
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

69 | P a g e

www.ijacsa.thesai.org

A Portable Natural Language Interface to Arabic

Ontologies

Aimad Hakkoum
1
, Hamza Kharrazi

2
, Said Raghay

3

Faculty of Science and Techniques, Cadi Ayyad University, Marrakesh, Morocco

Abstract—With the growing expansion of the semantic web

and its applications, providing natural language interfaces (NLI)

to end-users becomes essential to querying RDF stores and

ontologies, using simple questions expressed in natural language.

Existing NLIs work mostly with the English language. There are

very few attempts to develop systems supporting the Arabic

language. In this paper, we propose a portable NLI to Arabic

ontologies; it will transform the user’s query expressed in Arabic

into formal language query. The proposed system starts by a

preparation phase that creates a gazetteer from the given

ontology. The issued query is then processed using natural

language processing (NLP) techniques to extract keywords.

These keywords are mapped to the ontology entities, then a valid

SPARQL query is generated based on the ontology definition and

the reasoning capabilities of the Web Ontology Language

(OWL). To evaluate our tool we used two different Arabic

ontologies: a Qur’anic ontology and an Arabic sample of Mooney

Geography dataset. The proposed system achieved 64% recall

and 76% precision.

Keywords—Natural language interface; ontology; Semantic

web; Arabic natural language processing (NLP)

I. INTRODUCTION

The semantic web is the natural extension of the current
web, it is centered on enabling machines to understand web
content so it can be easier for agents to look for information in
a more precise and efficient way [1]. To accomplish this task,
the semantic web proposed a set of new technologies; the most
important one is the use of ontologies. An ontology can be
defined as “an explicit specification of a conceptualization”
[2]. Ontologies explicitly structure and represent domain
knowledge in a machine-readable format so they can be
incorporated into computer-based applications to facilitate
automatic annotation of web resources, reasoning task and
decision support [3].

Traditional search engines rely only on keyword search;
they return a set of documents that contain one or more words
of the initial query. On the other hand, semantic search
engines rely on understanding the meaning of the user query
through the use of NLP techniques and ontologies, then
returning the exact answer from multiple data sources using
semantic web technologies[4].

Many studies have shown the effectiveness of semantic
search engines over classic keyword search engines when
dealing with natural language queries. Singh [5] compared
keyword search engines like Google and Yahoo to semantic
search engines like Hakia and DuckDuckGo and concluded
that semantic search returns more relevant answers.

In order to develop an ontology-based search engine, we
have to create a natural language interfaces (NLI) to hide the
complexity of the ontology to the end-user [6]. It will
transform the user query expressed in natural language to a
formal language query.

The aim of our research is to develop a portable NLI that
can be used with any ontology or RDF store. The proposed
system starts by a preparation phase that creates a gazetteer
from the given ontology. When the user issues a query, it is
processed using NLP techniques to extract keywords; these
keywords are mapped to the ontology entities, then a valid
SPARQL query is generated based on the ontology definition
and the reasoning capabilities of the Web Ontology Language
(OWL). Finally, the SPARQL query is executed against the
ontology and the result is formatted and aggregated if needed
before returning the answer to the user.

The rest of this article is organized as follow:
Section 2 summarizes the related work. Section 3 presents the
ontologies used to evaluate the system. Section 4 describes the
proposed system. Section 5 discusses the evaluation of our
system. Finally, Section 6 brings conclusions and sheds light
on future work.

II. RELATED WORK

There is a noticeable growth in using semantic web
technologies for search systems development. This can be
justified by the gain of accuracy using semantic search
compared to keyword search as explained by Singh [5].

One way to take advantage of semantic web technologies
is to utilize ontologies to expand the user query; this will
improve the initial query by adding more related terms, and
therefore improve the search results. This method has been
adopted by many researchers, Alawajy [7] used domain
ontologies and the Arabic WordNet (AWN) to provide reliable
extended keywords in order to enhance Arabic web content
retrieval. Besbes [8] proposed a new question analysis method
based on ontologies, it consists of representing generic
structures of questions by using typed attributed graphs and
integrating domain ontologies and lexico-syntactic patterns for
query reformulation.

Hattab [9] proposed the utilization of different levels of
Arabic morphological knowledge to improve the search
process in a search engine. The least degree of relationship is
the strongest between the original word and the alternatives
starting from the identical word, then its stem, its inflections
and finally the root of the word.

http://www.sciencedirect.com/science/article/pii/S1319157815000166#s0010
http://www.sciencedirect.com/science/article/pii/S1319157815000166#s0015
http://www.sciencedirect.com/science/article/pii/S1319157815000166#s0040
http://www.sciencedirect.com/science/article/pii/S1319157815000166#s0065

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

70 | P a g e

www.ijacsa.thesai.org

These methods are suitable when fetching data from
unformatted sources like text documents. We can benefit
further from semantic web technologies by fetching data from
RDF stores and knowledge bases. For that, we have to
implement a NLI that will hide the complexity of the ontology
to the end-user.

Based on different surveys ([10], [11]), most of the NLIs
that were developed in the recent years are based on English.
They can be classified into close domain NLIs and open
domain NLIs. Close domain NLIs are adapted to a specific
domain and therefore are more accurate and performant, on
the other hand, open domain or portable NLIs are designed to
work with any given ontology.

We are going to focus on portable NLIs, as it is the aim of
our research. The first example is FREYA [12], it’s an
interactive NLI for querying ontologies. It uses syntactic
parsing in combination with the ontology-based lookup in
order to interpret the question, and involves the user if
necessary. To help the user formulate his query, GINSENG
[13] proposes to control user’s input via a fixed vocabulary
and predefined sentences structures through menu-based
options, this approach gives a very good performance but
cannot process all NL queries. Some NLIs like PowerAqua
[14] designed a system that can query information from
multiple ontologies, it gave promising results by obtaining a
success rate of 70% correct answers of the evaluation
questions.

Despite the fact that NLIs to ontologies have lately gained
a considerable attention, existing approaches do not work with
the Arabic language. The first research that worked in
implementing a NLI using Arabic language is AlAgha [15] in
2015. This research proposed a system called AR2SPARQL;
it translates Arabic questions into triples that are matched
against RDF data to retrieve an answer. To overcome the
limited support for Arabic NLP, the system does not make
intensive use of sophisticated linguistic methods. Instead, it
relies more on the knowledge defined in the ontology to
capture the structure of Arabic questions and to construct an
adequate RDF representation. The system achieved 61%
average recall and 88.14% average precision.

In our previous paper [16], we proposed a semantic search
system for the Qur’an. It is based on an Arabic NLI and a
Qur’anic ontology that represents the Qur’an knowledge.
Some of the algorithms used in this system are strongly
dependent on the domain of the ontology and therefore cannot
be applied to other domains. To overcome this limitation, we
modified each algorithm to make it independent. Then we
added more functionalities like approximate matching and
user interaction in order to improve the performance and the
accuracy of the system.

III. USED ONTOLOGIES

Recently, some efforts have been made to support Arabic
in the semantic web. There are new Arabic ontologies that are
being developed in different domains. The Islamic domain is
one of the main topics of ontology development. The semantic
Qur’an [17] created a multilingual RDF representation of the
Qur’an structure, where the Qur’an ontology [16] extracted a

set of concepts from the Qur’an like locations, living creations
and events. Another interesting research is the translation of
DBpedia to Arabic [18].

We based our selection of the evaluation ontologies on the
following criteria:

 The ontology contains enough data to formulate at least
50 different questions.

 All the entities of the ontology have labels in Arabic.

 The ontology is available in a valid RDF representation
format.

We chose two ontologies that meet these criteria. The first
one is the Qur’an ontology [16]. The second ontology is
Mooney GeoQuery dataset that contains data about the
geography of the United States.

A. Qur’an Ontology

The Qur’an ontology
1
 aims to represent the knowledge

contained in the Qur’an in the form of Ontology. It represents
the following concepts: chapters, verses, words, pronouns,
verse topics, locations, living Creations and events. Table I
presents some statistics of the ontology:

TABLE I. QUR’AN ONTOLOGY STATISTICS

Object type Count

Classes 49

Object properties 47

Data properties 23

Chapter 114

Verse 6236

Topic 1181

Living Creation 234

Location 69

Events 219

B. Geography Dataset

The Mooney GeoQuery dataset
2
 describes the geography

of the United States. Several English NLIs like FREYA and
GINSENG used it to evaluate their system. It was translated to
Arabic by AlAgha [15] for his system’s evaluation. He
translated all the classes and properties of the ontology, but
not only 81 entities. We translated more labels to obtain 713
entities translated in Arabic. Table II shows some statistics of
the ontology:

TABLE II. GEOQUERY ONTOLOGY STATISTICS

Object type Count

Classes 9

Object properties 17

Data properties 11

State 51

Capital 51

City 351

Mountain 50

Road 40

1
 www.quranontology.com

2
 http://www.cs.utexas.edu/users/ml/geo.html

http://www.cs.utexas.edu/users/ml/geo.html

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

71 | P a g e

www.ijacsa.thesai.org

IV. NLI SYSTEM ARCHITECTURE

The NLI we are proposing is inspired from our semantic
search system for the Qur’an [16]. After adapting the different
algorithms of the system to be generic, we added a new
component that enables the users to import new ontologies.
Then we created a prototype and we run a set of tests using
two different ontologies to analyze the possible causes of
failure; this allowed us to improve the algorithms of matching,
mapping and answer generation.

The structure of the proposed system is composed of five
main components:

1) Knowledge base preparation.

2) Query processing.

3) Entity mapping.

4) Formal query generation

5) Answer generation.

A. Ontology Preparation

The ontology preparation component is triggered when the
user imports a new ontology. It is composed of three sub-
tasks: the extraction of the ontology definition, the generation
of the inferred model and the construction of the gazetteer.

1) Extraction of the ontology definition
The extraction of the ontology definition consists of

getting the ontology class hierarchy and the properties domain
and range. Properties can be either object properties or
datatype properties. Object properties have a domain and a
range as a class; it is a relation between two entities. Datatype
properties have a domain as a class and a range as a literal
data like strings and numbers. The ontology definition will be
used later in the automatic disambiguation task and the
validation of the generated query triples.

2) Inferred model generation
The ontology specifies a set of facts and axioms. They can

be used to generate new inferred triples in order to obtain an
extended model. To avoid generating this model at each query
execution, we will generate it the first time when the ontology
is loaded and save it along with the ontology. We will use
Jena Framework (http://jena.apache.org/) to manipulate the
ontology model and generate the inferred model. Jena
provides an API that enables to work with ontologies in
different formats. It is widely used with semantic web
technologies and is well documented and maintained.

Fig.1. Example of inferred triples.

The inferred model will contain all the ontology triples in
addition of the new deducted triples. Fig. 1 shows an example
of the triples that we can get by this process. The black links
represent the initial model, while the red links are obtained
after generating the inferred model.

We will use this model to execute the SPARQL query
generated by our system; this will increase the possibility to
find an answer in the ontology. Table III shows the number of
triples for the original model and the inferred model of the two
evaluation ontologies:

TABLE III. INFERRED MODEL STATICTICS

 Quran Geo

Initial model triples count 182 908 4 981

Inferred model triples count 473 353 14 830

3) Gazetteer construction
The construction of the gazetteer starts by the extraction of

all the entities’ labels. This includes the classes, the properties
and the individuals. The extracted list of labels is then
enhanced by generating synonyms from dictionaries and
linguistic resources. The final step is to process each term of
the gazetteer using NLP techniques.

a) Synonyms generation

Despite the recent efforts to support the Arabic language
on the semantic web and NLP, it still lacks proper resources
like WordNet and offline dictionaries. The Arabic version of
the WordNet (AWN) developed by Abouenour [19] includes
in its latest version about 17,785 words, it is still a work in
progress and need more work to be comparable to the English
WordNet which contains about 117,000 words. Therefore,
using only the AWN will not be enough to generate
synonyms. The other resource that we are going to use to
accomplish this task is the on-line dictionary Almaany
(www.almaany.com), it is the best tool we found and besides,
no useable offline dictionary could be found.

b) Linguistic processing

The challenges of Arabic NLP are discussed in [20]. The
main challenges are as follows:

 Lack of dedicated letters to represent short vowels,
they are represented by diacritics.

 Changes in the form of the letter depending on its place
in the word.

 Word agglutination: Arabic words often contain affixes
representing various parts of speech. For example, a
verb may embed within itself its subject and its object
as well as the gender, person, number, and voice.

The first solution we are going to use to address these
challenges is normalization. It consists of representing the
Arabic text in a canonical form and thus avoiding the use of
different forms to designate the same letter. The process of
normalization is performed with Lucene Arabic analyzer

3
. An

3
 http://lucene.apache.org/

http://jena.apache.org/
http://www.almaany.com/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

72 | P a g e

www.ijacsa.thesai.org

example of transformation is to replace all the forms of “alif”

 .”ا“ by ("ئ" and "آ", "إ", "أ")

The second solution is stemming, which is the process of
extracting the stem and the root by removing prefixes and
affixes from words. There are several tools available for
Arabic stemming. One of the recent and advanced tools is the
Arabic Toolkit Service ATKS

4
. It contains multiple

components like the Arabic parser, the Arabic speller and the
morphological analyzer (SARF). These components are
integrated into several Microsoft services such as Office,
Bing, SharePoint and Windows. We are going to use SARF
for stemming; in addition to the word root, it gives the stem,
the morphological pattern and all the inflections of the word.

B. Query Processing

The user is assisted when entering his query with an
autocomplete component. We use the terms of the gazetteer to
give suggestions to complete each word of the query when the
user enters two letters. After a new word is entered, the ATKS
spell checker highlights the misspelled words.

Once the user validates his query, the query-processing
component will start by tokenizing the query words, then
removing stop words. We provide an initial list of stop words
that the user can change depending on the domain of the
ontology. After removing irrelevant words, we generate
synonyms for each word using the AWN and Almaany. The
final step is to process these words the same way the gazetteer
terms were processed, which includes normalizing and
stemming each word along with its synonyms.

C. Entity Mapping

The entity mapper is a critical component of any NLI
system. It is responsible of mapping the query words to the
ontology entities. To accomplish this task, we will start by
comparing the query words to the gazetteer terms, if we find
more than one match, we will try to choose one with an
automatic disambiguation algorithm using the ontology
definition. As a final step, we will ask the user to clarify the
ambiguity manually by choosing one of the matching entities.

1) String matching
In order to match the user query with the ontology entities,

we are going to combine two approaches of string matching:
exact and approximate matching. We will start the comparison
process by generating all possible n-grams starting from the
highest n-gram that contains all the user query keywords to the
unigrams that contain one word at a time. These n-grams are
compared to the gazetteer terms according to the following
order: 1) complete word; 2) normalized word; 3) word stem,
4) synonym; 5) normalized synonym; 6) synonym stem;
7) word root; 8) synonym root. We loop through all the
possible n-grams starting from the highest ones, each time we
found a match; we remove the n-gram words from the list of
words to match. The matching algorithm is finished when we
match all the words or when we arrive to unigrams.

4
 http://research.microsoft.com/en-us/projects/sarf

The exact matching may not yield a result because of
typographical errors, or phonetic similarity errors. In this case,
we will use approximate matching. There are many methods
to perform approximate matching [21], the most used one is
known as the Levenshtein distance (also called “edit
distance”). It consists of computing the minimum number of
single characters edits needed to change one word into the
other. We compute the Levenshtein distance on normalized
words in order to have a result that is more pertinent. The
similarity rate is computed as follows:

 ()
 ()

 (() ())

Where Lev(Word1,Word2) is the Levenshtein distance

We compute this distance for all the gazetteer terms. We
consider as a match the entity with the highest similarity rate.
If this rate is over 90%, it is considered automatically as a
match. Otherwise, we ask the user to validate the matching
entity manually if this rate is between 90% and 70%. The user
can then confirm the match or exclude the word from the
answer generation process.

The approximate matching is especially useful for
comparing proper names that can have multiple forms of
writing in Arabic and for which the generation of the root does
not return any value. Table IV shows some results obtained
using approximate matching:

TABLE IV. EXAMPLES OF APPROXIMATE MATCHING

User word Ontology word Similarity rate

 %83 سكزيا سكزياء

 %78 الذاريات الذريات

 %88 كاليفورنيا كالفورنيا

 %92 سان فزانسيسكو سان فزانسسكو

2) Entity disambiguation

This step is optional; however, it is very important when
working with large ontologies because the same word can be
used to identify different entities. As an example from the
Qur’an ontology, we can find that the name of a chapter is the
same as the name of a prophet or a topic. In this case, we are
going to use the ontology definition and inference to try to
find the accurate entity.

We have two ways to achieve the disambiguation: by class
or by property. The first type of disambiguation corresponds
to the scenario when the query contains a class and an
individual from this class. In this case, if we have an
ambiguity on the individual, we choose the one that is an
instance of the class. The second type of disambiguation is
used when the query contains an individual and a property that
has as domain or range the type of this individual. In this case,
we choose the individual that corresponds to the definition of
the property.

To illustrate each type of disambiguation, let us analyze
these two questions:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

73 | P a g e

www.ijacsa.thesai.org

هن أبناء ابزاهين عليه السلام ؟ هن (1 (Who are the children of

Abraham ?)

 What on the border with) ها على الحدود هع ولاية هيشيغان؟ (2

the state of Michigan?)

The first question is executed against the Qur’anic
ontology and the second one against the Geography ontology.
Fig. 2 and 3 describe the mapping and the disambiguation
process for each question:

Fig.2. Automatic disambiguation of question 1.

Fig.3. Automatic disambiguation of question 2.

If the automatic disambiguation does not return a match,
we ask the user through the interface to clear the ambiguity
manually. We computed the number of each applied
disambiguation when executing the evaluation questions on
the system. Table V represents the list of the computed
statistics:

TABLE V. DISAMBIGUATION STATISTICS

Dataset Quran Geo

Number of questions 60 90

Number of manual disambiguation 30 20

Number of auto disambiguation 11 10

We can see from these statistics that the contribution of the
user is crucial in order to understand the meaning of the query.
The Qur’an ontology needed more manual disambiguation;
this can be explained by the fact that the same word is used to
represent two or more concepts at the same time.

D. Query Generation

This component consists of generating a valid SPARQL
query from the mapped entities. It is mainly based on the
ontology definition and the reasoning capabilities of OWL.

1) Triple generation
The first step to construct the SPARQL query is to

generate an initial set of query triples, these triples are in the
following format: (s, p, o) where s, p and o respectively
represent the subject, the predicate and the object. Each
element can be either a known entity or a variable that the
SPARQL query must return.

We loop through the mapped entities following the order
of the user query, to each entity we apply a transformation
function that will either create a new triple or modify an
existing one. Fig. 4 describes the transformation algorithm of
an entity (Ei):

Type(Ei)

Class Individual

return

No

Add new triple

(?var, rdf:type, Ei)

yes

Yes

Modify the triple (s,p,?var)

or (?var,p,o)

No

Add new triple

(?var, ?, ?)

An empty triple

exists (s,p,?) or

(?,p,o)

An empty triple

exists (s,?,o)

Yes

Modify the triple

(s,Ei,o)

Add new triple

(?, Ei , ?)

No
Yes

Modify the triple (s,p,Ei) or

(Ei,p,o)

No

An empty triple

exists (s,p,?) or

(?,p,o)

Add new triple

(Ei, ?, ?)

Property

Fig.4. Transformation function algorithm.

The first case of the algorithm is when the type of the
entity is a class. If there is already an individual that have the
type of this class, the entity will be ignored. Otherwise, we
create a new triple (?var, rdf:type, Ei) and we add the variable
into an incomplete triple (?var, p , o) or we create a new triple
(?var, ? , ?).

Once we perform the transformation function on all
entities, we obtain a list of triples: () ()

These triples may be incoherent and not representing a
valid RDF triple, therefore in the next step we will perform
more processing to validate and expand these triples in order
to obtain the final triples list.

2) Query expansion
A valid query triple (s, p, o) must verify the following

integrity conditions:

 () () () ()

In order for each triple to comply with these conditions,
we will apply a set of changes by expanding the triple or by
simply changing the order between the object and the subject.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

74 | P a g e

www.ijacsa.thesai.org

When the property is a variable, we check the ontology
definition for a property that satisfies the integrity condition, if
we do not find any, we expand the initial triple to obtain the
two triples: (s, p’, o’), (o’, p’’, o). This scenario corresponds to
two entities on the ontology graph that are not linked directly
by a relation so we have to add an intermediate node in order
to link them.

When the property of the triple is not a variable and does
not satisfy the integrity condition, we add a new individual (i)
and a new property (p’) to obtain two triples as a result.
Table VI lists all the possible transformation of a query triple:

TABLE VI. QUERY TRANSFORMATION SCENARIOS

Condition Transformation

domain(p) = s and range(p) ≠ o (s, p, i) , (i, p’, o)

domain(p) = o and range(p) = s (o, p, s)

domain(p) = o and range(p) ≠ s (o, p, i) , (i, p’, s)

domain(p) ≠ s and range(p) = o (s, p’, i) , (i, p, o)

domain(p) ≠ o and range(p) = s (o, p’, i) , (i, p, s)

3) SPARQL generation
SPARQL is the W3C (World Wide Web Consortium)

standard to query RDF data stores. A SPARQL query uses a
“SELECT” statement to define which data the query should
return, and a “WHERE” statement that defines a graph pattern
where some nodes are known and others are not, the query
should then find all possible subgraphs that meet the pattern.

The generation of the SPARQL query consists of putting
the variables in the SELECT statement and the query triples in
the WHERE statement. For each variable, we add an optional
variable that corresponds to the Arabic label with an optional
filter as follows:

 * () () +

 *

 ((())) +

E. Answer Generation

The SPARQL query is executed against the inferred model
of the ontology using the Jena Framework. After getting the
result of the query, we apply two functions to format and
remove redundant information. The first function removes
duplicate rows and columns that contain the same data. The
second function perform an aggregation on the result, it is
used when the first column contains a limited number of non-
duplicated values while the number of lines is very important.
In this case, the rows are aggregated using the values of the
first column, which is considered the main object of the
question.

F. System Interface

We designed a simple interface that implements the NLI
system. It consists of a desktop application. It does not need
any installation and can run directly after downloading the
binaries from the project webpage.

The application allows the user to perform a set of actions
in addition to using the search engine. The application menu
enables the user to import new ontologies and remove existing
ones. When an ontology is selected, the user can use the menu
to edit the gazetteer or the stop words list.

To use the search engine, the user must choose the desired
ontology from the list of ontologies and enter his query in
Arabic. The autocomplete component will propose
suggestions when the user enters two letters for a word. When
the user executes the search, he may need to disambiguate
some of the query words. Here is an example of the
disambiguation process:

Fig. 5 shows an example of the disambiguation process. In
this example, we have one word that can be mapped to two
entities from the ontology, and one word that was mapped
using approximate matching. The user can select one entity for
the first word, and validate the approximate matching for the
second word. He can also exclude a word and it will be
removed from the rest of the process.

Fig.5. Disambiguation process screen.

The search result is displayed in a group of tabs. The first
one is the answer of the query; it may contain a single
element, a list with a single column or a table with multiple
columns. The other tabs describes the details of each
component of the system, they can help the user understand
how the answer was generated. The last tab contains the
SPARQL query used to retrieve the answer. The user can
modify it and click on the “Exec query” button, the result of
the query is then displayed in the first tab.

V. SYSTEM EVALUATION

A. Evaluation Questions

We prepared a set of evaluation questions for the two
ontologies. We ensured that the questions are in the scope of
the ontology and the system has the ability to answer them,
this will allow us to analyze the causes of failure for
unanswered queries in order to improve the system
effectiveness.

For the Qur’an ontology, we used the sample questions
available on the project website; we added some more
questions to reach 70 questions. For the Mooney GeoQuery
dataset we took the 877 questions used by AlAgha [15] to
evaluate his system, then we removed the questions that are
rather similar. We also removed the improperly formatted
ones to obtain 90 questions.

The evaluation questions along with the two ontologies
can be accessed in the project webpage.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

75 | P a g e

www.ijacsa.thesai.org

B. Evaluation Results

To calculate the performance of the proposed NLI system,
we executed all the evaluation questions using the user
interface after importing the two ontologies. We analyzed the
result of each question in order to compute the statistics about
the mapping and disambiguation components, we also
classified the reasons behind the system’s failure.

We are going to compute the following metrics: precision
and recall. The precision is the number of correctly answered
questions over the number of questions that the system
provided an answer for, while the recall is the number of
questions correctly answered over the number of all questions
in the dataset.

The webpage of the project contains the detail of the
evaluation process. For each question, we define if the system
provides an answer or not, and if this answer is correct.
Table VII shows the general result of the evaluation:

TABLE VII. EVALUATION RESULTS

Ontology
Quran

Ontology
Geography Total

Total number of questions 70 90 160

Questions with an answer 53 80 133

Questions with correct answer 47 56 103

Precision 88% 70%

76%

Recall 67% 62% 64%

The system gave answers to 133 questions, among which
103 are correct, thus achieving 64% average recall and 76%
average precision. We can see that the Qur’an ontology gives
more precision than the geography dataset. This can be
explained by the fact that the Qur’an ontology defines several
possible labels to identify its entities; this helps the mapping
of the user keywords to the ontology entities.

The NLI (AR2SPARQL) proposed by [15] claims a recall
of 61% and a precision of 88.14%. This system is not
publically available; therefore, we cannot make a pertinent
comparison of the performance of the two systems, because
we have to use the same questions to evaluate both systems.
On the overall, our system is based on the same approach of
AR2SPARQL, which is the use of the knowledge defined in
the ontology to process the user query. Both systems do not
make intensive use of sophisticated linguistic and semantics
techniques. However, some components are different between
the two; for instance, we use approximate matching and user
interaction for entity mapping. Our system also relies on the
involvement of the user to clarify his question and the use of a
set of rules to validate and enhance the SPARQL query.

C. System Failure Analysis

We analyzed the reasons of failure for each question that
the system could not answer correctly, we classified these
reasons into three categories: mapping error, complex
questions and uncovered questions. The first category
represents 40%; the second 50% while the last one 10%.

The mapping error category represents the questions where
we could not map the user terms to the entities of the ontology
or that we mapped a term to the wrong entity. This kind of
error is due to the challenges of Arabic NLP discussed earlier.
Some of the unanswered questions can be fixed by editing the
gazetteer of the ontology via adding new alternative labels for
the entities. Where some questions need to be reformulated by
the user in order to get an answer.

The second category represents complex questions that
require adding more rules and algorithms to the system in
order to be able to answer them. We can identify different
kinds of complex queries:

 Long questions with term dependencies: This kind of
questions needs deep linguistic analysis to extract the
dependencies between terms. Some of the English
NLIs used syntactic parsing and part-of-speech tags to
extract the parse tree of the question, this helps
understand the question’s structure and to generate
valid query triples. The use of this method with the
Arabic language is still challenging due to the lack of
efficient NLP tools and the high productivity of the
Arabic language.

 Questions with superlatives and comparatives: The
interpretation of comparative and superlative words
depend on the domain of the ontology, and even in the
same ontology, we can find multiple interpretations for
the same term.

 Vague questions: The user may use vague expressions
to formulate his question, making the understanding of
its meaning very difficult. An example of this type of

question is “ما يمكنك ان تقول لي عن سكان ميسوري؟”
(What can you tell me about Missouri residents?), we
can see that the question is not precise enough because
we have two properties that describe the population:
the number of inhabitants and the population density.

The third category represents the questions that the
ontology does not contain an answer for even if the query
processing was successfully performed. This kind of questions
needs the enrichment of the ontology by adding more
properties and entities.

D. Publishing the Results

We created a webpage for the project at the following
address: https://sites.google.com/site/arabicnlisystem. It
contains all the resources necessary to use and evaluate the
NLI system.

We also shared the source code of the project for other
researchers to leverage on their research. The source code is
composed of two layers. The first one is the user interface that
contains the definition of the application forms, and the
second one is the business layer that contains all the system’s
logic and algorithms.

VI. CONCLUSION

In this research, we developed a portable NLI to Arabic
ontologies. The system can be used with any ontology that
defines Arabic labels to its entities. We tested our approach on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

76 | P a g e

www.ijacsa.thesai.org

two different ontologies that represent two separate domains,
the system gave better results when the ontology is well
structured and provides alternative labels to describe its
entities.

We used existing Arabic NLP tools to process the
ontology labels and the user question, this allowed us to map
the user terms to the ontology entities, and then we relied on
the ontology definition and the reasoning capabilities of OWL
to create a SPARQL query that will be used to extract the
answer from the ontology.

We believe that our work will be a step toward adopting
semantic search engines for the Arabic language. The
researchers can integrate our system library in their projects
with minimum effort to have a semantic search tool for their
ontologies.

The next step of our research is to study the reasons behind
the system’s failure and try to improve the capabilities of the
system to answer unmanaged questions patterns. Another
perspective is to improve the search system to answer
questions from multiple ontologies. This will require the use
of ontology alignment frameworks in order to allow multiple
ontologies to interoperate.

REFERENCES

[1] Y. Badr, R. Chbeir, A. Abraham, and A.-E. Hassanien, “EmergentWeb
Intelligence: Advanced Semantic Technologies.,” in Springer Science &
Business Media, 2010, p. Page: 26-36.

[2] T. R. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing,” Int. J. Hum. Comput. Stud., vol. 43, no. 5–6, pp.
907–928, 1995.

[3] N. Shadbolt, T. Berners-Lee, and W. Hall, “The Semantic Web - The
Semantic Web Revisited,” IEEE Intell. Syst., vol. 21, no. 3, p. 96, 2006.

[4] T. Tran, P. Haase, and R. Studer, “Semantic search--using graph-
structured semantic models for supporting the search process,” in
International Conference on Conceptual Structures, 2009, pp. 48–65.

[5] J. Singh, “A Comprative Study Between Keyword and Semantic Based
Search Engines,” in International Conference on Cloud, Big Data and
Trust, 2013, pp. 13–15.

[6] E. Kaufmann and A. Bernstein, “How useful are natural language
interfaces to the semantic Web for casual end-users?,” in The Semantic
Web. Springer Berlin Heidelberg, 2007, vol. 4825 LNCS, pp. 281–294.

[7] A. M. Alawajy and J. Berri, “Combining semantic techniques to enhance
arabic Web content retrieval,” 2013 9th Int. Conf. Innov. Inf. Technol.
IIT 2013, pp. 141–147, 2013.

[8] G. Besbes, H. Baazaoui-Zghal, and A. Moreno, “Ontology-based
question analysis method,” in International Conference on Flexible
Query Answering Systems. Springer Berlin Heidelberg., 2013, pp. 100–
111.

[9] M. Hattab, B. Haddad, M. Yaseen, A. Duraidi, and A. A. Shmais,
“Addaall Arabic Search Engine: Improving Search based on
Combination of Morphological Analysis and Generation Considering
Semantic Patterns,” in The second International Conference on Arabic
Language Resources and Tools, Cairo, Egypt., 2009, pp. 159–162.

[10] S. Kalaivani and K. Duraiswamy, “Comparison of question answering
systems based on ontology and semantic web in different environment,”
J. Comput. Sci., vol. 8, pp. 1407–1413, 2012.

[11] A. Bouziane, D. Bouchiha, N. Doumi, and M. Malki, “Question
Answering Systems: Survey and Trends,” Procedia Comput. Sci., vol.
73, no. Awict, pp. 366–375, 2015.

[12] D. Damljanovic, M. Agatonovic, and H. Cunningham, “FREyA : an
Interactive Way of Querying Linked Data Using Natural Language,” in
Extended Semantic Web Conference. Springer Berlin Heidelberg., 2011,
pp. 125–138.

[13] A. Bernstein, E. Kaufmann, and C. Kaiser, “Querying the Semantic Web
with Ginseng : A Guided Input Natural Language Search Engine,” in
15th Workshop on Information Technologies and Systems Las Vegas
NV, 2005, no. December, pp. 45–50.

[14] V. Lopez, V. Uren, M. Sabou, E. Motta, and Acm, “Cross Ontology
Query Answering on the Semantic Web: An Initial Evaluation,” K-
Cap’09 Proc. Fifth Int. Conf. Knowl. Capture, pp. 17–24, 2009.

[15] I. Alagha, “AR2SPARQL : An Arabic Natural Language Interface for
the Semantic Web,” in International Journal of Computer Applications
(0975 –8887), 2015, vol. 125, no. 6, pp. 19–27.

[16] A. Hakkoum and S. Raghay, “Semantic Q&A System on the Qur’an,”
Arab. J. Sci. Eng., vol. 41, no. 12, 2016.

[17] M. A. Sherif and A. C. Ngonga Ngomo, “Semantic Quran A
multilingual Resource for Natural-Labguage Processing,” Semant. Web
J., vol. 6, pp. 339–345, 2009.

[18] H. Al-Feel, “The Roadmap for the Arabic Chapter of DBpedia,” Math.
Comput. Methods Electr. Eng., pp. 115–125, 2015.

[19] L. Abouenour, K. Bouzoubaa, and P. Rosso, “On the evaluation and
improvement of Arabic WordNet coverage and usability,” Lang. Resour.
Eval., vol. 47, no. 3, pp. 891–917, 2013.

[20] A. Farghaly and K. Shaalan, “Arabic natural language processing :
Challenges and solutions,” in ACM Transactions on Asian Language
Information Processing (TALIP), 2009, vol. 8, no. 4, pp. 1–22.

[21] G. Navarro, “A guided tour to approximate string matching,” ACM
Comput. Surv., vol. 33, no. 1, pp. 31–88, 2001.

