
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

173 | P a g e

www.ijacsa.thesai.org

A 1NF Data Model for Representing Time-Varying

Data in Relational Framework

Nashwan Alromema

Department of Computer Science,

Faculty of Computing and Information Technology

Rabigh, Saudi Arabia

Fahad Alotaibi

Department of Information System,

Faculty of Computing and Information Technology

Jeddah, Saudi Arabia

Abstract—Attaching Date and Time to varying data plays a

definite role in representing a dynamic domain and resources on

the database systems. The conventional database stores current

data and can only represent the knowledge in static sense,

whereas Time-varying database represents the knowledge in

dynamic sense. This paper focuses on incorporating interval-

based timestamping in First Normal Form (1NF) data model.

1NF approach has been chosen for the easily implementation in

relational framework as well as to provide the temporal data

representation with the modeling and querying power of

relational data model. Simulation results revealed that the

proposed approach substantially improved the performance of

temporal data representation in terms of required memory

storage and queries processing time.

Keywords—Time-oriented data model; time-varying data, valid-

time data; transaction time data; bitemporal data; data model;

N1NF; 1NF

I. INTRODUCTION

Temporal Database (TDB) is database modeling technique
that is considered as repositories of time-dependent data.
Several research works have been conducting in this research
area starting from the 1970s [1]. Some of these works deal with
storage structure and temporal DBMS prototype, while others
concentrated on query processing temporal time indexing [2]-
[6]. The research work by Snodgrass in [7] treats the problems
of temporal databases models, integrity constraints, storage
structures, and implementation techniques using different
DBMS. A debate within the last three decades was on how to
model, implement and query temporal database in efficient
way [8]. Since conventional relational database is used to store
and process the data that refer to the current time [2],
commercial DBMS and standards for the query language do
not fully support temporal features [3], [21]. There are two
fundamental methods of creating temporal database
applications. The first one is an integrated method where the
time-varying features of the data are supported by an extended
or modified internal model in DBMS. The second method is
the stratum method, in which the temporal features of the data
are implemented in top of standard DBMS by a layer over
DMBS which then changes the outcome into its temporal data
[9]. The greatest efficiency is offered by the first method
however the second method has greater popularity due to its
realism.

A number of temporal data models have been proposed
since the early 1980s. These data models are based on schema

extension approach of relational data model. There are two
common approaches for these extensions, tuple timestamping
with First Normal Form (1NF), and attribute timestamping
with Non-First Normal Form (N1NF). The study in [17]
generalized the models under 1NF approach into Tuple
Timestamping Single Relation (TTSR), and Tuple
Timestamping Multiple Relations (TTMR) according to the
way of data representations. TTSR approach is not efficient
since it introduces redundancy, where attribute values that
change at different time are repeated in multiple tuples.
However, TTMR approach have solved the problem of data
redundancy in TTSR, the problem with this approach is that the
fact about a real world entity is spread over several tuples in
several relations, and combining the information for an object a
variation of join known as temporal intersection join would be
needed which is generally expensive to be implemented. For
N1NF, the problem with this approach, as stated in Jensen [6],
there are some difficulties of temporal data models capturing
an object in a single tuple such that “the models may not be
capable of directly using existing relational storage structures
or query evaluation techniques that depend on atomic attribute
values”. The study in [3] shows an approach of partial
implementation of temporal database capabilities in top of
widely used commercial DBMS, the model in this study is
categorized under TTSR. This study also lacks most of
temporal features as well as data redundancy of the proposed
representational data model. The study in [10], [19] show an
approach of temporal database representation in standard SQL
under TTMR approach, the study explains number of examples
of temporal data and how temporal manipulations of such data
can be effected using standard SQL. A Column Level
Temporal System (CLTS) proposed by Kvet in [20] is TTMR
approach, the main issue of this model is to keep the duplicity
of data minimal. As reducing the duplicities of the data is
considered one of the important factors which improve
processing speed to get a current snapshot and all data during
life cycle of the database object [22]. Atay and Tansel in [18]
proposed the Nested Bitemporal Relational Data Model
(NBRDM) under N1NF approach [18], NBRDM model
attached bitemporal data to attributes and defined a bitemporal
relational algebra and a bitemporal relational calculus language
for the proposed data model.

In this paper, we describe an approach for implementing
temporal database in the framework of relational data model
over the most widely used commercial DBMSs (Oracle
RDBMS). The proposed approach does not significantly

This Research Project is sponsored by the Deanship of Scientific Research
(DSR)-King Abdulaziz University –Jeddah-Saudi Arabia

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

174 | P a g e

www.ijacsa.thesai.org

change the procedures of designing and developing
information systems. The major contributions of this research
project can be formulated as follows:

 Describe the meaning and use of temporal features in
the framework of relational data model.

 The approach is restricted to use the existing technology
of designing and implementing databases applications.

 Incorporating temporal aspects need to minor
modifications without affecting the performance of the
parts of the system that do not use temporal data.

 The proposed implementation approach represents the
temporal database in a data model that has expressive
power, has less storage memory comparing to other
works under TTSR approach, and efficient query
processing.

 The implementation is easy, does not cost much, and
based on relational database not on XML files as
in [11].

This paper utilizes the following concepts on temporal
database theory: the representation of real world time as a line.
Every point in the line is referred to as an instance, a period is
the time separating two instances, and an interval is the
duration of loose segment of the time-line. Temporal data types
in a temporal database can be identified as an instant of time,
period and interval [7]. It is conceivable that time extends
infinitely into the past of the future, as such when the relational
database model has time introduced to it, it should be limited to
delineate a particular time. Time-line chronons is the term for
the reading of the time-line clock in the time-line. A time
instance is delineated by each tick of a clock. To increase
familiarity with temporal description times on a time line clock
are expressed though a calendar.

The time line clock chronon is defined as day, month, and
year on the Gregorian calendar. The date “22nd of June 2009”
is an example. Granules are time points and the dividing
scheme that splits the time line into a measurable collection of
time segments is referred to as granularity and is an aspect of
all temporal information [12]. Temporal databases are depicted
by the discrete time model because it is easy and comparatively
simple to use [9]. Temporal databases have formulated a
taxonomy of time which identifies when a particular event
happens or when a given statement can be regarded at factual.
User-defined time is one interpretation of the time feature
employed in temporal databases. It is expressed in the data that
is of the date/time kind (the birth date column for example) and
does not suggest anything correlated to the validity of the other
columns or temporal time, wherein the column(s) that contain
date/time information types are employed to mark the related
tuple’s time aspects. There are three categories of temporal
time. Valid time: where in the related time is employed to
determine when a particular statement (event-based) happened
or when a particular statement (interval based) is regarded as
being factual in the real world [13]. Transaction time: the
related time is in reference to the period when the data was

actually retained inside the database. Bitemporal-time: the
related time is connected to the yield of valid-time and
transaction time in the model of bitemporal data. Tuples are
regarded as valid at instances of that time by rollback databases
[7], [8].

II. METHODOLOGY

Designing any database systems usually goes through three
phases, namely, (1) Conceptual design; (2) Logical design; and
finally (3) Physical design. The temporal aspects of database
schemas are complex and difficult; therefore it is an error-
prone to design. In designing temporal database, the same steps
as the mentioned above can be followed, in addition to that,
defining new features concerning the time aspects because both
conventional conceptual model and relational data model do
not fully support time-varying aspects. The following steps
summarize the proposed methodology for designing temporal
database in relational data model.

 Designing the conceptual model for the business logic
of the system and map it into conventional relational
data model using the mapping methodology described
in [5], [7], [10], where all temporal aspects that need to
be modeled are ignored at this step. All conventional
methods which are used to construct good relational
database schema by analyzing the design and applying
different forms of normalization should take place in
this step.

 Adding the temporal aspect for all the database objects
that need to keep the historical changes of the entities’
data.

To make this process clear, an example (proof of concept)
of the conceptual data model shown in Fig. 1 for EMPLOYEE
and DEPARTMENT relations are mapped into relational data
model shown in Fig. 2. Adding the temporal aspects to these
two relations is shown in Fig. 4. These approaches can apply to
any other domain of database technology like biomedical
domain, business intelligent, metrological and any other
domains.

Fig. 1. The conceptual schema of EMPLOYEE and DEPARTMENT

database entities.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

175 | P a g e

www.ijacsa.thesai.org

Fig. 2. The relational schema of EMPLOYEE and DEPARTMENT database

relations.

III. REPRESENTATIONS METHODOLOGY

The methodology of representing temporal database in this
paper is accomplished by using Tuple Timestamp Historical
Relational (TTHR) data model. Fig. 3 shows the conceptual
structure of TTHR model. The database applications is directly
connected to the main tables which hold the current valid time
data, this feature gives the advantages that TTHR can be
adapted to any functioning database systems without any
changes to the infrastructure. The historical changes of each
time-varying attributes in any table are stored in corresponding
temporal database table (auxiliary tables) as shown in Fig. 3.
The data representation of temporal database in TTHR is
accomplished by firstly, defining the database object (entities
/relations) for which we want to track the historical changes of
the stored data, then we add for each such relations two
additional columns Lifespan Start Time (LSST) and Lifespan
End Time (LSET), which indicate the beginning and the end of
the time interval within which the database object exists in the
modeled reality [14], [19]. Secondly, for each such entity
/relation, we create an additional relation with the same name
as in the basic schema with the suffix VT, we use VT to
indicate the valid time model. Example, the relational table
EMPLOYEE in Fig. 2, is represented into temporal database
(Fig. 4) by adding two additional columns LSST and LSET,
after that we create a new table, the schema representation of
Table_VT as an example of EMPLOYEE_VT will be:
EMPLOYEE_VT= (SSN, index, Update_A_VST, VET).

Fig. 3. The conceptual structure of TTSR Model.

The data in the basic table keeps the latest updated data
(current data), whereas Table_VT stores the historical changes
of the validity of the updated attributes in the basic table.

Fig. 4. The relational schema of EMPLOYEE and DEPARTMENT

database relations.

A. Modification Operation

Modify temporal data database is a challenges because of
the time dimension [15]. In this representational data model,
we consider the insertion, deletion, and update of records in the
table of the basic schema, the data in the Table_VT are updated
automatically using database triggers or application’s function.
The following is the rules of data modification operations:

Insertion Operation: Inserting a new record into a table of
the basic schema is accomplished as in conventional database,
in addition to that the value of LSST field is set to the current
date, and the value of the LSST field is set to a very far future
time, for example, 1/1/3000. This date is always greater than
the current date for the lifespan of the application. Inserting
data into Table_VT is accomplished as consequences of
updating any attribute in the table of the basic schema as it will
be explained in updating operation. Thus, the data in the table
of the basic schema always represents the latest current valid
data.

Updating Operation: updating a record in a table of the
basic schema results into the following actions: 1) If the
updated data is an indexed attribute(s) as shown in Fig. 4, then
the old value of this attribute and its index with the same value
of the primary key and VST and VET fields are inserted into
Table_VT, the value of VST and VST can be calculated as
follows: (a) if this is the first time to update this attribute (this
attribute has not been updated before or no record for this
attribute is found in Table_VT), then VST value will have the
same value as LSST in the table of the basic schema, and VET
will be having the value of the current time. (b) If this attribute
has been updated before, then VST will be having the value of
VET plus one time granule of the latest update of this attribute.
An example of this case is shown in Fig. 3, when the value of
the SALARY attribute indexed by 5 has been updated (at time
point '1/1/1996') for Richard, and then we look at Table_VT at

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

176 | P a g e

www.ijacsa.thesai.org

that time point, since no record has been found for this attribute
and for this object, thus a new record for the updated value of
this attribute and corresponding database object has been
inserted into Table_VT table with these values:

(: 99, : 5, _ : 4,000, : '1/ 7 /1990',
: '1/1/1996')

SSN index Update A VST
VET .

Another scenario is shown in Fig. 4, for database object Jon
when the SALARY attribute indexed by 5 has been updated (at
time point '1/1/1998'), then we look for the latest update for
SALARY attribute for Jon in Table_VT which is on
'31/12/1990', We add one day (assumed in our example the
time granularity is one day). The new row is will be having
these values:

(: 89, : 5, _ : 5,000, : '1/1/1991',
: '1/1/1998')

SSN index Update A VST
VET .

2) If the updated data is LSET attribute with instance time
not equal to 1/1/3000, then this action is considered as logical
delete of this record and this record stops to be a life or valid,
as if one employee has resigned from the company.

 Delete Operation: Delete a record form the basic schema is

accomplished by setting the value of LSET to current time as

explained in update operation.

In our proposed schema representation Table_VT tables
keep the historical changes of the validity of the updated
attributes in the basic table. Each record in Table_VT
represents the validity of the changed attributes in the basic
table during the time interval [VST, VET]. The historical
changes of the validity is continuous, the timestamp in VST
field coincides with the value of VET field of the preceding
record with the same primary key. Fig. 3 shows the schema
representation and the update operations on the basic schema
tables (EMPLOYEE and DEPARTMENT) and the temporal
tables (EMPLOYEE_VT, DEPARTMENT_VT).

The scheme described in Fig. 4 does not address many
subtle issues specifically for temporal database [16]. An
example of these issues are, constraints on the upper and lower
time boundaries of interval-based data model, since the time is
discrete, the above schema cannot guarantee that LSST should
be less than LSST in the basic schema, and VST should be less
than VET in temporal schema. Overlapping of the same fact
that belong to the same object, an example the SALARY of an
employee is $5000 in the interval [1/1/1990, 1/1/1999] and
different salary $7000 is valid in the interval [1/1/1996,
1/1/2005]. Referential integrity constraints, it might have an
object in reference relation refers to another object in the
referee relation in different time points. As an example, in
EMPLOYEE relation (reference) the foreign key Dept_no can
have the ID value of DEPARTMENT relation (referee) that is
either logically deleted or have interval lifespan time [LSST,
LSET] that is not fully cover the interval lifespan time of
EMPLOYEE object. Although, these issues can’t be verified
by conventional DBMS, these problems can be solved by an
additional check through triggers of applications functions.

Although the historical changes of data are in temporal
schema and the latest current valid data available from the
basic schema, our approach is useful for the following reasons:

 Integrity constraints in the basic schema as well as
temporal schema can be defined and implemented in
DBMS easily without any major update to the existing
applications. The purpose of this implementation is to
ensure the creation of highly reliable databases.

 The proposed implementation removes data redundancy
and satisfied high level of memory storage saving
comparing to other implementation techniques
discussed in [17], reducing the redundant data will help
to facilitate efficient query execution.

 The tables in the temporal schema are updated only by
insert operation when specific attribute in the basic
schema table updated, thus the growth of this table
depends on the frequency of attributes updates.

The current valid data in basic schema table helps in
efficient query execution because some queries does not need
to have temporal data. Temporal-joins involving data from the
temporal schema are less efficient than joins of the tables in the
basic schema.

B. Query Operations

Querying temporal databases represented by our approach
using standard SQL2 can be classified into current query,
sequenced query and non-sequenced query [7], [27]. Current
query provide the current valid data which is in the basic
schema table, while sequenced query provide the data that
were valid during a certain interval of time where this data can
be obtained from basic schema, temporal schema, or both
depends on the complexity of the query, non-sequenced
provide the historical changes of database objects’ data. This
work presents the following types of queries:

Current Queries: Current query is an ordinary query which
provides current values of the data regardless of the time
dimension. We project current queries on the basic table
schema where the latest current values are stored for example
the query that selects the current SALARY and RANK of an
employee is

SELECT E.SALARY, E.RANK

FROM EMPLOYEE E

WHERE E.SSN = 89;

Some current queries involving time predicates for
excluding/including valid/not valid lifespan entities, an
example, the query that selects the latest SALARY of not valid
lifespan employees is

SELECT E.SALARY

FROM EMPLOYEE E

WHERE E.LSET <> '1/1/3000';

This query selects all employees whom are logically
deleted by setting the value of LSET to an instance time not
equal to the END_TIME which we consider it in our approach
equal to this date '1/1/3000'.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

177 | P a g e

www.ijacsa.thesai.org

Sequenced Queries: Sequenced query provide the data that
were valid during a certain interval of time, and the result of
the query is valid-time table unlike current query which returns
snapshot state. For example the query that returns the salary of
an employee in a certain point of time or in a certain interval of
time is

Q1 for point of time t

SELECT ES.SSN, ES.upadated_v

 FROM EMPLOYEE_VT ES

 WHERE ES.index = 5 and

 ES.VST <= t and

 ES.VET > t and

 ES.SSN = 89;

Q2 for interval of time [t1 ,t2]

SELECT ES.SSN, ES.upadated_v

FROM EMPLOYEE_VT ES

WHERE ES.index = 5 and

 ES.VST < t2 and

 ES.VET >= t1 and

 ES.SSN = 89;

Q1 returns exactly one record, whereas Q2 returns one or
more records because the time intervals for the salary historical
changes of same employee might have an overlap with the
input time interval [t1 ,t2]. No duplicated records will be
returned for both queries because the data in our model are
coalesced [10]. In contrast to other models that need more
processing for coalescing function.

Non-sequenced query: provide the historical changes of a
database objects’ data during their lifespan time, the result of
the query is valid-time table like sequenced query. The
complexity of Non-sequenced queries depends on number of
tables involved because the intervals in which the selected
records were valid must be overlap for different tables. For
temporal queries we need to define three functions for time
interval manipulations as follows:

 Overlap([X,Y], [Z,W]) function takes two time intervals
as a parameters, and returns one (1) if the time intervals
are overlap and zero (0) otherwise. The following the
code in SQL2 for this function.

CREATE FUNCTION OVERLAP (X IN NUMBER, Y

IN NUMBER, Z IN NUMBER, W IN NUMBER)

RETURN NUMBER IS

BEGIN

 RETURN

 CASE

 WHEN X < W AND Y >= Z

 THEN 1

 ELSE 0

 END;

 END OVERLAP;

 Upper_bound(Y,W) function takes the tow upper
boundaries of two time intervals as a parameters, and
returns upper boundary of the overlapped time intervals.
The following is the code in SQL2 for this function.

CREATE FUNCTION UPPER_BONUD (Y IN

NUMBER, W IN NUMBER) RETURN NUMBER

IS

BEGIN

 RETURN

 CASE

 WHEN Y >= W THEN W

 WHEN Y < W THEN Y

 ELSE 0

 END;

 END UPPER_BONUD;

 lower_bound(X,Z) function takes the tow lower
boundaries of tow time intervals as a parameters, and
returns lower boundary of the overlapped time intervals.
The following is the code in SQL2 for this function.

CREATE FUNCTION LOWER_BONUD (X IN

NUMBER, Z IN NUMBER) RETURN NUMBER

IS

BEGIN

 RETURN

 CASE

 WHEN X >= Z THEN X

 WHEN X < Z THEN Z

 ELSE 0

 END;

END LOWER_BONUD;

Since the current data are in the basic schema table and the
historical changed data are in the temporal schema, then
combining these data into one place can be accomplished by
database views. We can create view for each time-varying
attributes in the basic schema table, for example the
SALARY_V view can hold the track log data including the
current data for the salaries of all employees. The SALARY_V
view is defined as follows:

CREATE VIEW SALARY_V AS

 SELECT E.SSN, E.SALARY,

 MAX (CASE

 WHEN ES.VET IS NULL

 THEN E.LSST

 WHEN ES.VET IS NOT NULL

 AND E.LSST > ES.VET

 THEN E.LSST

 WHEN ES.VET IS NOT NULL

 AND E.LSST < ES.VET

 THEN (ES.VET +1)END)

 AS VST, E.LSET AS VET

FROM EMPLOYEE E LEFT OUTER JOIN

 (SELECT ES.SSN,

 TO_NUMBER(ES.UPADATED_V), ES.VST,

 ES.VET FROM EMPLOYEE _VT ES

 WHERE ES.ATT_INDEX = 5)

 ON E.SSN = ES.SSN

GROUP BY E.SSN, E.SALARY, E.LSET

UNION

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

178 | P a g e

www.ijacsa.thesai.org

SELECT SSN, TO_NUMBER(UPADATED_V), VST,

VET

 FROM EMPLOYEE _VT WHERE INDEX = 5;

An example of the query that returns the track log of the
salary of an employee for his lifespan time is

SELECT * FROM SALARY_V

 WHEN SSN =89;

Another query that selects the track log information about
salary and address (ADDRESS_V is view created by the same
way as SALARY_V) of an employee is

SELECT S.SSN, AD.ADDRESS, S.SALARY,

LOWER_BONUD(S.VST, AD.VST)AS VST

,UPPER_BONUD(S.VET,AD.VET)AS VET

 FROM ADDRESS_V AD, SALARY_V S

 WHERE SSN =89 AND AD.SSN = S.SSN

 AND OVERLAP (AD.VST,AD.VET, S.VST,

 S.VET) = 1;

Above queries can be applied for any other temporal
information in employee or department tables. With time, the
tracking log query that retains a data for a certain time interval
might have a different data in other time interval.

IV. RESULTS AND DISCUSSION

The performance evaluation of the proposed model is
considered in terms of memory storage efficiency and query
processing time. TTHR is compared with the main models in
literature namely TTSR and TTMR. The Employees relation in
Fig. 4 is represented by the three models, and the size in byte
for the attributes in Employees relation is given as in Table I.
The cost improvement of the memory storage is considered
during one lifespan time and with a frequency of time-varying
attributes update equal to 5. The results of memory storage
efficiency for the three models are shown in Table I.

Note: Snp Stands for Snapshot and His for History.

TABLE I. COST MODEL OF EMPLOYEES RELATION REPRESENTED BY TTSR, TTHR AND TTMR

Attribute name S/

Byte

Cost of data representation where 5

TTSR TTHR TTMR

 Snp His Total Snp His Total Snp His Total

SSN 9 9 27 36 9 27 36 63 45 108

Name 100 100 300 400 100 0 100 100 0 100

B_date 10 10 30 40 10 0 10 10 0 10

Address 20 20 60 80 20 0 20 9 9 18

Tel_no 9 9 27 36 9 0 9 9 0 9

Spr_SSN 9 9 27 36 9 0 9 9 0 9

Dno 3 3 9 12 3 0 3 3 6 9

Salary 6 6 18 24 6 0 6 6 12 18

Rank 1 1 3 4 1 0 1 1 0 1

VST 10 10 30 40 0 30 30 70 50 120

VET 10 10 30 40 0 30 30 70 50 120

LSST 10 10 30 40 10 0 10 10 0 10

LSET 10 10 30 40 10 0 10 10 0 10

index 1 0 0 0 0 3 3 0 0 0
()S 20 0 0 0 0 60 60 0 0 0

Total Cost 1176 371 542

Many parameters affect the cost improvements of TTHR
over other models, Fig. 5 shows the cost improvements where
all the parameters have been fixed with varying the values of
the frequency of time-varying attributes update from 5 to 440
times in a period of time. TTHR has achieved significant
saving in storage memory space that ranges between 68%-81%
over TTSR approach, and 10%-32% over TTMR that is based
on the average change of the time varying attributes. TTHR has
achieved some significant saving in storage memory space that
is roughly equal or greater than TTMR. The proposed temporal
data model is suggested for its simplicity as fewer database
objects will be needed to capture the temporal aspects of time-
varying data compared to TTMR. Moreover, applying TTHR
to an existing database application does not require many
changes compared to TTMR. Moreover, the only need is to
create the auxiliary relation to capture the historical changes of
time-varying attributes but without touching the system itself.
This is contrary to TTMR, where the relations need to be
decomposed and the integrity constraints need to be redefined.

Fig. 5. Cost improvement of Employees relation represented by TTSR,

TTHR and TTMR in one lifespan time [0, 10], and variations of .

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

179 | P a g e

www.ijacsa.thesai.org

Fig. 6. Cost improvement of Employees relation represented by TTSR,

TTHR and TTMR in one lifespan time.

Fig. 6 shows the storage costs of the temporal relational
approach after freezing all the parameters and varying the sizes
of the time-varying attributes. For these values, TTSR-based
approach shows worse storage costs comparing to TTMR-
based and TTHR-based approaches. However, the graph shows
a positive indication that TTHR can be used as an efficient
storage that is better than TTMR-based approach until the
value of 150 byte. After this point it seems that both TTHR and
TTMR have the same storage efficiency.

Fig. 7 shows the storage efficiency after freezing all the

parameters and varying the sizes of key attributes (K) value

variations. We increase value from 9 to 300 bytes. As we can

see, the TTHR-based approach shows the best storage

efficiency than the others. However, it is shown that the

difference of storage efficiency is marginal between the

TTHR-based approach and the TTMR-based approach.

Fig. 7. Cost improvement of Employees relation represented by TTSR,

TTHR and TTMR in one lifespan time [0, 10], and variations of Key

attributes' size (K).

For query processing time, an experiment has been carried
out on the database shown in Fig. 4 with a data set consists of
108,004 instances of Employees. This data set has been
randomly generated in the three models to simulate real-world

scenarios (the same approach has been taken by Anselma [23].
The SQL Trace facility and TKPROF (Transient Kernel
Profiler) are two basic performance diagnostic tools that have
been used for queries analysis in the three approaches.
TKPROF program outputs the parameters of each query as
CPU, Elapsed, Disk, and Query such that:

CPU(C): is time in seconds executing.

Elapsed (E): is the time in seconds executing.

Disk (D): is the number of physical reads of buffers from
disk.

Query (Q): is the number of buffers gotten for consistent
read.

Queries from 1 to 10 have been run in sequence for each
approach. Table II shows the experimental results of executing
these queries for each Model.

TABLE II. AN OUTPUT OF QUERY PROCESSING EXPERIMENTAL RESULTS

 TTHR TTSR TTMR

Tempo

ral
Q C D Q C D Q C D Q

Curren

t

Q
1

0.
00

3 3
0.
00

1 4
0.
00

15 25

Q

2

0.

32

11

93

83

25

0.

40

12

51
8315

1.

10

59

8

114

67

Q
3

0.
01

0
11
99

0.
01

0 1260
0.
03

0 356

Q

4

0.

00
0 3

0.

00
0 7

0.

00
0 6

Q

5

0.

00
2 5

0.

00
2 11

0.

00
2 11

Non-

sequen

ced

Q
6

0.
15

6
83
32

2.
43

0
3518
72

0.
17

0
755
2

Q

7

0.

17
0

12

06

2.

17
0

3518

96

0.

10
0

767

2

Q
8

1.
31

0
95
38

5.
84

0
6966
45

1.
70

0
805
4

Sequen

ced

Q

9

0.

01
12 18

0.

01
5 30

0.

00
6 12

Q

10

0.

29
0

28

69

1.

03
0

9527

2

0.

28
0

203

8

Fig. 8. Query processing time for the 10 queries in the three models.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

180 | P a g e

www.ijacsa.thesai.org

Fig. 9. Number of Buffers read in the three models for the 10 Queries.

From Table II, Fig. 8 and 9 have been plotted to compare
the performance of each model in graphical view. It can be
shown that TTSR satisfies good query performance in current
query (Q1-Q5); the same performance is achieved by TTHR.
However, TTMR costs a lot for current queries, but it costs less
for both, sequenced (Q6, Q7 and Q8) and non-sequenced (Q9,
and Q10) queries and the same performance is achieved by
TTHR. TTSR costs a lot for both sequenced and non-
sequenced queries due to coalesce function that needs to be
applied to the query results to make sure the query result is in
snapshot equivalence.

SQL developer suite with TKPROF has been used for these
experiments. Measuring the performance of the query by only
running the query few times is a pretty bad idea - equivalent to
just accepting that the cost of the explanation plan that tells you
the best query. Therefore, it is really a need to take into account
what resources query is taking up and therefore how it could
affect the production system.

V. CONCLUSION

The 1NF temporal data model proposed in this study uses a
novel approach for modeling and implementing interval-based
temporal database in relational framework [24]-[27]. In our
approach the issues concerning the memory storage and query
efficiency, and application development procedures are
considered. All of these issues ensure the development of
efficient and reliable temporal database over conventional
DBMS. In this paper, we proposed an approach for
representing temporal data that achieves saving in memory
usage range from 68-81% over other temporal representations,
and speed up the processing time of current snapshot data.
Finally, our approach has better storage representation, reduce
query complexities.

ACKNOWLEDGMENT

This paper was supported by the Deanship of Scientific
Research (DSR), King Abdulaziz University. The authors,
therefore, acknowledge with thanks to DSR’s technical and
financial support.

REFERENCES

[1] Findler, N. V., & Chen, D. (1973). On the problems of time retrieval of
temporal relations causality, and coexistence. International Journal of
Computer & Information Sciences, 2, 3, 161-185.

[2] Date, C. D., Darwen, H., & Lorentzos, N. A. (2003). Temporal data and
the relational data model. San Francisco: Morgan Kaufmann.

[3] Novikov, B. A., & Gorshkova, E. A. (2008). Temporal databases: From
theory to applications. Programming and Computer Software, 34, 1, 1-6.
Pleiades Publishing, Ltd., 2008. Original Russian Text

[4] Tansel, A. U. (2004). On handling time-varying data in the relational
data model. Information and Software Technology, 46, 2, 119-126.

[5] Elmasri, R., and Navathe (2000). Fundamentals of Database Systems.
3rd edition. Addison Wesley.

[6] Jensen, C. S., Clifford, J., Gadia, S. K., Segev, A., & Snodgrass, R. T.
(1992). A glossary of temporal database concepts. ACM Sigmod
Record, 21, 3, 35-43.

[7] Snodgrass, R. T., (2000). Developing Time-Oriented Database
Applications in SQL, 1st edition, Morgan Kaufmann Publishers, Inc.,
San Francisco.

[8] Jensen, C. S., Snodgrass, R. T., & Soo, M. D. (1995). The tsql2 data
model (pp. 157-240). Springer US.
http://people.cs.aau.dk/~csj/Thesis/pdf/chapter12.pdf

[9] Patel, J. (2003). Temporal Database System Individual Project.
Department of Computing, Imperial College, University of London,
Individual Project, 18-June-2003,
http://www.doc.ic.ac.uk/~pjm/teaching/student_projects/
jaymin_patel.pdf

[10] Zimányi, E. (2006). Temporal aggregates and temporal universal
quantification in standard SQL. ACM SIGMOD Record, 35, 2, 16-21.

[11] Wang, F., Zhou, X., & Zaniolo, C. (2006, April). Using XML to build
efficient transaction-time temporal database systems on relational
databases. In Proceedings of the 22nd International Conference on Data
Engineering, 2006. ICDE'06 (pp. 131-131). IEEE.

[12] A-Qustaishat, M. (2001). A visual temporal object-oriented model
embodied as an expert C++ Library. ADVANCES IN MODELLING
AND ANALYSIS-D-,6, 3/4, 3-43.

[13] Bohlen, M. H., Busatto, R., & Jensen, C. S. (1998, February). Point-
versus interval-based temporal data models. In Proceedings of 14th
International Conference on Data Engineering, (pp. 192-200). IEEE.

[14] Dyreson, C., Grandi, F., Käfer, W., Kline, N., Lorentzos, N.,
Mitsopoulos, Y., ... & Wiederhold, G. (1994). A consensus glossary of
temporal database concepts.ACM Sigmod Record, 23, 1, 52-64.

[15] Tansel, A. U. (2006). Modeling and Querying Temporal Data. Idea
Group Inc.

[16] Tansel, A. U. (2004). Temporal data modeling and integrity constraints
in relational databases. In Computer and Information Sciences-ISCIS
2004 (pp. 459-469). Springer Berlin Heidelberg.

[17] Halawani, S. M., & Romema, N. A. (2010). Memory storage issues of
temporal database applications on relational database management
systems. Journal of Computer Science, 6, 3, 296.

[18] Atay, C. (2016). An attribute or tuple timestamping in bitemporal
relational databases. Turkish Journal of Electrical Engineering &
Computer Sciences.24 (2016) : (pp. 4305 – 4321). doi:10.3906/elk-
1403-39.

[19] Noh, S.Y., Gadia, S.K. and Jang, H., (2013). Comparisons of three data
storage models in parametric temporal databases. Journal of Central
South University, 20(7), pp.1919-1927.

[20] Kvet, M., Matiako, K. and Kvet, M., (2014). Transaction management in
fully temporal system. In Computer Modelling and Simulation
(UKSim), 2014 UKSim-AMSS 16th International Conference on (pp.
148-153). IEEE.

[21] Snodgrass R, Ahn I. Performance evaluation of a temporal database
management system. Commun ACM 1986; 15:96-107.

[22] Arora, S. (2015). A comparative study on temporal database models: A
survey. In Advanced Computing and Communication (ISACC), 2015
International Symposium on (pp. 161-167). IEEE.

[23] Anselma, L., Stantic, B., Terenziani, P., and Sattar, A. (2013). Querying
now-relative data. Journal of Intelligent Information Systems, 41(2),
 .285-311

http://people.cs.aau.dk/~csj/Thesis/pdf/chapter12.pdf
http://www/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

181 | P a g e

www.ijacsa.thesai.org

[24] Halawani, S.M., AlBidewi, I., Ahmad, A.R. and Al-Romema, N.A.,
2012. Retrieval optimization technique for tuple timestamp historical
relation temporal data model. Journal of Computer Science, 8(2), p.243.

[25] Nashwan Alromema, Mohd Shafry Mohd Rahim and Ibrahim Albidewi,
“A Mathematical Model for Comparing Memory Storage of Three
Interval-Based Parametric Temporal Database Models” International
Journal of Advanced Computer Science and Applications (ijacsa), 8(7),
2017. http://dx.doi.org/10.14569/IJACSA.2017.080741

[26] Alromema, N.A., Rahim, M.S.M. and Albidewi, I., 2016. Temporal
Database Models Validation and Verification using Mapping
Methodology. VFAST Transactions on Software Engineering, 11(2),
pp.15-26.

[27] Ab Rahman Ahmad, N.A., Rahim, M.S.M. and Albidewi, I., 2015.
Temporal Database: An Approach for Modeling and Implementation in
Relational Data Model. Life Science Journal, 12(3).

