on the basic schema 
tables (EMPLOYEE and DEPARTMENT) and the temporal 
tables (EMPLOYEE_VT, DEPARTMENT_VT). 

The scheme described in Fig. 4 does not address many 
subtle issues specifically for temporal database [16]. An 
example of these issues are, constraints on the upper and lower 
time boundaries of interval-based data model, since the time is 
discrete, the above schema cannot guarantee that LSST should 
be less than LSST in the basic schema, and VST should be less 
than VET in temporal schema. Overlapping of the same fact 
that belong to the same object, an example the SALARY of an 
employee is $5000 in the interval [1/1/1990, 1/1/1999] and 
different salary $7000 is valid in the interval [1/1/1996, 
1/1/2005]. Referential integrity constraints, it might have an 
object in reference relation refers to another object in the 
referee relation in different time points. As an example, in 
EMPLOYEE relation (reference) the foreign key Dept_no can 
have the ID value of DEPARTMENT relation (referee) that is 
either logically deleted or have interval lifespan time [LSST, 
LSET] that is not fully cover the interval lifespan time of 
EMPLOYEE object. Although, these issues can’t be verified 
by conventional DBMS, these problems can be solved by an 
additional check through triggers of applications functions. 

Although the historical changes of data are in temporal 
schema and the latest current valid data available from the 
basic schema, our approach is useful for the following reasons: 

 Integrity constraints in the basic schema as well as 
temporal schema can be defined and implemented in 
DBMS easily without any major update to the existing 
applications. The purpose of this implementation is to 
ensure the creation of highly reliable databases. 

 The proposed implementation removes data redundancy 
and satisfied high level of memory storage saving 
comparing to other implementation techniques 
discussed in [17], reducing the redundant data will help 
to facilitate efficient query execution. 

 The tables in the temporal schema are updated only by 
insert operation when specific attribute in the basic 
schema table updated, thus the growth of this table 
depends on the frequency of attributes updates. 

The current valid data in basic schema table helps in 
efficient query execution because some queries does not need 
to have temporal data. Temporal-joins involving data from the 
temporal schema are less efficient than joins of the tables in the 
basic schema. 

B. Query Operations 

Querying temporal databases represented by our approach 
using standard SQL2 can be classified into current query, 
sequenced query and non-sequenced query [7], [27]. Current 
query provide the current valid data which is in the basic 
schema table, while sequenced query provide the data that 
were valid during a certain interval of time where this data can 
be obtained from basic schema, temporal schema, or both 
depends on the complexity of the query, non-sequenced 
provide the historical changes of database objects’  data. This 
work presents the following types of queries: 

Current Queries: Current query is an ordinary query which 
provides current values of the data regardless of the time 
dimension. We project current queries on the basic table 
schema where the latest current values are stored for example 
the query that selects the current SALARY and RANK of an 
employee is  

 

SELECT E.SALARY, E.RANK   

FROM EMPLOYEE E  

WHERE E.SSN = 89; 
 

Some current queries involving time predicates for 
excluding/including valid/not valid lifespan entities, an 
example, the query that selects the latest SALARY of not valid 
lifespan employees is    

 

SELECT E.SALARY   

FROM EMPLOYEE E  

WHERE E.LSET <> '1/1/3000'; 

This query selects all employees whom are logically 
deleted by setting the value of LSET to an instance time not 
equal to the END_TIME which we consider it in our approach 
equal to this date '1/1/3000'. 
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Sequenced Queries: Sequenced query provide the data that 
were valid during a certain interval of time, and the result of 
the query is valid-time table unlike current query which returns 
snapshot state. For example the query that returns the salary of 
an employee in a certain point of time or in a certain interval of 
time is 

Q1 for point of time t 

SELECT ES.SSN, ES.upadated_v   

       FROM EMPLOYEE_VT ES  

       WHERE ES.index = 5 and  

      ES.VST <= t and   

      ES.VET >  t and 

                   ES.SSN = 89; 

Q2 for interval of time [t1 ,t2] 

SELECT ES.SSN, ES.upadated_v   

FROM EMPLOYEE_VT ES  

WHERE ES.index = 5 and  

      ES.VST < t2 and   

      ES.VET >= t1 and 

      ES.SSN = 89; 

Q1 returns exactly one record, whereas Q2 returns one or 
more records because the time intervals for the salary historical 
changes of same employee might have an overlap with the 
input time interval [t1 ,t2].  No duplicated records will be 
returned for both queries because the data in our model are 
coalesced [10]. In contrast to other models that need more 
processing for coalescing function. 

Non-sequenced query: provide the historical changes of a 
database objects’ data during their lifespan time, the result of 
the query is valid-time table like sequenced query. The 
complexity of Non-sequenced queries depends on number of 
tables involved because the intervals in which the selected 
records were valid must be overlap for different tables. For 
temporal queries we need to define three functions for time 
interval manipulations as follows: 

 Overlap([X,Y], [Z,W]) function takes two time intervals 
as a parameters, and returns one (1) if the time intervals 
are overlap and zero (0) otherwise. The following the 
code in SQL2 for this function.   

CREATE FUNCTION OVERLAP (X IN NUMBER, Y 

IN NUMBER, Z IN NUMBER, W IN NUMBER) 

RETURN NUMBER    IS 

BEGIN 

    RETURN 

     CASE 

      WHEN X < W AND Y >= Z     

        THEN 1 

        ELSE 0 

        END; 

  END OVERLAP; 

 Upper_bound(Y,W) function takes the tow upper 
boundaries of two time intervals as a parameters, and 
returns upper boundary of the overlapped time intervals. 
The following is the code in SQL2 for this function.   

CREATE FUNCTION UPPER_BONUD (Y IN 

NUMBER, W IN NUMBER) RETURN NUMBER 

IS 

BEGIN 

  RETURN 

  CASE 

   WHEN Y >= W THEN W  

   WHEN Y < W THEN Y 

       ELSE 0 

   END; 

 END UPPER_BONUD; 
 

 lower_bound(X,Z) function takes the tow lower 
boundaries of tow time intervals as a parameters, and 
returns lower boundary of the overlapped time intervals. 
The following is the code in SQL2 for this function.   

CREATE FUNCTION LOWER_BONUD (X IN 

NUMBER, Z IN NUMBER) RETURN NUMBER 

IS 

BEGIN 

  RETURN 

     CASE 

    WHEN X >= Z THEN X  

    WHEN X <  Z  THEN Z  

    ELSE 0 

    END; 

END LOWER_BONUD; 

Since the current data are in the basic schema table and the 
historical changed data are in the temporal schema, then 
combining these data into one place can be accomplished by 
database views. We can create view for each time-varying 
attributes in the basic schema table, for example the 
SALARY_V view can hold the track log data including the 
current data for the salaries of all employees. The SALARY_V 
view is defined as follows: 

CREATE VIEW SALARY_V AS  

   SELECT E.SSN, E.SALARY, 

          MAX (CASE  

    WHEN ES.VET IS NULL    

               THEN E.LSST  

    WHEN ES.VET IS NOT NULL   

               AND E.LSST > ES.VET   

               THEN E.LSST    

    WHEN ES.VET IS NOT NULL  

               AND E.LSST < ES.VET  

               THEN (ES.VET +1 )END)    

            AS VST, E.LSET AS VET 

FROM EMPLOYEE E LEFT OUTER JOIN  

      (SELECT ES.SSN,    

      TO_NUMBER(ES.UPADATED_V), ES.VST,   

      ES.VET FROM EMPLOYEE _VT ES  

      WHERE ES.ATT_INDEX = 5) 

      ON E.SSN = ES.SSN  

GROUP BY E.SSN, E.SALARY, E.LSET  

UNION  
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SELECT SSN, TO_NUMBER(UPADATED_V), VST, 

VET 

    FROM EMPLOYEE _VT WHERE INDEX = 5; 

An example of the query that returns the track log of the 
salary of an employee for his lifespan time is  

SELECT * FROM SALARY_V 

   WHEN SSN =89; 

Another query that selects the track log information about 
salary and address (ADDRESS_V is view created by the same 
way as SALARY_V) of an employee is 

SELECT S.SSN, AD.ADDRESS, S.SALARY, 

LOWER_BONUD(S.VST, AD.VST)AS VST 

,UPPER_BONUD(S.VET,AD.VET)AS VET 

 FROM ADDRESS_V AD, SALARY_V S 

  WHERE SSN =89 AND AD.SSN = S.SSN   

  AND OVERLAP (AD.VST,AD.VET, S.VST,   

  S.VET) = 1;   
 

Above queries can be applied for any other temporal 
information in employee or department tables. With time, the 
tracking log query that retains a data for a certain time interval 
might have a different data in other time interval. 

IV. RESULTS AND DISCUSSION 

The performance evaluation of the proposed model is 
considered in terms of memory storage efficiency and query 
processing time. TTHR is compared with the main models in 
literature namely TTSR and TTMR. The Employees relation in 
Fig. 4 is represented by the three models, and the size in byte 
for the attributes in Employees relation is given as in Table I. 
The cost improvement of the memory storage is considered 
during one lifespan time and with a frequency of time-varying 
attributes update equal to 5. The results of memory storage 
efficiency for the three models are shown in Table I.  

Note: Snp Stands for Snapshot and His for History.  

TABLE I. COST MODEL OF EMPLOYEES RELATION REPRESENTED BY TTSR, TTHR AND TTMR 

Attribute name S/ 

Byte 

Cost of data representation where  5  

TTSR TTHR TTMR 

  Snp His Total  Snp His Total Snp His Total 

SSN 9 9 27 36 9 27 36 63 45 108 

Name 100 100 300 400 100 0 100 100 0 100 

B_date 10 10 30 40 10 0 10 10 0 10 

Address 20 20 60 80 20 0 20 9 9 18 

Tel_no 9 9 27 36 9 0 9 9 0 9 

Spr_SSN 9 9 27 36 9 0 9 9 0 9 

Dno 3 3 9 12 3 0 3 3 6 9 

Salary 6 6 18 24 6 0 6 6 12 18 

Rank 1 1 3 4 1 0 1 1 0 1 

VST 10 10 30 40 0 30 30 70 50 120 

VET 10 10 30 40 0 30 30 70 50 120 

LSST 10 10 30 40 10 0 10 10 0 10 

LSET 10 10 30 40 10 0 10 10 0 10 

index 1 0 0 0 0 3 3 0 0 0 
( )S    20 0 0 0 0 60 60 0 0 0 

Total Cost  1176   371   542 

Many parameters affect the cost improvements of TTHR 
over other models, Fig. 5 shows the cost improvements where 
all the parameters have been fixed with varying the values of 
the frequency of time-varying attributes update from 5 to 440 
times in a period of time. TTHR has achieved significant 
saving in storage memory space that ranges between 68%-81% 
over TTSR approach, and 10%-32% over TTMR that is based 
on the average change of the time varying attributes. TTHR has 
achieved some significant saving in storage memory space that 
is roughly equal or greater than TTMR. The proposed temporal 
data model is suggested for its simplicity as fewer database 
objects will be needed to capture the temporal aspects of time-
varying data compared to TTMR. Moreover, applying TTHR 
to an existing database application does not require many 
changes compared to TTMR. Moreover, the only need is to 
create the auxiliary relation to capture the historical changes of 
time-varying attributes but without touching the system itself. 
This is contrary to TTMR, where the relations need to be 
decomposed and the integrity constraints need to be redefined. 

 
Fig. 5. Cost improvement of Employees relation represented by TTSR, 

TTHR and TTMR in one lifespan time [0, 10], and variations of  . 
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Fig. 6. Cost improvement of Employees relation represented by TTSR, 

TTHR and TTMR in one lifespan time. 

Fig. 6 shows the storage costs of the temporal relational 
approach after freezing all the parameters and varying the sizes 
of the time-varying attributes. For these values, TTSR-based 
approach shows worse storage costs comparing to TTMR-
based and TTHR-based approaches. However, the graph shows 
a positive indication that TTHR can be used as an efficient 
storage that is better than TTMR-based approach until the 
value of 150 byte. After this point it seems that both TTHR and 
TTMR have the same storage efficiency.  

Fig. 7 shows the storage efficiency after freezing all the 

parameters and varying the sizes of key attributes ( K ) value 

variations. We increase value from 9 to 300 bytes. As we can 

see, the TTHR-based approach shows the best storage 

efficiency than the others. However, it is shown that the 

difference of storage efficiency is marginal between the 

TTHR-based approach and the TTMR-based approach. 

 
Fig. 7. Cost improvement of Employees relation represented by TTSR, 

TTHR and TTMR in one lifespan time [0, 10], and variations of Key 

attributes' size ( K ). 

For query processing time, an experiment has been carried 
out on the database shown in Fig. 4 with a data set consists of 
108,004 instances of Employees. This data set has been 
randomly generated in the three models to simulate real-world 

scenarios (the same approach has been taken by Anselma [23]. 
The SQL Trace facility and TKPROF (Transient Kernel 
Profiler) are two basic performance diagnostic tools that have 
been used for queries analysis in the three approaches. 
TKPROF program outputs the parameters of each query as 
CPU, Elapsed, Disk, and Query such that: 

CPU(C): is time in seconds executing.  

Elapsed (E): is the time in seconds executing. 

Disk (D): is the number of physical reads of buffers from 
disk. 

Query (Q): is the number of buffers gotten for consistent 
read. 

Queries from 1 to 10 have been run in sequence for each 
approach. Table II shows the experimental results of executing 
these queries for each Model. 

TABLE II. AN OUTPUT OF QUERY PROCESSING EXPERIMENTAL RESULTS 

 TTHR TTSR TTMR 

Tempo

ral  
Q C D Q C D Q C D Q 

Curren
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Q
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00 
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Q
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0.

00 
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0.

00 
0 6 

Q
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0.

00 
2 5 

0.

00 
2 11 

0.

00 
2 11 
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ced 

Q
6 

0.
15 

6 
83
32 

2.
43 

0 
3518
72 

0.
17 

0 
755
2 

Q
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0.

17 
0 
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06 

2.

17 
0 
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96 

0.

10 
0 

767
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Q
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1.
31 

0 
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38 

5.
84 

0 
6966
45 

1.
70 

0 
805
4 

Sequen

ced 

Q

9 

0.

01 
12 18 

0.

01 
5 30 

0.

00 
6 12 

Q

10 

0.

29 
0 

28

69 

1.

03 
0 

9527
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0.

28 
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Fig. 8. Query processing time for the 10 queries in the three models. 
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Fig. 9. Number of Buffers read in the three models for the 10 Queries.  

From Table II, Fig. 8 and 9 have been plotted to compare 
the performance of each model in graphical view. It can be 
shown that TTSR satisfies good query performance in current 
query (Q1-Q5); the same performance is achieved by TTHR. 
However, TTMR costs a lot for current queries, but it costs less 
for both, sequenced (Q6, Q7 and Q8) and non-sequenced (Q9, 
and Q10) queries and the same performance is achieved by 
TTHR. TTSR costs a lot for both sequenced and non-
sequenced queries due to coalesce function that needs to be 
applied to the query results to make sure the query result is in 
snapshot equivalence.  

SQL developer suite with TKPROF has been used for these 
experiments. Measuring the performance of the query by only 
running the query few times is a pretty bad idea - equivalent to 
just accepting that the cost of the explanation plan that tells you 
the best query. Therefore, it is really a need to take into account 
what resources query is taking up and therefore how it could 
affect the production system. 

V. CONCLUSION 

The 1NF temporal data model proposed in this study uses a 
novel approach for modeling and implementing interval-based 
temporal database in relational framework [24]-[27]. In our 
approach the issues concerning the memory storage and query 
efficiency, and application development procedures are 
considered. All of these issues ensure the development of 
efficient and reliable temporal database over conventional 
DBMS. In this paper, we proposed an approach for 
representing temporal data that achieves saving in memory 
usage range from 68-81% over other temporal representations, 
and speed up the processing time of current snapshot data. 
Finally, our approach has better storage representation, reduce 
query complexities.  
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