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Abstract—Task scheduling is a challenging and important 

issue, which considering increases in data sizes and large volumes 

of data, has turned into an NP-hard problem. This has attracted 

the attention of many researchers throughout the world since 

cloud environments are in fact homogenous systems for 

maintaining and processing practical applications needed by 

users. Thus, task scheduling has become extremely important in 

order to provide better services to users. In this regard, the 

present study aims at providing a new task-scheduling algorithm 

using both firefly and simulated annealing algorithms. This 

algorithm takes advantage of the merits of both firefly and 

simulated annealing algorithms. Moreover, efforts have been 

made in regards to changing the primary population or primary 

solutions for the firefly algorithm. The presented algorithm uses 

a better primary solution. Local search was another aspect 

considered for the new algorithm. The presented algorithm was 

compared and evaluated against common algorithms. As 

indicated by the results, compared to other algorithms, the 

presented method performs effectively better in reducing to 

make span using different number of tasks and virtual machines.   

Keywords—Firefly; make span; simulated annealing; task 

scheduling; cloud 

I. INTRODUCTION  

Cloud computing has recently been introduced as a new 
technology for users. From a historical perspective, the first 
computers used were those of the first generation, mainly the 
mainframes. As time went by, these computers became smaller 
with higher processing power until personal computers were 
developed and distributed amongst all users. Next, the 
technology of networks providing higher processing power 
emerged by connecting a few small personal computers. 
However, processing requirements increased exponentially and 
the need for bigger computing systems became crucially 
essential.  

Thus, smaller networks were privately joined to form 
bigger networks across the internet. By then, millions of users 
had access to the internet mostly never using their computers 
processing power to its full capacity and preferring to give 
away the idle processing time of their computers to be used for 
computational tasks. Therefore, many small computational 
resources were connected; however, it was not possible to 
completely use these sources within the created network, since 
these computers were not purposefully created to handle 
commercial applications. This led to the establishment of a 

new approach. An approach in which the details were hidden 
from the user and users did not need to allocate or control 
infrastructural cloud technologies they were using [1]. 

In layman’s terms, cloud computing was a new user-driven 
model based on users demands with easy access to flexible and 
configurable computational sources such as networks, servers, 
storage areas, practical applications, and services, such that this 
access is rapidly made with the minimum need for resource 
management or intervention by the service provider. In 
general, cloud-computing users are not proprietors of the cloud 
infrastructure, but rather rent these services from third parties 
in order to avoid large costs [2]. These users utilize the existing 
resources in the form of services and only pay for whichever 
sources they are using [3]. Like any other public service, the 
costs are based on the amount of service the user requires [4]. 
Hence, considering that hundreds of people make use of virtual 
machines, manual allocation of computational sources for 
different tasks is very troublesome in cloud technology [5]. 
This highlights the need for an efficient algorithm for task 
scheduling in cloud environments. This scheduler must be 
consistent with environmental changes and change in task 
types [6]. At any moment, millions of users are demanding 
cloud resources. Scheduling this number of tasks is a serious 
challenge in cloud processing environments, especially since 
allocation of optimized resources or task scheduling in clouds 
must be done in accordance with optimized number and need 
of systems within the cloud environment so as to maintain the 
clouds integrity. On the other hand, this scheduling must be 
done in a way minimizing energy consumption within the 
cloud. Ergo, this study tries to present an efficient algorithm for 
task scheduling in clouds using the combination of both firefly 
and simulated annealing optimization algorithms. This study is 
organized as follows: Section II reviews related and previous 
works. Section III discusses and presents a new method. 
Section IV contains the results of the presented algorithm, and 
finally Section V gives a conclusion of the entire study.   

II. REVIEW OF LITERATURE 

Cloud computing is currently made up of various aspects, 
making it a challenging subject. Thus, many researchers have 
made efforts to investigate the various aspects of cloud 
computing [7] and have tried to make virtualization and 
automation technologies focus on improving services in 
clouds. In this regard, task scheduling and reducing energy 
consumption in clouds is a very challenging issue for these 
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environments. Kusic [8] investigated the issue of energy 
management in virtual heterogeneous environments and used 
Kalman filters as a method complying with system demands 
and as a means for prediction and actual implementation.  

Kalman filters are used for estimating future demands in 
order to predict system status and allocate resources 
accordingly. On the other hand, some researchers focused on 
the effects of scheduling virtual machines on I/O virtual 
performance and emphasized on monitoring optimization for 
better I/O performance. For instance, Ongaro et al. [9] studied 
the effect of virtual machine observer on performance and 
presented an idea for arranging processors in an executional 
queue based on remaining and current value. They ultimately 
presented an optimization algorithm for scheduling even I/O 
distribution. However, this scheduling procedure did not take 
into account the workload and the reallocation of virtual 
machines. In [10], Kim presented a task-aware scheduler with 
an emphasis on developing I/O performance.  

This scheduler did not consider the heterogeneous 
workload and variety of weights only focusing on I/O 
performance. Liao [11] presented a scheduler for scheduling 
real time applications for supporting respond time, and instead 
of placing the processor at the end of the executive queue, this 
method compute the state in which the virtual processor is 
inserted based on its delay. Goiri [12] presented a task dynamic 
scheduling policy for allocating informed sources at cloud data 
centers. The presented scheduler worked to stabilize workload 
by connecting large tasks of individual devices with necessary 
hardware, in order to maintain service quality. In other words, 
these methods reduced energy consumption at data centers 
turning off servers. Wood [13] presented a virtual machine-
driven scheduling policy based on using resources including 
processor, memory, and subnet components. However, instead 
of optimizing and scheduling operational energy, his study 
mainly focused on developing an algorithm for avoiding local 
traps. Dorigo et al. presented the ACO algorithm [14]. The 
ACO was a random search algorithm, which used positive 
feedback and followed actual ant colony behavior. In [15] this 
algorithm was used to allocate optimized sources for tasks in a 
dynamic cloud environment in order to minimize make span. 

Liu et al. [16] worked on a scheduling algorithm based on 
genetic and ant colony algorithms. They tried to make use of 
the advantages of both algorithms. This algorithm uses the 
global search in genetic algorithm in order to reach the 
optimized solution faster. It also utilizes initial values for 
pheromones in the ACO algorithm. Guo et al. [17] used a 
formulated particle swarm optimization (PSO) model for 
minimizing process costs. They also tried to use crossover and 
mutation functions of the genetic algorithm along with the PSO 
model. Lakro et al. [18] investigated various variables and their 
optimization in cloud computing environments. They tried to 
present a multi-variable optimization algorithm for scheduling 
and improving performance of data centers. Jia et al. [19] 
investigated scheduling of various tasks of different sizes on a 
set of parallel batch machine and presented a meta-heuristic 
algorithm based on max-min and ant system for minimizing 
make span.  

III. METHODOLOGY AND SUGGESTED ALGORITHM  

Cloud computing is one of the newest technologies today, 
which allows users to send their requests to clouds and pay a 
certain amount of fees based on the service provided. On the 
other hand, cloud environments are in fact homogenous 
systems suitably storing large applications and data for 
services. Considering this, scheduling of these data and large 
applications in these systems is of great importance. The 
present study tries to present a new algorithm based on firefly 
and simulated annealing algorithms called FA-SA in order to 
schedule tasks in clouds. The details of the suggested 
combination are expressed below. The general framework for 
this study is shown in Fig. 1. 

 

Fig. 1. General framework for the study. 

A. Problem Statement  

The allocation of tasks to virtual machines in cloud 
computing systems is a problem, in which m number of tasks, 
V= {t1, t2, …, tm } are to be allocated to certain virtual 
machines. In this study, the total number of tasks are randomly 
selected from 10 to 100 tasks and categorized into three 
different data sets with different number of virtual machines. 
The tasks are made randomly. Also P= { v1, v2, … , vn } are the 
n virtual machines used. All systems are the same, meaning 
tasks are performed in a homogeneous environment. 

B. Possible Solutions  

This study uses a combination of firefly algorithm (FA) and 
simulated annealing (SA). The feasible solution in this study is 
a string of m characters, where m is the total number of tasks. 
According to (1), if task i is allocated to a virtual machine, j, 
the ith place in the relative string, has a value of “j”. 20 virtual 
machines are considered for all m tasks. A feasible solution for 
the problem is shown in Fig. 2. 

Presenting the FA-SA  

Computing make span 

Configuring three random data with 

different VMs and tasks 

Comparison of the suggested algorithm with FA, 

Min-Min, Max-Min, and SA algorithms  

Results 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 2, 2018 

197 | P a g e  

www.ijacsa.thesai.org 

                                                                           

M 

M . . . . 7 6 5 4 3 2 1  

7  . . . . 14 6 2 8 17 1 13 A Solution: 

Fig. 2. A feasible solution: for example, the first task is given to machine I3 

and the second task is given to machine 1. 

C. Objective function in the Suggested Algorithms (FA, SA 

and FA-SA)  

As previously mentioned, an objective function is needed 
for all algorithms in order to schedule tasks and minimize 
amount of make span. Task scheduling is an optimization 
problem in which tasks are to be allocated to sources at certain 
times. In other words: n tasks, j1, j2, …, jn, with different sizes 
are to be allocated to m identical scheduler machines such that 
make span is minimized. Make span is defined as the total 
amount of time required to perform all tasks (after all tasks 
have been done). Recently, this problem has been introduced as 
a dynamic scheduling problem, in which for every task, the 
dynamic algorithm must use the existing information to make a 
decision before the next task comes. This is one of the most 
famous dynamic problems and the first for which a competitive 
analysis was presented by Graham in 1966 [20]. 

D. Overall Stages of Allocating Tasks to Virtual Machines 

using the Suggested FA-SA Algorithm  

Evolutionary algorithms are generally based on population 
and make use of a very suitable global search strategy. The 
firefly algorithm [21] was used in this study. This algorithm is 
a meta-heuristic algorithm inspired by the behavior and motion 
of fireflies in nature. This algorithm is similar to other 
population-based algorithms and computes the optimized 
solution (or near to optimized) in an iterative manner. The 
algorithm starts by performing a search procedure in a 
randomly developed population. Each member of the 
population (location of each firefly in the search space) is a 
possible solution for the problem, which is shown in Fig. 2 
according to (1). Each iteration in the FA algorithm has two 
main stages: Stage 1, evaluating the suitability of the solutions 
and Stage 2, updating the population (establishing a new 
population). These two stages are continuously performed in 
iteration until the termination criteria of the algorithm is 
satisfied.  

The termination condition in this study is the completion of 
all tasks. The FA algorithm is a population-based algorithm 
with the ability to perform a very suitable global search since it 
has a very high convergence rate and each firefly tries to find 
the best state individually; thus, it avoids local optimums and 
searches for the global optimum [22]. On the other hand, the 
SA algorithm has a very convenient local search procedure. It 
is for this reason that both of these algorithms were combined 
in this study to form the FA-SA algorithm in order to benefits 
from the advantages of both of these algorithms for performing 
a better scheduling of tasks in clouds. 

In the presented method, the FA algorithm initiates first in 
order to perform a global search in the search space. After the 

FA algorithm, the SA algorithm is executed to perform a local 
search near the previous solution provided by the FA 
algorithm. In other words, the initial population for the SA 
algorithm is not selected randomly, rather it gets the value 
provided by the FA algorithm which is in fact the optimum 
value provided by the FA algorithm. The general flowchart for 
the suggested method is shown in Fig. 3. The stages of the 
suggested algorithm will be explained in more detail in the 
following section.  

a) Producing a random initial population for the FA 

algorithm): As previously mentioned, the first stage for all 

evolutionary algorithms is producing initial solutions, which 

are mostly done randomly. The initial solutions for the FA 

algorithm in this study are produced considering the following 

regulations: 

1) Perform the following stages for m iterations (where m 

is the total number of tasks): find the virtual machine(s) with 

the least termination time (since the data are random multiple 

machines may have the same value). 

2) Perform the following stages for m iterations (where m 

is the total number of tasks): find the virtual machine(s) with 

the least termination time (since the data are random multiple 

machines may have the same value). 

3) If a virtual machine is found, select the virtual 

machine, otherwise randomly select a virtual machine with the 

least termination time (since data are random multiple 

machines may produce the same value).  

4) Search the initial data set (containing tasks and virtual 

machines) and find the virtual machine selected in stage 2 and 

choose the task with the least time from the unallocated tasks 

for that machine. 

5) If a task exits with the least amount of time, select that 

task; otherwise, randomly select a task.  

6) All tasks are assigned? 

7) no, go to stage 1, otherwise terminate.  

In other words, each task is allocated to a virtual machine 
according to the regulations mentioned above. It is worth 
noting that since the data sets of this study are random in nature 
and according to the regulations, random selection is 
performed two times, the initial population or rather the initial 
solutions are different for each iteration, though due to the 
nature of the regulations, these initial solutions are near 
optimum.  

b) Competency assessment for produced solutions: The 

solutions produced by the FA algorithm are evaluated in each 

iteration after the population has been updated. This evaluation 

works on the basis of the objective function. In order to 

evaluate each member of the population (each firefly), 

allocated tasks for each machine are considered first. Next, 

execution time on each machine is computed and finally 

termination time for all tasks are computed. 

c) Updating population in the FA Algorithm: The firefly 

algorithm was presented by Yang [23] and is inspired by the 

motion and behavior of fireflies in nature. Fireflies produce 

short and rhythmic lights. These rhythmic lights, light radiation 
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rate, and distance are what make two fireflies attract each 

other. Light intensity at a distance of r from the light source has 

a relationship with the reverse squared amount of distance. In 

the firefly algorithm, light can be considered as the objective 

function to be optimized. In short, the firefly algorithm is based 

on the following three principles: 

1) All fireflies are unisexual and each firefly attracts the 

other firefly despite their sexuality. 

2) Attraction of fireflies is proportional to their radiance 

such that the firefly with less light intensity is attracted to the 

one with higher light intensity, and if there is no firefly with a 

higher light intensity in the locality, fireflies move randomly. 

3- The light intensity of fireflies is determined as the objective 

function [24], [25]. In FA algorithm, the location of each 

firefly in m-dimension space determines a solution for the 

optimization problem, where m is the number of optimization 

variables (total number of virtual machines). Considering that 

fireflies’ location is defined in a continuous space, this study 

considers the location of each firefly within the (0,n] range, 

where n is the total number of machines. Therefore, each 

dimension value for each firefly is a value from 0 to n. In each 

iteration of the evaluation stage, each dimension for each 

firefly is rounded up to the nearest natural number that is 

bigger than the current number. 

Therefore, evaluation of fireflies takes place in a discrete 
space. However, fireflies’ motion and attraction are done 
continuously. After determining the time for the solution of 
each firefly using relative objective function, radiance of each 
firefly i is computed using (2) (since radiance in this algorithm 
denotes higher competency, every firefly with a lower 
objective function has a higher   ), where 
                    and    denote error rate (objective 
function) and radiance for the ith firefly, respectively. Each 
iteration selects fireflies with the highest radiance. Then, each 
of the remaining fireflies moves towards the nearest radiant 

firefly. The distance between firefly i and firefly j is computed 
by (3): 

                         
 

                     
                                    

 

    ‖     ‖  √∑           
   

 

   

                           

where xi and xj are the locations of the ith and jth fireflies, 
respectively. d is the number of optimization variables, which 
in this case is equal to the total number of tasks. Movement of 
firefly i towards firefly j is formulated as (4). The second 
expression in this statement shows the attraction if firefly i 
towards firefly j and the third expression shows a random 
movement in the attraction procedure. α and β are two static 
variables that configure the effect of the two expressions when 
firefly i moves. η determines the way fireflies move and is 
usually selected between 0 and infinity. 

                   (     )                                                                                     

d) Addition of local search to the FA algorithm: Three 

types of local searches were added to the firefly algorithm in 

this study, where each type is used with a probability of 1/3 for 

each iteration (generation). These searches include exchange 

mutation, inverted exchange mutation, and a suggested local 

search called hybrid max-min to exchange (HHME). These 

procedures are explained in more detail in the following 

section. 

 Exchange mutation: In this procedure, two machines are 
randomly selected and their tasks are exchanged [26]. 
Fig. 4 shows the search procedure used in the proposed 
algorithm.  
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Fig. 3. General flowchart for the FA-SA algorithm. 
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7 4 1 0 2 6 8 6 5 3 Before mutation:   

 

7 8 1 0 2 6 4 6 5 3 After the mutation: 

Fig. 4. Search procedure used in the suggested algorithm, before exchange 

mutation (current solution) and after exchange mutation (new solution). 

 Inverted exchange mutation: two machines are 
randomly selected and their tasks are inverted [26]. 
Fig. 5. shows the search procedure used in the proposed 
algorithm, before inverted exchange mutation (current 
solution) and after the inverted exchange mutation (new 
solution). 

7 4 1 0 2 6 8 6 5 3 Before mutation: 

 

7  4 6 2 0 1 8 6 5 3 : After the mutation 

Fig. 5. search procedure used in the suggested algorithm, before inverted 

exchange mutation (current solution) and after inverted exchange mutation 
(new solution). 

 Hybrid max-min to exchange (HMME): In this 
procedure, virtual machines with the highest and lowest 
value of termination time are selected and; 1) a 
minimum task from the machine with the highest 
termination time is transferred to the machine with the 
lowest termination time or 2) a task is randomly 
selected from the machine with the highest termination 
time and transferred to the machine with the lowest 
termination time or 3) a maximum task from the 
machine with the highest termination time is transferred 
to the machine with the lowest termination time. 

e) Local search using SA algorithm: the simulated 

annealing, presented in 1983 [27] algorithm, is an optimization 

algorithm that uses local search. The gradual annealing 

technique is used by metallurgists in order to reach a state 

where the solid material is sorted properly with minimized 

energy. In this technique, the substance is placed at high 

temperature then cooled down gradually. During this 

algorithm, each state s in the search space is similar to a state 

of a physical system and the E(s) function which must be 

minimized is similar to the internal energy of the system in that 

specific state. The purpose of this procedure is to transfer the 

system from its initial random state to a state where the system 

has the lowest amount of energy.  

For an optimization problem, the algorithm starts with a 
random initial solution and gradually moves towards 
neighboring solutions in an iterative manner. In each iteration, 
if the neighbor solution (solution

new
) is better than the current 

solution (solution
current

), the algorithm selects the former 
solution as the new current solution. Otherwise, the algorithm 
selects the new solution with a probability of of     
          , where                  is the difference 
between the objective function value of the current solution 
and that of the neighboring solution and T is the temperature 
variable. This algorithm iterates for each temperature, and 

gradually decreases the temperature. The temperature is 
initially high so that the possibility of choosing worse solutions 
is high. However, with the gradual decrease in temperature, the 
possibility of choosing worse solutions decreases and better 
solutions are selected. Therefore, the algorithm converges to a 
proper solution. As seen in Fig. 6, in this study, random 
changes in one dimension of the solution have been selected 
for local search. The possibility for performing this procedure 
is defined as Pm, where the value of each dimension in the 
current solution changes with the probability of Pm.   

9 7 4 1 0 2 8 6 5 3 : Before mutation 

 

9 8 4  1 0 2 7 6 5 3 : After the mutation 

Fig. 6. Local search in the SA algorithm, before exchange mutation (current 

solution) and after exchange mutation (new solution). 

IV. RESULTS  

The suggested FA-SA algorithm was simulated in 
MATLAB and was compared with three data sets and the 
following algorithms: min-min, max-min, firefly, and 
simulated annealing. Comparison results are provided below.  

A. Datasets  

Three different datasets were randomly selected in this 
study considering that the minimum and maximum numbers of 
tasks were 10 and 100, respectively. The number of tasks and 
machines were chosen randomly such that the first dataset, 
name data1, contained 100 tasks and 8 homogeneous virtual 
machines randomly selected according to the mentioned 
criteria. Detailed specification of these three datasets are 
provided in Table I. 

TABLE I. SPECIFICATIONS OF RANDOMLY SELECTED DATASETS 

Max_task Min_task 
Number of 

VM 
Number of 

task 
Type data 

100 10 8 100 Data1 
100 10 20 200 Data2 
100 10 20 500 Data3 

B. Parameter Configuration for Optimization Algorithms  

Configuration circumstances for the FA, SA, and FA-SA 
optimization algorithms are shown in Table II. As can be seen, 
considering that SA is a single-population algorithm, the 
number of iterations in SA is more than that of FA and the 
circumstances for the FA-SA algorithm are a combination of 
those related to FA and SA, since the final solution of FA 
algorithm is used as the initial solution for the SA algorithm.  

C. Evaluation using Makespan  

This section compares the FA-SA algorithm with SA, FA, 
min-min, and max-min algorithms based on objective function 
for computing and minimizing make span. Fig. 7 shows the 
evaluation results of FA-SA and other algorithms on the data1 
dataset. As it is observed, since workload and number of 
virtual machines is lower compared to other datasets, all 
algorithms, except max-min, showed a similar make span value 
and the suggested algorithm outperformed other algorithms in 
reducing make span. It is worth mentioning that all results were 
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based on 10 iterations of the algorithms and were expressed as 
mean values. 

TABLE II. CONFIGURABLE PARAMETERS FOR FA AND SA ALGORITHMS 

Algorithm (Value) 

FA-SA SA FA Parameter 

200  200 FA 

50  50 FA population 

0.05  0.05 FA alpha 

2  2 FA beta 

0.001  0.001 FA gama 

500 500  SA Max_iter 

0.001 0.001  SA T_initial 

0 0  SA T_final 

 

Fig. 7. Comparison of scheduling algorithms on the data1 dataset. 

Results of computing make span using the suggested 
algorithm on the data2 dataset indicate that the FA-SA 
algorithm was more successful in minimizing make span 
compared to other algorithms; thus, it can be said that the FA-
SA algorithm also creates a good workload balance on virtual 
machines. Complete results of this comparison are shown in 
Fig. 8. 

 

Fig. 8. Comparison of different scheduling algorithms on the data2 dataset. 

 

Fig. 9. Comparison of different scheduling algorithms on the data3 dataset. 

TABLE III. MAKE SPAN RESULTS FOR EACH OPTIMIZATION ALGORITHM 

ON ALL THREE DATASETS 

Data3 Data2 Data1 Type algorithm 

391 200 299 Firefly 

388 185 298 Simulated annealing 
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Firefly& Simulated 
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The FA-SA algorithm was further tested on the data3 
dataset compared to the previous datasets, had a higher 
workload. Results of this performance are shown in Fig. 9. 
These results indicate once again that the FA-SA algorithm is 
superior to FA, SA, min-min, and max-min algorithms in 
reducing make span and balancing workload on machines. 
Overall results of 10 iterations of the algorithms with mean 
values are shown in Table III. 

V. CONCLUSION 

Cloud processing, parallel computing and development of 
distributed computations are all new concepts in computer 
sciences. One of the major issues in this regard known as a 
major challenge and an NP-hard problem is the scheduling of 
tasks in cloud computing. Task scheduling in cloud computing 
have been discussed in regards to meta-heuristic algorithms 
such as genetic, ant colony, and other algorithms. However, 
this study aimed to combine two optimization algorithms, 
namely the firefly and the simulated annealing algorithms in 
order to create the new hybrid FA-SA algorithm. Also, a new 
mechanism for producing initial population and a new method 
for local search were presented. The suggested algorithm was 
compared with firefly, simulated annealing, min-min, and max-
min algorithms. Results indicated that the FA-SA algorithm 
can perform much better in reducing make span in different 
scenarios with different numbers of tasks and virtual machines. 

 For future works, we will try to focus our attention on 
energy performance and resource allocation in these systems.  
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