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Abstract—Many disturbances can impact gate assignments in 

daily operations of an airport. Gate Assignment Problem (GAP) 

is the main task of an airport to ensure smooth flight-to-Gate 

assignment managing all disturbances. Or, flights schedule often 

undergoes some unplanned disruptions, such as weather 

conditions, gate availability or simply a delay that usually arises. 

A good plan to GAP should manage as possible stochastic events 

and include all in the planning of assignment. To build a robust 

model taking in account eventual planning disorder, a dynamic 

stochastic vision based on Markov Decision Process theory is 

designed. In this approach, gates are perceived as collaborative 

agents seeking to accomplish a specific set of flights assignment 

tasks as provided by a centralized controller. Multi-agent 

reasoning is then coupled with time dependence aptitude with 

both time-dependent action durations and stochastic state 

transitions. This reflection will enable setting up a new model for 

the GAP powered by a Time-dependent Multi-Agent Markov 

Decision Processes (TMMDP). The use of this model can provide 

to controllers at the airport a robust prior solution in every time 

sequence rather than bringing a risk of online schedule 

adjustments to handle uncertainty. The solution of this model is a 

set of optimal decisions time valuated to be made in each case of 

traffic disruption and at every moment. 

Keywords—Time-dependent Multi-Agent Markov Decision 

Processes; stochastic programming; flight delays; Gate Assignment 

Problem 

I. INTRODUCTION 

More interest in recent years is allowed to providing 
advanced techniques in the air traffic framework. This is 
resulting from the increase of air transport traffic [1]. The 
main objectives are best allocation and management of airport 
and airline resources in the best way effectively and efficiently. 
Caused by the dynamic stochastic operational environment 
conditions of air transport, the scheduling problems currently 
confronted by the airport and airline managers are leading to 
challenging and complex planning problems that involve 
innovative models and solutions. This is triggered by the 
significant diversity of resource segments that have to be 
regarded including terminals, flights, crews, baggage …, and 
most are interdependent. In fact, stochastic disruptions in air 
traffic transport raised the complexity of the resolution models. 
This is progressively more taken under consideration in most 
recent studies. 

The main target of an airport is to guarantee a fluent flights 
traffic. Optimal assignment of aircraft guaranteed to make 
available over time the proper gates. If an aircraft is not 

assigned, it will be forced to wait on the ramp very well as in 
the air; This type of scenarios are quite undesirable on account 
of time wasting and let to flight delays. Also, ramps and 
airspace are as well resources with a limited capacity. 

Gate flight assignment is an essential task of an airport; it 
is the primary activity in airline traffic transport management 
[2]. Moreover, several airports today have severe capacity 
constraints resulting from the increase in air traffic volume. 
The GAP can be regarded as such a problem of constraint 
resource assignment, in which gates represent resources and 
aircraft considered as resource consumers. 

Furthermore, GAP is thought to be a challenging problem 
[3] since it includes very inter-dependent resources integrating 
aircraft, crews, and gates. Therefore, severe disruptions in the 
airport manifested as flight delays are caused by inadequate 
assignment, which reduces the customer services and produces 
inefficient use of gate services and conflicting flights. 

Various circumstances could potentially cause stochastic 
disruptions in gate assignment; it can possibly be interrelated 
to possible gate dysfunction, a flight delay or earliness, 
extreme weather conditions, or for any more causes.  This type 
of daily disturbances might reduce the overall performance of 
the currently assigned gates once associated with actual 
operations. Therefore, even a unique variation in a single 
flight plan could engender a series of disturbances for 
additional aircraft, which have been designated to the same 
gate. This sort of phenomenon is very unwanted in airline 
operations due to its noticeable costly impact. 

Various GAP models and techniques are identified from 
the literature. Static as well as stochastic models are developed. 
Working with methods with an exact solution can be 
obviously more suitable. However, [4] states that these kinds 
of exact methods are actually ineffective to resolve real 
problems. This is because flights in static models are allocated 
to gates depending on the expected flight schedule using fixed 
parameters. Nonetheless, in real operations, stochastic 
disruptions occur frequently, leading to real-time adjustments 
of gate assignments and flight delays. Consequently, 
stochastic methods have been widely motivated in recent 
researches. 

Consequently, to build a significantly better gate flight 
assignment approach, it has to include in the model the 
possibilities of stochastic flight delays that may arise in real 
operations. 
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When it comes to stochastic environments, Markov 
Decision Processes (MDPs) [5] have confirmed to be effective 
in optimal decision making. A derived version of MDPs called 
multi-agent Markov decision process [6] was developed to 
manage some challenges in the standard GAP based MDP 
firstly introduced. In this work, collaborative multi-agent 
based MDPs is built, which are composed of multiple agents 
attempting to produce the best allocation of aircraft to gates. A 
new methodology for GAP is provided and regarded as a 
multi-agent problem that includes robustness for a stochastic 
disturbance. The GAP is therefore designed as a Multi-agent 
MDP that is intended to resolve within the assumption of 
environment uncertainty the GAP. Then, incorporating Time 
dependence to the developed Multi-Agent model enables 
further stochastic planning ability. In this method, the 
stochastic feature is considered caused by flight delays with 
the flexibility to consider additional constraints for the 
constructed model. Gates are designed as agents having a 
centralized controller. Consequently, individual agent or gate 
possesses full visibility of airport operations and so can be 
aware of flights allocated to every gate at the time of planning 
horizon. Built policies take into consideration the time 
dimension. Time-dependent Multi-agent Markov Decision 
Processes allows more real illustration of the Gate problem 
with rewards and transitions varying with time. So TMMDP 
includes Multi agent aspect coupled with a real-valued time 
component. 

This paper is structured as follows: the next section 
provides a literature review. Section 3 shows the MMDP 
model for the GAP.  Section 4 presents the model of GAP in 
stochastic circumstances with time dependence. Furthermore, 
Section 5 will provide experimentations, and at last, 
conclusion and perspective are dressed. 

Airport Gate Assignment Problem is referred to as setting 
an appropriate gate for each arriving aircraft to the airport 
until the time of its departure. It is one among the primary 
components in what concerns the management of airport 
resources. Gates, being a resource, is subject to the next two 
groups of constraints as categorized in literature: strict and 
soft constraints (see [3]). 

The first category is obligatory to represent the problem of 
gate assignment. It comprises these constraints: 

 Single: Each aircraft have to be assigned just to one 
gate. 

 Feasible:  A single gate could be assigned to one single 
aircraft simultaneously. 

Soft constraints are various and can possibly be related to 
either airlines or airports. Mainly common among constraints 
in the literature is about to minimize the total walking 
distances within passenger transfer. (e.g. [7]), or just like 
assigning aircraft to some specified gates, also taking into 
consideration the size aircraft for allocating the gate [8]. It can 
also be minimizing the number of aircraft obligated to wait for 
a gate. 

There are several objective functions in GAP models. 
Some notable ones of literature are cited. These functions are 
like minimizing the total walking distance [7] or the total 

waiting time for passengers such as in [9] or also minimizing 
the number of un-gated aircraft in [2]. Others like minimizing 
the current schedule modification from an initial schedule, or 
also maximizing the preferences of assigning particular 
aircraft to individual gates (e.g. [10]) and minimizing gate 
conflict in [2]. In this paper, the stochastic model will 
implement particularly the last one to minimize conflicting 
assignment due to flights disruptions. 

The GAP formulation is classified into two main types: 
deterministic and stochastic models. In the first kind, just 
static parameters are regarded (including passengers, gates, 
number of flights…); due to stochastic perturbations in real-
world operations deterministic models becomes infeasible. 
Stochastic GAP models have been investigated to consider 
those disruptions in air traffic into concern such as flight 
delays or some sever weather conditions. 

Deterministic models are more a lot discussed in the 
literature, such as [7]. Most have as an objective the 
minimization of the total passenger-walking distance. Lately, 
stochastic and robust models are more reviewed assisting 
operators to act in response to possible uncertain events. 

To illustrate stochastic and robust GAP resolutions in 
literature, [11] displays that having a planned buffer time into 
the flight schedule can increase schedule punctuality. In [12] 
and [9], they use in their GAP a fixed buffer time among two 
consecutive flights assigned to the same gate in order to 
absorb the possible stochastic flight delays. In [12] author 
produces a multi-commodity network flow approach as well 
as in [13]. In [14], author builds up a heuristic approach 
sensitive to stochastic flight delays in a framework that 
consists of three components, a stochastic gate assignment 
model, then a real-time assignment rule, in addition to two 
penalty correction methods. 

In [2], GAP is modelled as a stochastic programming 
model and altered it into a binary programming model; the 
resolution contains hybrid meta-heuristic, a tabu search, and a 
local search. Also, an ant system combined with a local search 
in [15] has been used to an over-constrained airport Gate 
Assignment Problem with the interest of choosing and 
allocating aircraft to the gates minimizing the total passenger 
interconnection. 

Recently, a model based heuristics of Mixed Integer 
Programming in [16] has been presented, it has been 
confirmed to be more efficient when compared to the 
linearized models, and more robust. Likewise, a multi-
objective optimization model of GAP has been offered in [17], 
a particle swarm algorithm for resolution is used for resolution, 
which gives an improved comprehensive service of gate 
assignment regarding robustness. Applying also a 
metaheuristic for resolution, authors in [18] designed a three-
objective problem to the GAP and using a non-dominated 
sorting genetic algorithm for resolution. 

Markov process theory, in general, has been proven for 
application in airline transport like in [19]. Notably, the use of 
MDP model for GAP has been applied in [20] to deal with 
gate disturbances with consideration of aircraft size in the 
assignment, where neighboring gates can just only accept 
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aircraft of a specified size or are possibly blocked. A most 
recent robust GAP with multi-agent MDP model has been 
provided in [21]. 

In a similar idea of incorporating stochastic disturbance for 
establishing gate assignment, a multi-agent system with time 
dependence for modeling with time dependence is used in this 
paper. Multi-agent systems (SMA) are a part of Distributed 
Artificial Intelligence. Their applications are large: game 
theory, humanities, economics, and other real-world 
applications including air traffic control, robotics, and 
networking. SMA methods are interested in connections 
between independent entities. This circumstance is mainly 
examined in SMA as the cooperation that requires complex 
components. 

In planning with multi-agent systems, it is commonly 
supposed to possess are some number of agents, each one with 
their individual group of actions, and a provided tasks to be 
solved recognizing that interaction with the other agents is 
essential. Reinforcement learning has been a practical 
methodology to construct coexisting agents (e.g. [22]) as well 
as Markov games (see, e.g. [23]). In general, each agent may 
possess its personal goals. In this paper, the concern is given 
to the case of fully cooperative agents; where all of the agents 
have a shared similar goal to maximize the total expected 
reward. In particular, where agents are autonomous and 
distributed, a local Markov Decision Process (MDP’s [5]) is 
used to express every single agent’s state and actions space.  
Therefore, the utility of any given system state is similar for 
all agents, and with models of uncertainty and general utility, 
Multi-agent Markov decision process (MMDP) is developed 
by [24] to incorporate such numerous adaptive agents that 
interact to compute some given goals. MMDP has been 
applied in various domains as well as in the air transportation 
(see [25]). 

MMDP is the basis of full observability of the global state 
by every single agent; it is designed as a set of interacting 
learners agents, which are autonomous. These agents have to 
learn in order to cooperate and obtain their assigned goal. It 
can also either centralized or decentralized in term of 
decision-making main feature [26]. Hence, this paper 
incorporates Markov decision processes as a formalism in the 
multi-agent structure (e.g.  [24]). It supposes having a 
centralized controller knowing all information regarding the 
system (Fig. 1), including actions, the global state of the 
system, and rewards; thus the controller possesses the decision 
authority and keeps information distributed among agents. 

Multi-Agent notion can as well be combined with real-
time valued to include time evolution into the multi-agent 
system dynamics. A Time-dependent Markov Decision 
Process (TMDP) is provided by [27] to give this extension. 
This model is composed of stochastic state transitions and as 
well as stochastic time-dependent action durations. The 
actions in TMDP model are stochastic and time-varying: 

 ( )         (   ( ))   (1) 

 
Fig. 1. Centralized control in MMDP. 

Resulting policies are actions to be performed by agents in 
every single time sequence. Then, the real planning window 
can be widespread to problems under uncertainty changing 
with time. 

So, in this formulation as in [28], first, MMDPs consider 
an assignment centered decomposition approach, which is 
intermediate between the join MDP method and the method of 
independent agents. The centralized controller is adopted 
having the complete relevant information regarding the states 
of all agents to allocate jobs and assign jobs and resources to 
agents determined by a task level value functions associated 
with agents. After the jobs are allocated to agents, the 
particular lower level actions of agents are driven by the task 
level value functions till the primary controller reassigns jobs. 
Then, adding time dependence behavior will give a more 
realistic representation of the Gate Assignment Problem, 
inspired by TMDP and coupled with the MMDP approach 
providing a new formalism of time-dependent Multi agent 
MDP. This method will help us to have real-time policies to 
apply in every case of disturbance for the GAP problem. 

II. THEORETICAL BACKGROUND 

Giving the theoretical knowledge, Markov Decision 
Processes (MDPs) are defined (see [5]), and then generalized 
to multi-agent settings. Then, the basic model of Time-
Dependent Markov Decision Process (TMDP) (given by [27]) 
is provided to finally conclude a new extension of MMDP 
depending on time and formalize the Time-Dependent Multi-
Agent Markov Decision Process (TMMDP). 

A. Standard Markov Decision Process 

Considerably, more research interested in problems having 
uncertainty in the planning with possibly conflicting 
objectives. As a tool of artificial intelligence (AI) planning, 
decision-theoretic dress those challenges, especially, Markov 
Decision Processes Theory (MDPs). It finds a significant 
attractiveness in recent researches equally as a computational 
and conceptual model. MDP is defined by a tuple  
          where s is a finite set of states S describing 
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systematic interests, a finite set of actions A featured to the 
agent, and then a reward function R. When an action can take 
an agent from one state to a second one, the results of actions 
is uncertainty described by the probability P considered as 
transition model. A mapping            defines a policy.  
The objective is to identify the optimal policy      
maximizing per each state the expected discounted future 
reward. MDP is considered in this paper to possess an infinite 
horizon with exponentially discounted future rewards by a 
discount factor γ   [0, 1). 

B. Multi-Agent Markov Decision Processes 

The MDP model can be extended to multi-agent systems 
to define The Markov Decision Processes Multi-agent or 
MMDP as in [6]. In this formalism, the same goal of 
maximizing the total expected reward is shared for all agents 
having the same joint utility function.  MMDP can be viewed 
as a generalization of MDP with a single agent; Or, but also a 
special case of Markov games [29] where the payoff function 
is identical for all agents. Let define first the MMDP 
formalism before offering it as a useful framework to 
constitute a new GAP model. 

A MMDP is identified via a tuple <n, S, A, P, R>. Where 
each one action is identified by the set of actions of all single 
agents, it constitutes a joint action. Each element is defined as : 

 n: the total number of agents in the system. 

 S: refers to the set of states  S. 

                     : identifies the set of joint actions 

of all agents,     
 defines the set of local actions 

designed for the agent  . 

 P defines the transition function; it provides the 
probability   (      ) of the system moves from a state s 
into a state s’ once agents run the joint action    . 

 R identifies the reward function.   (      ) is the reward 
received after moving from a state  to a state    
performing an action  . 

Solving a MMDP is about determining a joint policy  
           . Where    corresponds to the policy of a 
local agent. It identifies a function          that gives a 
mapping to any system state to the action of agent  . The joint 
policy will be computed applying the standard algorithm the 
Value Iteration (continue to operating in the general situation 
of decentralized agents, see [18]). 

C. Time-Dependent Markov Decision Processes 

In standard previously defined MDPs, transitions and 
rewards are thought to be stationary functions; they do not 
undergo any change during decision epochs. In literature, 
some approaches like [30] define Stochastic Time-Dependent 
Network where stochastic transition durations are included, 
but transition outcomes are deterministic. A model given by 
[27] is one of the first models to focus on time as an 
independent observable state variable; it is named as Time-
dependent Markov Decision Process. 

Time-dependent Markov Decision Process extends the 
Markov decision process model where a continuous 

observable time dimension is contained in the state space.  
The added time variable allows more real representation of 
large problems with transitions or rewards time-varying. So 
TMDP includes problems with following properties: 

 State transitions are stochastic; 

 Time-dependent action durations are stochastic. 

 Rewards are Time-dependent. 

In the TMDP model, each transition, which arises from 
making an action, is decomposed into a set of possible 
outcomes {µ}. Every single outcome identifies both a 
transition duration and a resulting state. 

The TMDP model decomposes each transition resulting 
from the application of action into a set of possible outcomes 
{µ}. Each outcome describes a resulting state and transition 
duration. 

Formally, the TMDP is defined as in [27] by: 

 S: Discrete space state. 

 A:  Discrete action space. 

 M: Discrete set of outcomes, of the form    
(          ) : 

-      S: is the resulting space 

-       {ABS, REL}: identifies the type of the 

resulting time distribution (if it is absolute or 

relative) 

-   (  ) (If T µ = ABS): probability density function 

(pdf) over absolute arrival times of µ 

-   (δ) (If T µ = REL): probability density function 

over durations of µ 
 L:  (       )  is the likelihood of outcome µ given 

action a, state  , and time t 

 R:   (     ) is the reward associated to outcome µ at 
time t with a duration δ 

In the figure below (Fig. 2), it shows a simple graphic 
representation of TMDP evolution. 

 
Fig. 2. Elementary example of TMDP. 

In TDMDP and at time t, if in a state    agent executes an 
action   , it will be generated outcome µ1 by certain 
probability  (          )  and an another outcome    by a 
probability  (          ) .    represents the transition to    

and    
 gives the transition absolute arrival time, while    
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represents the return to    (failure to leave    ) with a 

duration    
 . Implicitly, a waiting time is inserted before each 

action in the model. 

 
Fig. 3. Representation of pdf types. 

The likelihood functions L governs possible outcomes in 
the model. Time distributions in a TMDP could be either 
―relative‖ (REL) or ―absolute‖ (ABS) as shown as an example 
in Fig. 3. 

The TMDP model can be represented by the Bellman 
equations below: 

  (   )     
   

 (     ) 

 (     )   ∑  (       )  (   )

   

 

 (   )   ∫   (  )  
 

  

(         )      (  
    )                         ( ) 

(            ) 

 (   )   ∫   (  )  
 

  

(         )      (  
    )     

(            ) 

Where 

 (   ) : Utility associated to the outcome µ in time t 

  (   ) : Time-value function of the immediate action 

 (     ) : Expected Q time-value through outcomes. 

The resolution of this model is performed using Bellman 
equations, (2) representing an undiscounted continuous-time 
MDP. At each state, the optimal time-value function is a 
piecewise linear function of time, which could be precisely 
calculated by value iteration [27].  The TMDP model is more 
general than semi-Markov decision processes [31] that have 
no notion of absolute time. With absolute time included in the 
state space, comprehensive set of domain objectives can be 
modeled beyond the objective to minimize expected time, like 
for example the probability of designing a deadline.  Actually, 
the variable time dimension may represent further quantities; 
it can consider planning with the non-linear utilities, or also 
with continuous resources. 

D. Time-Dependent Multi-Agent Markov Decision Processes 

Based on the two previous definitions of MMDP and 
TMDP, a new formalism is defined combining between those 
approaches. So, it is called Time-Dependent Multi-Agent 
Markov decision process TMMDP. This is a MMDP seen as 
cooperative multi-agent systems as in [6] or associated with a 
time dependence capabilities as defined by [27]. MMDP is 
then extended to take a continuous observable time dimension 
contained in the state space. Supposing time variable is 

common between agents, a global time is associated to all 
agents. 

A TMMDP is defined by: 

 n : Number of agents. 

 S : refers to the set of states    

                     : The set of joint actions for the 

agents   is the set of local actions of the agent    
. 

 M: Discrete set of outcomes, of the form    
(          ) : 

-      S: the resulting space 

-       {ABS, REL}: identifies the type of the 

resulting time distribution (absolute or relative) 

-   (  )  (If T µ = ABS): pdf (probability density 

function) over absolute arrival times of µ 

-   (δ) (If T µ = REL): pdf over durations of µ 

 L:  (       ) is the likelihood of outcome µ given join 
state  , time t and join action   (       ). 

 R:   (     ) Reward attached to outcome µ at time t 
for all agents with duration δ. 

 
Fig. 4. TMMDP policy representation 

The aim of defining TMMDP formalism is to model and 
solve large real problems of planning under uncertainty taking 
into account either cooperative agent property and time 
evolution. Resulting policies are actions to be performed by 
agents in every time sequence (see Fig. 4). 

III. THE PROPOSED APPROACH 

A. Multi-Agent Reasoning 

Various efforts made in the literature to manage 
uncertainty (see Section 2). With the Objectif to build a robust, 
a multi-Agent based method is selected to develop a solution 
that can resist the most to flights disturbances. The choice for 
this specialized background to model the problem. MAS 
methods are getting large approval being an effective 
instrument to solve more complex problems and then designs 
a promising alternative. As well, many advantages related to 
multi-agent reasoning such as the distribution of processing, 
which made some type of problems more simple in conception. 
Additionally, it provides an intelligent alternative to complex 
problems and logical approach of decomposing into individual 
agents that cooperate. 
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In this paper, MAS is considered to be managed by a 
centralized controller, and the solution is composed of all 
possible decisions that could be taken within the planning 
horizon of gates to flights assignment. Therefore, This 
approach supposes there is no need to take real-time 
optimization since it is predetermined the solutions for all 
likely case of disturbances. Hence, for any provided gate 
assignment combination, the solution offers the best decision 
of gate allocation to make. 

B. Time-Dependence Behavior 

The real interest is given to sequential decision problems. 
Theoretical aspect based on MDPs gives a best well-known 
tool to model and solve them, giving optimal results. However, 
real-world problems have additional and specific behavior, 
which is time dependence. MDP reflects only fixed time steps 
between decision epochs, which can be easily modeled as 
iteration steps. This property does not reflect the real evolution 
of problems like the subject of gate assignment. To bypass this 
limitation, Time-dependent MDP (TMDP) has been proposed 
in those models (see the previous section), the transition 
between states is not instantaneous but proceeds in specific 
time t. Also in TMDP, the time is always observable, optimal 
policies give to the agent the best moment to make a decision 
or execute an action due to the state of the system. 

Inspired by other occurrences like the truck dispatching 
system where decisions about truck assignments and 
destinations are made in real-time [32], choosing to benefit 
from temporal aspect and to project it to Gate Assignment 
Problem. Therefore, the rewards associated with action 
outcomes in the time-dependent frameworks will be 
represented as time-dependent functions including more real 
evolution information of the problem. 

C. Multi-Agent Model for the GAP: 

 
Fig. 5. Agents representation 

Before extending the model of GAP to be time-dependent, 
an earlier formulation like in [21] of the Gate Assignment 
Problem with MMDP is presented. The model is given by is a 
tuple <K,S, A, P, R> as a follow (see Fig. 5): 

The State                    is a vector giving the 
diverse feasible combinations of flights indexed by its 
assignment position     (       ) , where k is number of 
gates and      . V represents the set of flights to be allocated 
to gates during the planning horizon (one day in general). 

The set of actions A =                 describes the set of 
joint actions for the agents,    gives the set of local actions of 

the agent   . For each single agent, performing      , will 
match an action of allocation a flight     to the gate i. 

Therefore, each agent is in charge of handling a particular 
gate, and       for agent   considers that there is a set of 
feasible flights to be affected to the gate i.        that are 
appropriated to be allocated to gate i. This supposition 
regarded as a feasibility constraint that describes the possible 
assignment. 

Defining:       set of feasible flights for the gate   at a 

discrete time t. Then: 

    ∑     

 

          (   )                        ( )  

  (      ) gives the probability of transition as : 

                      

It represents the probability of the going from state   into 
another state    when agents perform a joint action      . This 
probability is views as the possibility of modifying assignment 
combination from   to    resulting from executing a re-
assignment action. 

The probability P is integrating the complete stochastic 
information about assignment of gates including stochastic 
delays as well as additional disturbances that impact gate 
assignment and computed as a probability of occurrence. This 
probability utilizes other estimation techniques to build the 
probabilistic model of GAP under possible disruptions. 

The way how transition probabilities are defined is 
essential for building the robustness of the GAP based MMDP 
model. The state transition stochastic matrix P defines all 
likely possible state transition probabilities (   ): 

  [

          

          

    
          

]                           ( ) 

Where: 

∑      

 

   

(         )      (           ) 

Various statistical estimating methods could be applied to 
calculate state transition probabilities described above. The 
method as in [33] is applied using statistical data of state 
transition. Actions corresponding to flights combination are 
identified, and the arising states are collected from data. The 
collected values from observed data,   ( ) corresponds to the 
case without disruption on state    performing action a, and   
    (a) is the case of disruption observed between state    and 
state    performing action a. therefore the transition 
probability between     and     performing an action a is 
estimated from observed data as : 

 (       )  
   ( )

  ( )⁄                          ( ) 
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R  (      )  corresponds to the reward acquired once 
transiting from a state   to a state    performing an action  . 
This involves costs as negative reward or positive reward as 
benefits of each reassignment. 

R is thought as :              

Where its function is defined as: 

 (      )         (      )   (      ) (      )   (6) 

having: 

        if      and 0 otherwise 

   Penalty unit 

   Recompense unit 

The main task of a decision maker is to compute a 
policy as: 

       

A state-action sequence of decisions that maximize the 
expected total reward is denoted as    ,  and corresponds to  
the policy  optimal. V*(s) gives the  maximum cumulative 
reward attained by  the optimal policy  beginning with states.    
Therefore, the optimal decision in a state s is to choose an 
action   maximizing the sum of the immediate reward 
 (      ) and the value V* of the immediate successor state, 
discounted by γ (0 ≤γ< 1): 

  ( )             (   )     ( (   ))      (7) 

The solution concerns obtaining an optimal stationary 
policy    that maximize for each state   and for all agents the 
expected discounted future reward.    contains the optimal 
decisions to make in every gate considering the assignment 
state. 

MMDP model representing the GAP problem is solved 
using the value iteration function determined by Howard 
algorithm (see [5]) and provided as follows: 

Policy Iteration Algorithm [34]: 

   any policy 

 While      
(1)      
(2) For all     

Compute   ( )  by solving the system of     
unknowns given by Eq (1) 

(3) For all      
If there exists an action     such that: 

 (   )   ∑  (      )  (  )

    

   ( ) 

Then   ( )    

Else   ( )   ( ) 

 Return   

This algorithm is assured to converge (as in [5]). 

D. Multi-Agent with Time Dependence Model: 

Based on the same approach as the previous model, this 
paper presents another model with Multi-Agent reasoning but 

including the time evolution aspect of the Gate Assignment 
Problem. The considered Time-dependent Multi–agent 
Markov Decision Problem illustrated in Fig. 6. 

 
Fig. 6. Agents distribution and temporal planning 

Let K be the Number of agents; also correspond to the 
number of gates. Taking the same actions definition from the 
previous model, the set of actions A =                 defines 
the set of joint actions of agents being also for every agent i 
assigning a flight     to a gate I,   the set of flights. 

Additional temporal information will be included first in 
the Discrete set M set of outcomes, of the form    
(          ) : 

      S: the resulting state space 

                    gives different possible 
combinations of flights    . 

       {ABS, REL}: Type of the time distribution 

(absolute or relative). 

- If           (  )  will be a pdf over absolute 

arrival times of µ and corresponds to distribution 

time associated to some gates assignment 

configuration action. 

-  If    = REL,   (δ): pdf will be over durations of µ 

that corresponds to the duration needed to establish 

the assignment configuration action. 
 L:  (       )  is the likelihood of outcome µ given 

state of gate assignment  , time t and action of next 
assignment to execute   (       ),     . 

 R:   (     ) is the reward for the outcome µ at time t 
with duration δ, corresponding to reward of spending   
duration at time t with airport assignment action  . The 
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reward includes as the previous model two 
components : 

- A benefit from the gate assignment outcome µ. 

- A penalty to assignment outcomes µ that causing a 

possible disturbance at time t and with duration  . 

IV. EXPERIMENT 

A. Multi-Agent Model experiment: 

Computational analysis is done to test the efficiency of the 
used Multi-Agent MDP approach, and utilizing a simple data 
example to conduct experimentations. 

For simplification, data includes two gates and three 
aircraft to allocate in a discrete window of time between    
and   . 

     , is set of flights and for     it match a vacant 
assignment gate. 

As a sample, in this experimental instance exist three 
possible states: 

   (     ),    (     ),    (     ). Two agents are 
affiliated to the two gates, therefore actions are:    (     ), 
   (     ),    (     ). 

As an initial policy, the solution provided first by a 
deterministic approach to the problem from literature is used. 
Simple values are used as input parameters only for simulation. 
The preliminary policy is as follows:    (        ): 

TABLE I. INITIAL POLICY WITHOUT DISRUPTION 

          

Agent 1 Gate 1    

Agent 2 Gate 2    

It is designed regarding observations, transition 
probabilities and rewards are shown in Fig. 7. 

 
Fig. 7. Transitions and rewards matrixes 

With      . 

Like in Table I,  (        )      expresses a 
probability of disruption performing action      on   , which 

corresponds to the situation in Table II (   is delayed and still 
allocated to gate 1 that    cannot be re-assigned, which results 
in conflict ): 

TABLE II. CONFLICTING ASSIGNMENT IN INITIAL POLICY DUE TO DELAY 

          

Agent 1 Gate 1    

Agent 2 Gate 2    

A simple experimentation is done to demonstrate the 
feasibility of the suggested resolution method. 

The initial policy is not possible as a result of delay of the 
flight    (Table II), which causes a conflict in gate allocating. 
Therefore this solution is used as initial policy in the policy 
iteration algorithm then the algorithm is performed. 

After execution of value iteration algorithm in MatLab, the 
provided solution offers another order in the gate assignment; 
optimal policy is    (        ) identified as in Table III: 

TABLE III. OPTIMAL POLICY 

          

Agent 1 Gate 1    

Agent 2 Gate 2    

Table III shows that the proposed approach can give a 
solution that is more robust to delays. Compared with the 
sample agent MDP in [21], this approach is more 
representative of the problem structure because of the Multi-
agent distribution of processing, that simplify its conception. 
Also, MMDP gives gate assignment configurations in multi-
dimensional policies instead of having in MDP a single gate to 
flight assignment. 

However, MMDP model gives only fixed time steps 
between decision epochs (iteration steps), that does not reveal 
the real evolution of gate assignment witch time is different 
from iteration step and always observable. Next paragraph 
gives an experiment with time dependence. 

B. Time-Dependent Multi-Agent Model Experiment: 

In this paragraph, it is conducted an experiment of Time-
Dependent Multi-Agent MDP modeled earlier. 

For simplification, every action possesses a single outcome. 
Hence actions and outcomes can be directly recognized 
(       ) and actions thought to be deterministic with regard 
to the discrete component of the state. This is expressed as: 

   Such that    is feasible in state  ,  (         )      

It is used a real data from six flights of Hong Kong 
international airport as in Table IV; tree gates are dedicated to 
those flights. 

A Gate conflict is detected between flights LH738/739 and 
SQ862/861 due to some disturbance. 

Starting with a specific state of the system     
corresponding to the airport gate assignment: 

    (CA101/102, LH738/739, TG600/601) 

𝑉  

𝑉  

𝑉  

𝑉  

𝑉  𝑉  

𝑉  

𝑉  

𝑉  Conflict 
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TABLE IV. DATA FROM HONG KONG INTERNATIONAL AIRPORT [33] 

Flight Arrival 
Departur

e 
Route Airline 

CA101/102 11:25  12:45 Beijing-Hong Kong-Beijing Air China 

LH738/739 11:30 13:10 
Frankfurt-Hong Kong-

Frankfurt  
Lufthansa 

TG600/601 11:45  12:45 
Bangkok-Hong Kong-

Bangkok  
Thai Airway 

JL710/702 13:15  15:00 Osaka-Hong Kong-Osaka  Japan Airlines 

BR869/870 14:25   15:30 Taipei-Hong Kong-Taipei  EVA Air 

SQ862/861 14:20 16:00 
Singapore-Hong Kong-

Singapore  

Singapore 

Airlines 

Moreover, exploiting other possible actions is done to 
apply adapting assignment to arriving flights representing a 
change in gate configuration. 

     (BR869/870, JL710/702, SQ862/861) 

     (BR869/870, SQ862/861, JL710/702) 

     (JL710/702, SQ862/861, JL710/702) 

Fig. 8 below shows the state transition corresponding 
diagram. 

 

Fig. 8. State transition diagram. 

Just for simplification, all outcomes have parameter    
   , so outcomes with durations are not considered. The 
probability density functions     are the defined for every 

outcome see as example Fig. 9. 

 

Fig. 9. Probability density functions of   . 

This probability includes stochastic information related to 
action execution. Rewards are given in a way to score every 
action of assignment in the airport. 

So, implementing the resolution algorithm, the value 
iteration algorithm gives an exact resolution [27]. The given 
solution consists of time-dependent policy choosing 
outcome     that avoid the disturbance situation.  Then, the 
solution given by this approach is robust and handles flight 
delays. The fact of including the information about the 
possible disturbances improves more the GAP solution quality. 

V. CONCLUSION AND PERSPECTIVE 

In this work, A new approach has been formulated for the 
Gate Assignment Problem (GAP) powered by Time-
dependent Multi-Agent Markov Decision Processes 
(TMMDP). This method aims to constitute a robust 
mechanism that will give a time valuated approach dealing 
with disturbances in every time sequence. The provided 
solution is all of the decisions at every time that could be 
performed at the time of the planning horizon of flights 
assignment. This kind of model takes into account real-time 
optimization because it assumes to have a solution at every 
time which manages disturbances. 

Experimentations on this approach using a real sample 
data by simulation of the associated value iteration algorithm 
provides a best feasible solution that the deterministic model. 

The aim behind this reflection is to offer to controllers at 
the airport a robust time valuated solution take in 
consideration possibilities of gate conflict, even if may take 
more time to resolution, it can manage well risks in gate 
assignment. 

As perspective, this reflection about this type of model can 
be more extended to take into account as possible other real 
constraints of gate assignment. 
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