
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

236 | P a g e

www.ijacsa.thesai.org

Evaluation for Feature Driven Development Paradigm

in Context of Architecture Design Augmentation and

Perspective Implications

Shahbaz Ahmed Khan Gahyyur
1
, Abdul Razzaq

2

Department of Computer Science and Software

Engineering

International Islamic University Islamabad

Islamabad, Pakistan

Syed Zeeshan Hasan
3

Department of Computer Science & Software

Engineering

Faculty of Basic and Applied Sciences

International Islamic University

Islamabad, PAKISTAN

Salman Ahmed
4

Department of Computer Science and Software

Engineering

International Islamic University Islamabad

Islamabad, Pakistan

Rafi Ullah
5

Department of Computer Science & Software

Engineering

Faculty of Basic and Applied Sciences

International Islamic University

Islamabad, PAKISTAN

Abstract—Agile is a light weight software development

methodology that is useful for rapid application development

which is the need of current software industry. Since the focus of

agile software development is the customer but it does not

provide the detailed information about the application’s

architecture and documentation, so software architecture has its

own benefits and use of it has many positive effects. The focus of

this paper is to provide a systematic mapping of emerging issues

in feature driven development that arises due to lack of

architecture support in agile methodology and proposed

solution’s model. Results of this mapping provides a guideline for

researcher to improve the agile methodology by achieving the

benefits employed by having an architecture in place that is

aligned with agile values and principles. Following research

addresses to implement the SEI architecture centric methods in

FDD methodology in an adapted form, such that the burden of

architecture doesn’t affect the agility of FDD. And the

researcher found the de-motivators of agile which helps to

understand the internal cycle and reduces the issues to

implement the architecture. This study helps to understand the

difference between architecture and FDD. This researcher

mapping creates awareness about the process improvement with

the combination of architecture and FDD.

Keywords—Software architecture; agile; architecture and

agile; integration of architecture and agile; agile architecting

practices

I. INTRODUCTION

Agile practices have gained popularity among various
organizations due to its feature of reducing cost and

encouraging change during the development cycle. In modern
software development environment, changes to any software
product are inevitable [39]. Agile methodology provides
answer for this issue. Feature driven development lies under
the umbrella of Agile. FDD is a process for assisting teams in
producing features incrementally that are useful for the end
user. It is extremely iterative and collaborative in nature [5].
The FDD process has extensive guidelines for identifying
issues in the system. It also supports in providing builds to the
end user on daily or weekly to add more features to the existing
software. FDD process requires configuration management for
its proper execution because features are being developed in
parallel. In this way, integration of the features is made easy
while executing the process. Feature Driven Development
provides activity tracking support. Activities can include
coding, design or testing. Details of this process are reflected in
Fig. 1. Feature tracking is implemented by assigning the value
ranging from 0 to 1 to the feature. 0 shows that this feature has
not yet been developed and 1 depicts the completed feature [1].

Literature defines the software architecture as “The
architecture of a software-intensive system is the structure or
structures of the system, which comprises software elements,
the externally visible properties of those elements, and the
relationships among them” [3]. Software architecture defined
by IEEE 1471 standard is “The fundamental organization of a
system embodied in its components, their relationships to each
other and to the environment, and the principles guiding its
design and evolution” [7].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

237 | P a g e

www.ijacsa.thesai.org

Fig. 1. Hybrid FDD with architecture evaluation methods [16].

A. FDD (Feature Driven Development)

Feature driven Development is a procedure for helping
groups deliver visit, substantial working outcomes. It utilizes
little squares of customer esteemed usefulness called
highlights. It sorts out those little pieces into business-related
capabilities. Fig. 1 demonstrates the half and half FDD with an
engineering assessment. FDD centers engineers around
creating working outcomes at regular intervals. FDD is better
arranged to work with group where engineers' experience
shifts. It offers advance following and announcing abilities.
This solaces supervisors and makes it more alluring for
enormous organizations [3].

Fig. 2. Feature driven development [8].

 Process # 1: Develop an overall model

The first step of the FDD procedure is to make a detailed
model of the system. The clue is for both field and progress
members of the team to increase a worthy, shared
understanding of the tricky domain. Fig. 2 shows all the phases
flow of FDD.

 Process # 2: Build a feature list

The initial step of the FDD procedure is to manufacture an
itemized model of the framework to be produced, which
catches the partners‟ suspicions and necessities. The sign is for
both field and advance individuals from the group to build a
commendable, shared comprehension of the precarious space.
Fig. 2 demonstrates every one of the stages stream of FDD [3].

 Process # 3: Plan by feature

Manager of project, Development Manager, and Chief
Programmers design the request that the highlights are to be
executed, in light of highlight conditions, stack over the
improvement group, and the intricacy of the highlights to be
actualized [3].

 Process # 4: Design by feature

Highlights different features are planned for improvement
by doling out them to a Chief Programmer. Boss Programmer
plans little gathering of high spot at once for enhancement.
Such a gathering of highlights shapes a Chief Programmer‟s
work Package. The Chief Programmer at that topic an element
group by distinguishing the proprietors of the classes
(designers) liable to be associated with the improvement of the
chose feature(s). The central Programmer at that point refines
the protest demonstrate in view of the substance of the
succession diagram(s). The engineers compose class and
technique prefaces [3].

 Process # 5: Build by feature

Working of the design plan bundle delivered amid the
Design by Feature process, the class proprietors execute the
things fundamental for their class to help the outline for the
feature(s) in the work bundle. The code created is then unit
tried and code examined, the request of which is controlled by
the Chief Programmer. After an effective code assessment, the
code is allowed to build [3].

B. Architecture – centric methods

IEEE 1471 standard [6] explains software architecture as
“The fundamental organization of a system exemplified in its
components [40], their relationships to each other and to the
environment, and the principles managing its design and
evolution”.

The software architecture serves as the outline or skeleton
of a software system to be built [8], [9]. The benefits of
software architecture include a tool for stakeholder
communication [7], designing decision documents, identifying
design decision risks, reusing [10] scalability [2], allows to
program, saving time, the cost of correction or reprocessing is
recorded and above all, it helps to avoid software
catastrophes [4].

C. Need of Systematic Mapping

In this paper, systematic mapping was explored to find
problems that are faced during measurement of individual‟s
performance. PSP quality principles were explored during
systematic mapping which can be used for individual‟s
performance measurement in agile team. Main purpose of
study is to calculate architecture support provided in feature
driven development that resides under the umbrella of agile
[12], and how researcher can achieve benefits of architecture
using agile methodologies without compromising the agile
values [32]. This paper also describes how to cumulate the
knowledge by performing systematic mapping study, there are
few steps such as “planning”, “conduct the research” and
“selection of primary study”.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

238 | P a g e

www.ijacsa.thesai.org

II. LITERATURE AND BACKGROUND STUDY

Architecture-centric approaches feature early suspicion,
arranging and documentation of programming engineering.
This infers a specific accentuation on quality traits and outline
choices, exercises depend on across the board correspondence
and joint effort among partners [13].

In Agile procedures clients or individuals are focal point of
focus [35]. Touching delivery of working programming is need
over weighted documentation and reports. Testing obliges the
conveyance of each little working programming units and
successive customer criticism on these product units enables
keeping the product to extend on right track and lined up with
objectives of the client. XP, Scrum, Feature Driven
development are few examples of agile methodologies.

Since agile approaches have important influence on
software development practices from industry perspective.
However, there is also a prominent impact regarding issues that
arises due to lack of SA, which is considered most important
artifacts in traditional software development. Many industry
professionals who are involved in using agile approaches view
software architecture from the perspective of the plan- driven
development paradigm [38]. According to them, software
architecture design and evaluations requires too much effort
which has very little impact to customer‟s needs from the
system [37]. Hence, they view architectural activity as a part of
highly formal processes. On the other hand, practitioners of
software architecture believe that solid architectural practices
cannot be followed using agile methods [36]. However,
recently there is an increased appreciation related to the
importance of incorporating architectural practices in agile
methods. Hence, there is a growing interest and research in this
perspective of integrating these two different cultures [11].
Researcher trust that a decent comprehension of current
industry practices and issues identified with software
architecture is a most important for building strategies to
incorporate architecture in agile methodologies [31]. Literature
has additionally highlighted a Hybrid Software Architecture
Evaluation Method for FDD [33], [34]. Utility trees,
affectability focuses and tradeoffs are the characteristic
highlights of ATAM [18], [19].

III. RESEARCH METHOD

A. Rational

Researcher undertake the study to improve/evaluate the
tailored feature driven development methodology by
integrating software architecture support that was originally
part of traditional software development so that organizations
using FDD can also achieve benefits that are provided by
Software architecture. Since software architecture is a very
heavy activity which is against the agile core principles so a
light weight version of software architecture has been proposed
and evaluation will be made on this tailored FDD process as
against with traditional FDD process. There is limited
published research that validates and measures the impact of
integrating architecture in FDD without compromising agile
values, and this case study sought to contribute to the body of
research in this area.

B. Objective of the Study

The objective of this study is to evaluate the impact of
integrating architecture in FDD methodology with respect to
reusability, cost, effort, requirement traceability and project
failure risks due to unknown domain and untried solutions.
Researcher proposed the solution model in proposed solution
section.

C. Factors Analysis Method

Researcher used the Minitab static tool [49] for finding and
analyzing the results of factors of Agile. Minitab tool helps to
create the different types of graphs which help to understand
the scenario of factors. Researcher provided the complete
results of all factors in Appendix „A‟ part and factor analysis
result table. Moreover, Appendix „B‟ section show result in
different graphs [49].

D. Planing of Mapping

In this mapping, issues have been gathered that arises due
to lack of architecture in agile methodology with reference to
feature driven development (FDD). This mapping will help us
to evaluate the benefits [49] that can be achieved if architecture
support is provided in agile development.

E. Research Questions

RQ1. What are the problems that can be effectively resolved
by integrating architecture in agile methodologies?

RQ2. What are the mapping drawbacks of agile with
architecture?

Drawbacks of agile have been discussed in Table IV.

RQ3. What are the mapping limitations and benefits of agile
with architecture?

Limitations and benefits of agile is discussed in Table V.

RQ4. What are the emerging challenges have been reported in
literature about FDD?

Emerging challenges have been discussed in Table VI.

RQ5. What are the demotivators factors in agile have been
reported in literature?

De-motivators have been discussed in Table VII.

F. Search Strategy

Computing databases become the basis for searching
primary studies. Following search strings and keywords are
used in these databases.

G. Keywaords

The following keywords are used for searching the studies:
{architecture}, {architecture centric method}, {agile}, {Feature
Driven development}, {FDD}, {integration}, {incorporation},
{combination}, {effect}, {influence}, {Values}, {principles}.

H. Search String(s)

1) {Architecture centric method} AND {agile} OR

{Feature Driven development}.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

239 | P a g e

www.ijacsa.thesai.org

2) {Integration} OR {incorporation} OR {combination}

of {architecture} AND {agile} OR {Feature Driven

development}.

3) {Agile issues} OR {software architecture benefits} OR

{agile drawbacks} OR {agile problems}.

IV. SELECTION OF PRIMARY STUDY

A. Search Engine

Search strings are put in advanced search of following
software engineering databases: IEEE, ACM, Science direct,
Springer and Google Scholar. Fig. 3 shows all the digital
libraries.

Fig. 3. Databases for paper selection.

B. Inclusion Criteria

Research papers are selected based on their titles and
abstracts. Following criteria will be used to select the papers.

 Research papers discussing the integration of agile and
architecture at any level.

 Research papers that highlights project failure using
agile methodology.

 Research papers relevant to agile values will be
included.

 Research papers that discusses the architecture impact
on reusability, cost, effort and requirement traceability.

C. Exclusion Criteria

These papers were excluded.

 Books and slides, etc. were excluded.

 Papers other than primary and irrelevant studies.

V. CONDUCTING MAPPING

Search results from different digital libraries are mentioned
in Table I. These digital libraries were selected because they
were highly known for having empirical studies and literature
surveys and are most relevant to software engineering field
[27]. Digital libraries search was made to include all the papers
that identify agile issues, architecture benefits, or any other
paper that discusses integration of both of them. After this
initial search, papers were selected from the digital libraries
based on the inclusion and exclusion criteria mentioned in
Section IV. With further investigation of selected papers,
researcher has filtered studies that are most appropriate to the
problem in hand. Table I shows all the found publications.
These filtered papers are shown in Table II. Relevant studies
are shown below in Table III.

TABLE I. PUBLICATION COUNT

Database Publications count

IEEE 80

ACM 105

Springer 65

Science Direct 110

Scopus 149

Google Scholar 290

TABLE II. PRIMARY STUDIES

No Reference Primary study

1 [5] FDRD: Feature Driven Reuse Development Process Model

2 [38] A Applied Example of Attribute-Driven Design (ADD)

3 [14] FORM: A Feature-Oriented Reprocess Method with Domain-Specific Reference Architectures

4 [15] Foremost Functional Development Session Agile Techniques for Project Management Engineering Software

5 [3] Software Architecture as a Set of Architectural Design Decisions

6 [11] An experimental study of architectural practices and challenges in term of used ofagile software development approaches

7 [16] Agile techniques, organizational culture and agility: few insights

8 [17] Reuse in large-scale agile software development and different factors of Communication for speed

9 [18] Software architecture and ASD: clash of two cultures?

10 [19] Flexible Working Architectures: Agile Architecting Using PPCs

11 [20] A systematic mapping study on the combination of software architecture and agile development

TABLE III. RELEVANT STUDIES

No Reference Relevant study

1 [21] ASD with CBSE

2 [22] Effort approximation in Agile software development: A survey on practices

3 [23] On the Responsibilities of Software Architects and Software Engineers in an Agile Environment: Who Should Do What?

IEEE ACM SPRINGER
SCIENCE
DIRECT

GOOGLE
SCHOLAR

Scoupus

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

240 | P a g e

www.ijacsa.thesai.org

4 [24] Perceived Productivity Threats in Large Agile Development Projects

5 [25] The combined OPN and UML method for developing an agile manufacturing control system

6 [26] Building Software Solutions in an Industrial Information System: The 5+1 Software Architecture Model

7 [27] The necessary nature of product traceability and its relation to Agile approaches

8 [1] Agile software development methods review and analysis

9 [7] IEEE Std 1471-2000, Recommended Practice for the Architectural Description of High Intensity Systems

10 [2] Get ready for agile methods, with care

11 [21] Agile software development for component based software engineering

12 [23] On the Responsibilities of Software Architects and Software Engineers in an Agile Environment: Who Should Do What?

Fig. 4. Selected studies.

Fig. 5. Year wise paper distribution.

The total of primary and relevant study count that was
included in this mapping is 23. These are the strong evidence
that shows conflicting as in Fig. 4. Study source distribution on
IEEE, Google Scholar, ACM, Springer, Science Direct and
Scopus is displayed in the graph on the right side Fig. 3.

A. Data Collection

Data obtained from each study was:

 Source and full reference.

 Grouping of the study type (Agile architecture
integration, Agile issues, Architecture benefits,
Architecture agile conflict)

 Summary of each study that includes main research
questions.

IEEE
10%

ACM
13%

Springer
8%

Science
Direct
14%

Scopus
19%

Google
Scholar

36%

SELECTED STUDIES

1 1

2

3

1

2 2 2

1 1

2 2

3

1

0

0.5

1

1.5

2

2.5

3

3.5

1994 2000 2002 2003 2005 2007 2009 2010 2011 2012 2013 2014 2015 2016

Year wise Papers distribution

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

241 | P a g e

www.ijacsa.thesai.org

B. Data Analysis

The data was collected to show:

 Whether the study presents high level architecture
support with evidence in feature driven development.

 Whether the study presents explained low level design
support with evidence in feature driven development.

 Whether the study highlights any risks due to lack of
architecture.

 Factors that are inherited by architecture but are against
the agile values and vice versa.

VI. MAPPING OF AGILE DRAWBACKS RELATED TO

ARCHITECTURE

The issues are described in the below table (Table IV). By
adding an architecture support in agile process, researcher can
remove these drawbacks.

TABLE IV. MAPPING OF AGILE DRAWBACKS RELATED TO ARCHITECTURE

Y
ea

r
s

in
 w

h
ic

h

is
su

e
s

a
re

h
ig

h
li

g
h

te
d

In
ca

p
a

b
il

it
y
 t

o

re
u

se
 c

o
m

p
o
n

en
ts

D
e
si

g
n

 e
r
o

si
o

n
,

k
n

o
w

le
d

g
e

a
n

d

r
a

ti
o

n
a

le

v
a

p
o

ri
za

ti
o

n

R
is

k
 o

f
fa

il
u

re
 (

o
r

d
e
la

y
e
d

 f
ea

tu
r
e

d
is

tr
ib

u
ti

o
n

)
in

c
a

se
 o

f
u

n
k

n
o

w
n

d
o

m
a

in

H
ig

h
ly

e
x

p
er

ie
n

c
e
d

d
o

m
a

in
 d

e
v
e
lo

p
er

s

r
e
q

u
ir

e
d

 f
o

r

su
c
c
e
ss

fu
l

p
ro

je
c
ts

P
r
im

a
ry

 s
tu

d
y

re
fe

r
en

c
es

2015 x [5]

2013 x [17]

2007 x [15]

2014 x [16]

2009 x x [11]

TABLE V. MAPPING OF AGILE LIMITATIONS AND ARCHITECTURE BENEFITS

Sr. # Agile limitations Architecture benefits

1
Incapability to reuse components due to architecture

discontinuities[5][17]

Documentation of Architecture is explicitly defined architecture discontinuities are limited

and reusing component is made possible due to availability of documentation and design

rationale[13] [14]

2

knowledge and foundation disappearance in Design

destruction, as a result of ad-hoc design decisions

documentations[15][16]

Design decisions‟ documentations addresses knowledge and design erosion, and rationale

vaporization. [13][3]

3
In case of unidentified domain and novel solutions

the Risk of failure [11]

[14] and [13] provides an unambiguous study of architectural decisions and a clear

classification of user stories as quality scenarios and should decrease these risks.

4
Extremely skilled domain developers mandatory for

successful projects[11]

[14] and [13] provides a step-by-step approach to architecture, which is also referred to as a

plan-based approach, known for a person's exploration of the new domain.

5 Lack of requirements traceability[11]
[13] The step-by-step approach to architecture classifies the requirements according to their

importance and documents them in the development of software

TABLE VI. EMERGING CHALLENGES OF FDD

No. Challenges Ref.

1 Secure Development [29]

2 Requirements gathering and managing [29] [30]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

242 | P a g e

www.ijacsa.thesai.org

Fig. 6. Mapping of agile drawbacks.

TABLE VII. DE-MOTIVATORS OF AGILE FROM LITERATURE [50]

No De-motivators factors Ref.

1 Communication barrier [22] [41][47] [48] [46]

2 Lack of relationship opportunities [42] [43] [47] [45]

3 Unrealistic goals [47] [45] [48]

4 Injustice in promotions [47]

5 Poor quality software [13] [47] [48]

6 Political environment [44]

7 Uncompetitive pay [47] [45] [48]

8 Unsupportive management [45]

9 Lack of influence [47] [45] [48]

10 Unfair reward system [47] [45] [48]

11 Non-interesting work [45]

12 personal preferences [45] [48]

13 Risk [11] [41] [47] [45] [48]

14 Stress [45]

Fig. 7. Demotivator factors of agile.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

243 | P a g e

www.ijacsa.thesai.org

Fig. 8. Proposed solution.

VII. PROPOSED SOLUTION MODEL

With the problem in hand, Researcher proposed the
following model that suits the agility and embeds architecture
support in FDD so that Researcher can achieve benefits of
architecture without losing agility of Feature Driven
development.

Following new artifacts have added in proposed process
model:

Reference architecture development

1) Refinement of Feature List

2) Architecture refinement

Following new documents have produced in proposed
model:

1) Sub-system model

2) Reusable component list

3) Architecturally significant Features (ASFs)

4) Rationale Document

Each sub process in the newly added artifacts is explained
below.

A. Reference Architecture Development

1) Develop Sub-System Model
To develop sub-system model, engineering principles are

used as an input to these models [28]. The engineering
principles include design principles and general guidelines for
subsystem design. Overall system structure is defined by
grouping functions into subsystems, which are, then allocated
to different hardware the model created for them is called
subsystem model.

2) Identify component reusability
Reusability of the components and their fitness for large

architecture is determined from subsystem model.

B. Refinement of Feature List

1) Identify ASFs
Indicators for architectural significance include:

 Extraordinary business value and/or technical risk.

 Important (influential, that is) stakeholder.

 budget overruns or client dissatisfaction

At the end of this activity, Researcher has a list of ASFs in
hand to perform further processing based on this list.

2) Requirement Prioritization
Prioritization is done by ranking. Researcher gave each one

a different numerical value based on its importance. For
example, the number 1 can mean that the requirement is the
most important and the number n can be assigned to the least
important requirement, n being the total number of
requirements based on the combined importance relevant to
architecture and stakeholders. Researcher choose this method
as it can be difficult to align different stakeholders‟
perspectives on what the priority of a requirement should be;
taking an average can however, address the problem in this
prioritization method.

3) Prioritized feature list
Prioritization done in the previous activity will listed down

to form a Prioritized Feature list along the rationale of
prioritization and get it approved from the concerned
stakeholders.

C. Architecture Refinement

1) Refine sub-system model
Sub system model is refined in each iteration as the

knowledge of stakeholder increases and issues they faced with
the delivered iteration.

2) Rationale capturing

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

244 | P a g e

www.ijacsa.thesai.org

In refinement of sub-system model, every decision and
change is documented in the specified template, so that back
tracking is possible whenever needed.

VIII. CONCLUSION

In this paper, a systematic mapping of agile issues, the
proposed model provides the detail to reduce these issues and
architecture benefits have been presented so that researcher can
addressed by integrating architecture in agile methodologies
with reference to feature driven development. There are
different types of architectural challenges reported in literature
Table VI. Researcher has discussed in details about SA with
FDD. Researcher discussed very clearly about drawbacks of
agile related to architecture in Table IV. Researcher found the
agile drawbacks and benefits of architecture in Table V. Fig. 5
shows the distribution of papers years wise. Fig. 6 shows the
drawbacks in agile. Fig. 7 discusses the most important de-
motivators of agile. Fig. 8 is the main thing that is proposed
solution model. Minitab static tool is used to analyze the
factors of agile which are mentioned in Fig. 7 and produce the
result in the form of quantitative values and different views that
graphs are Scree plot which is the major graph (Fig. 6) of this
analysis. Other graphs and results are shown in Appendix
section which are: Fig. 9, 10, 11, and 12. Research questions
have been discussed through table for data. This mapping acts
as a foundation for further research to incorporate architecture
in agile methodologies in a way that is aligned with agile
principles. In this systematic mapping, researcher described the
concepts of Software Architecture with FDD.

IX. FUTURE WORK

Researcher will experiment based on the proposed model
an adapted architecture that will be light weighted and can be
integrated with feature driven development without harming
the agility of this process. Researcher evaluated the proposed
method and it proved to be useful in increasing reusability,
traceability and also cost effective for middle sized projects.
Moreover, this proposed process also puts positive effect on
agile values and principles.

REFERENCES

[1] S. Thakur and H. Singh, “FDRD: Feature driven reuse development
process model,” Proc. 2014 IEEE Int. Conf. Adv. Commun. Control
Comput. Technol. ICACCCT 2014, no. 978, pp. 1593–1598, 2015.

[2] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile software
development methods review and analysis,” VTT Publ., no. 478, pp. 3–
107, 2002.

[3] D. Ph, “Major Seminar On Feature Driven Development Agile
Techniques for Project Management Software Engineering By Sadhna
Goyal Guide : Jennifer Schiller Chair of Applied Software Engineering,”
p. 4, 2007.

[4] S. R. Palmer and J. M. Felsing, A Practical Guide to Feature-Driven
Development. 2002.

[5] A. . Fallis, “No Title No Title,” J. Chem. Inf. Model., vol. 53, no. 9, pp.
1689–1699, 2013.

[6] I. A. W. Group, “IEEE Std 1471-2000, Recommended practice for
architectural description of software-intensive systems,” p. i--23, 2000.

[7] J. Bosch, “Software Architecture : The Next Step,” Lect. Notes Comput.
Sci., vol. 3047, pp. 194–199, 2004.

[8] “Len Bass, Paul Clements, Rick Kazman-Software Architecture in
Practice-Addison-Wesley Professional (2003).” .

[9] B. Boehm, “Get ready for agile methods, with care,” Computer (Long.
Beach. Calif)., vol. 35, no. 1, pp. 64–69, 2002.

[10] D. Garlan and M. Shaw, “An Introduction to Software Architecture,”
Knowl. Creat. Diffus. Util., vol. 1, no. January, pp. 1–40, 1994.

[11] J. Melorose, R. Perroy, and S. Careas, “FORM: A Feature-Oriented
Reuse Method with Domain-Specific Reference Architectures,” Statew.
Agric. L. Use Baseline 2015, vol. 1, pp. 1–28, 2015.

[12] P. O. Bengtsson and J. Bosch, “Scenario-Based Architecture
Reengineering,” Proc. Fifth Int‟l Conf. Softw. Reuse (ICSR 5), pp. 1–10,
1998.

[13] M. R. Barbacci, R. Ellison, A. J. Lattanze, J. a. Stafford, C. B. Weinstock,
and W. G. Wood, “Quality Attribute Workshops, Third Edition,” Quality,
no. August, p. 38, 2003.

[14] R. Kazman, L. Bass, and M. Klein, “The essential components of
software architecture design and analysis,” J. Syst. Softw., vol. 79, no. 8,
pp. 1207–1216, 2006.

[15] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and P.
America, “A general model of software architecture design derived from
five industrial approaches,” J. Syst. Softw., vol. 80, no. 1, pp. 106–126,
2007.

[16] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model for
design traceability and reasoning,” J. Syst. Softw., vol. 80, no. 6, pp. 918–
934, 2007.

[17] X. Cui, Y. Sun, S. Xiao, and H. Mei, “Architecture design for the large-
scale software-intensive systems: A decision-oriented approach and the
experience,” Proc. IEEE Int. Conf. Eng. Complex Comput. Syst.
ICECCS, pp. 30–39, 2009.

[18] M. a Babar, “An exploratory study of architectural practices and
challenges in using agile software development approaches,” 2009 Jt.
Work. IEEEIFIP Conf. Softw. Archit. Eur. Conf. Softw. Archit., pp. 81–
90, 2009.

[19] W. G. Wood, “A Practical Example of Applying Attribute-Driven Design
(ADD), Version 2 . 0,” Technology, vol. Version 2, no. February, p. 59,
2007.

[20] A. Jansen and J. Bosch, “Software Architecture as a Set of Architectural
Design Decisions,” 5th Work. IEEE/IFIP Conf. Softw. Archit., pp. 109–
120, 2005.

[21] L. Kompella, “Agile methods, organizational culture and agility: some
insights,” Proc. 7th Int. Work. Coop. Hum. Asp. Softw. Eng. - CHASE
2014, pp. 40–47, 2014.

[22] A. Martini, L. Pareto, and J. Bosch, “Communication factors for speed
and reuse in large-scale agile software development,” Proc. 17th Int.
Softw. Prod. Line Conf. - SPLC ‟13, p. 42, 2013.

[23] P. Kruchten, “Software architecture and agile software development: a
clash of two cultures?,” 2010 ACM/IEEE 32nd Int. Conf. Softw. Eng.,
vol. 2, pp. 497–498, 2010.

[24] and P. P. A. Jennifer Pérez, Jessica Diaz, Juan Garbajosa, “Flexible
Working Architectures: Agile Architecting Using PPCs,” October, vol. 2,
pp. 1–20, 2003.

[25] C. Yang, P. Liang, and P. Avgeriou, “A systematic mapping study on the
combination of software architecture and agile development,” J. Syst.
Softw., vol. 111, pp. 157–184, 2016.

[26] W. Radinger and K. M. Goeschka, “Agile software development for
component based software engineering,” Companion 18th Annu. ACM
SIGPLAN Conf. Object-oriented Program. Syst. Lang. Appl., pp. 300–
301, 2003.

[27] M. Usman, E. Mendes, and J. Börstler, “Effort estimation in Agile
software development: A survey on the state of the practice,” ACM Int.
Conf. Proceeding Ser., vol. 27–29–Apri, 2015.

[28] A. Tang, T. Gerrits, P. Nacken, and H. van Vliet, “On the Responsibilities
of Software Architects and Software Engineers in an Agile Environment:
Who Should Do What?,” SSE ‟11 Proc. 4th Int. Work. Soc. Softw. Eng.,
pp. 11–18, 2011.

[29] J. E. Hannay and H. C. Benestad, “Perceived Productivity Threats in
Large Agile Development Projects,” Proc. 2010 ACM-IEEE Int. Symp.
Empir. Softw. Eng. Meas., no. 1325, pp. 1–10, 2010.

[30] M.-S. Lu and L.-K. Tseng, “The integrated OPN and UML approach for
developing an agile manufacturing control system,” 2009 Int. Conf.
Autom. Robot. Control Syst. ARCS 2009, pp. 24–31, 2009.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

245 | P a g e

www.ijacsa.thesai.org

[31] S. B. A. Guetat and S. B. D. Dakhli, “Building Software Solutions in an
Urbanized Information System: The 5+1 Software Architecture Model,”
Procedia Technol., vol. 5, no. 33, pp. 481–490, 2012.

[32] K. D. Palmer, “The essential nature of product traceability and its relation
to Agile approaches,” Procedia Comput. Sci., vol. 28, no. Cser, pp. 44–
53, 2014.

[33] F. Kanwal, K. Junaid, and M. A. Fahiem, “A hybrid software architecture
evaluation method for fdd-an agile process model,” Comput. Intell.
Softw. Eng. (CiSE), 2010 Int. Conf., pp. 1–5, 2010.

[34] R. L. Nord and J. E. Tomayko, “Software architecture-centric methods
and agile development,” IEEE Softw., vol. 23, no. 2, pp. 47–53, 2006.

[35] F. Breu, S. Guggenbichler, and J. Wollmann, The Agile Samurai. 2008.

[36] M. Fowler and J. Highsmith, “The agile manifesto,” Softw. Dev., vol. 9,
no. August, pp. 28–35, 2001.

[37] H. P. Breivold, D. Sundmark, P. Wallin, and S. Larsson, “What does
research say about agile and architecture?,” Proc. - 5th Int. Conf. Softw.
Eng. Adv. ICSEA 2010, pp. 32–37, 2010.

[38] R. Wojcik and P. Clements, “Attribute-Driven Design (ADD), Version 2
. 0,” Design, no. November, p. 55, 2006.

[39] A. en Claes Wohlin, Per Runeson, Martin Host, Magnus C.Ohlsson,
Bjorn Regnell, Experimentation is Software Engineering. .

[40] D. Hristov, O. Hummel, M. Huq, and W. Janjic, “Structuring Software
Reusability Metrics for Component-Based Software Development,” no. c,
pp. 421–429, 2012.

[41] Akhtar, M.J., Ahsan, A. and Sadiq, W.Z., 2010, October. Scrum
adoption, acceptance and implementation (a case study of barriers in
Pakistan's IT industry and mandatory improvements). In Industrial
Engineering and Engineering Management (IE&EM), 2010 IEEE 17Th
International Conference on (pp. 458-461). IEEE.

[42] Wagener, R.P., 2012. Investigating critical success factors in agile
systems development projects (Doctoral dissertation, North-West
University)..

[43] Chow, T. and Cao, D.B., 2008. A survey study of critical success factors
in agile software projects. Journal of systems and software, 81(6), pp.961-
971.

[44] Baddoo, N. and Hall, T., 2002. Motivators of Software Process
Improvement: an analysis of practitioners' views. Journal of Systems and
Software, 62(2), pp.85-96.

[45] Asghar, I. and Usman, M., 2013, December. Motivational and de-
Motivational factors for software engineers: an empirical investigation. In
Frontiers of Information Technology (FIT), 2013 11th International
Conference on (pp. 66-71). IEEE.

[46] Beecham, S., Sharp, H., Baddoo, N., Hall, T. and Robinson, H., 2007,
August. Does the XP environment meet the motivational needs of the
software developer? An empirical study. In Agile Conference (AGILE),
2007 (pp. 37-49). IEEE.

[47] Beecham, S., Baddoo, N., Hall, T., Robinson, H. and Sharp, H., 2006.
Protocol for a systematic literature review of motivation in software
engineering. University of Hertfordshire.

[48] França, A.C.C., Gouveia, T.B., Santos, P.C., Santana, C.A. and da Silva,
F.Q., 2011, April. Motivation in software engineering: A systematic
review update. In Evaluation & Assessment in Software Engineering
(EASE 2011), 15th Annual Conference on (pp. 154-163). IET.

[49] Shahbaz Ahmed, Abdul Razzaq, S. Ullah, S. Ahmed, Matrix Clustering
Based Migration of System Application to Microservices Architecture,
ijacsa, Jan, 2018.

[50] Ahmed, Shahbaz & Ahmed, Salman & Naseem, Adnan & Razzaq,
Abdul. (2017). Motivators and Demotivators of Agile Software
Development: Elicitation and Analysis. International Journal of
Advanced Computer Science and Applications. 8.
10.14569/IJACSA.2017.081239.

FACTOR ANALYSIS RESULT REPORT

APPENDIX A

Factor: Communication barrier, personal preferences, Unrealistic goals,
Poor quality software, Uncompetitive, Lack of influence, Unfair reward

system, Uncompetitive pay, Lack of relationship opportunities, Risk, Political
environment, Non-interesting work, Stress, Injustice in promotions

A. Principal Component Factor Analysis of the Correlation Matrix

1) Unrotated Factor Loadings and Communalities:
Variable Factor1 Factor2 Factor3 Factor4 Factor5 Factor6

personal preferences 0.851 0.355 -0.007 0.068 -0.153 -0.028
Unrealistic goals -0.102 0.279 0.579 0.496 0.273 -0.049

Poor quality software -0.089 0.304 -0.517 -0.309 0.301 0.032

Uncompetitive pay -0.140 0.552 -0.254 -0.408 0.335 -0.049
Lack of influence -0.296 0.266 0.140 -0.214 -0.545 0.360

Unfair reward system 0.688 0.480 0.090 -0.308 -0.002 -0.072

Lack of relationship opportunit -0.108 0.051 0.023 0.030 -0.665 -
0.194

Communication barrier 0.152 -0.425 0.497 -0.495 0.170 -

0.029
Risk -0.235 0.430 0.471 0.192 0.332 0.262

Injustice in promotions 0.789 0.135 0.017 0.151 -0.009 0.002

Political environment 0.238 -0.412 0.408 -0.579 0.057 0.145
Unsupportive management 0.001 -0.296 -0.315 0.126 0.121

0.729

Non-interesting work 0.672 -0.135 -0.062 0.196 -0.034 0.418

Stress -0.294 0.565 0.230 -0.226 -0.235 0.347

Variance 2.6294 1.8820 1.4870 1.3985 1.2537 1.0958
% Var 0.188 0.134 0.106 0.100 0.090 0.078

Variable Factor7 Factor8 Factor9 Factor10 Factor11
Factor12

personal preferences -0.011 0.063 -0.152 0.001 0.233 -

0.098
Unrealistic goals -0.045 0.117 -0.126 0.334 -0.275 -0.107

Poor quality software -0.200 0.471 0.352 0.196 0.036 -

0.065
Uncompetitive pay -0.050 -0.427 -0.112 0.076 -0.305 -

0.021

Lack of influence 0.285 0.428 -0.068 0.037 -0.216 -0.036
Unfair reward system -0.125 0.125 -0.354 -0.041 0.060 -

0.048

Lack of relationship opportunit -0.659 -0.136 0.106 0.192 -0.047
0.014

Communication barrier 0.071 -0.033 0.092 0.418 0.239 -
0.037

Risk -0.348 0.109 0.173 -0.282 0.186 0.070

Injustice in promotions 0.126 0.018 0.271 0.116 -0.181
0.446

Political environment -0.244 0.060 0.006 -0.264 -0.274

0.045
Unsupportive management -0.248 -0.035 -0.351 0.204 0.059

0.141

Non-interesting work 0.006 -0.207 0.344 -0.028 -0.152 -
0.349

Stress 0.198 -0.365 0.176 0.064 0.199 0.062

Variance 0.8782 0.8332 0.7019 0.5790 0.5417 0.3821

% Var 0.063 0.060 0.050 0.041 0.039 0.027

Variable Factor13 Factor14 Communality

personal preferences 0.013 -0.172 1.000

Unrealistic goals 0.152 -0.014 1.000

Poor quality software 0.126 -0.008 1.000

Uncompetitive pay -0.176 -0.051 1.000

Lack of influence -0.175 -0.017 1.000
Unfair reward system 0.027 0.156 1.000

Lack of relationship opportunit -0.037 0.004 1.000

Communication barrier -0.167 0.002 1.000
Risk -0.199 -0.003 1.000

Injustice in promotions -0.046 0.013 1.000

Political environment 0.187 -0.057 1.000
Unsupportive management 0.014 -0.005 1.000

Non-interesting work -0.057 0.046 1.000

Stress 0.251 0.012 1.000

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

246 | P a g e

www.ijacsa.thesai.org

Variance 0.2744 0.0630 14.0000

% Var 0.020 0.004 1.000

Factor Score Coefficients

Variable Factor1 Factor2 Factor3 Factor4 Factor5 Factor6
personal preferences 0.324 0.189 -0.005 0.049 -0.122 -0.025

Unrealistic goals -0.039 0.148 0.389 0.355 0.218 -0.045

Poor quality software -0.034 0.161 -0.348 -0.221 0.240 0.029
Uncompetitive pay -0.053 0.293 -0.171 -0.292 0.267 -0.045

Lack of influence -0.112 0.142 0.094 -0.153 -0.435 0.329

Unfair reward system 0.261 0.255 0.060 -0.220 -0.002 -0.066
Lack of relationship opportunit -0.041 0.027 0.016 0.021 -0.530 -

0.177

Communication barrier 0.058 -0.226 0.334 -0.354 0.135 -
0.027

Risk -0.089 0.228 0.317 0.137 0.265 0.239

Injustice in promotions 0.300 0.072 0.011 0.108 -0.007 0.002
Political environment 0.091 -0.219 0.275 -0.414 0.045 0.132

Unsupportive management 0.001 -0.157 -0.212 0.090 0.097

0.665

Non-interesting work 0.256 -0.072 -0.041 0.140 -0.027 0.381

Stress -0.112 0.300 0.155 -0.162 -0.188 0.317

Variable Factor7 Factor8 Factor9 Factor10 Factor11

Factor12

personal preferences -0.013 0.076 -0.217 0.001 0.429 -
0.257

Unrealistic goals -0.052 0.140 -0.179 0.578 -0.509 -0.280

Poor quality software -0.228 0.565 0.502 0.338 0.066 -
0.171

Uncompetitive pay -0.056 -0.512 -0.160 0.131 -0.562 -

0.054

Lack of influence 0.324 0.514 -0.097 0.063 -0.399 -0.095
Unfair reward system -0.142 0.149 -0.505 -0.071 0.111 -

0.125

Lack of relationship opportunit -0.751 -0.164 0.152 0.331 -0.086
0.036

Communication barrier 0.081 -0.040 0.131 0.721 0.440 -

0.097
Risk -0.396 0.131 0.247 -0.488 0.343 0.183

Injustice in promotions 0.143 0.022 0.387 0.200 -0.333

1.167
Political environment -0.278 0.072 0.008 -0.455 -0.506

0.116

Unsupportive management -0.282 -0.043 -0.501 0.352 0.108
0.370

Non-interesting work 0.007 -0.248 0.490 -0.048 -0.281 -

0.912
Stress 0.226 -0.438 0.250 0.111 0.367 0.162

Variable Factor13 Factor14
personal preferences 0.046 -2.736

Unrealistic goals 0.554 -0.219

Poor quality software 0.460 -0.126

Uncompetitive pay -0.640 -0.816

Lack of influence -0.639 -0.271

Unfair reward system 0.097 2.479
Lack of relationship opportunit -0.136 0.071

Communication barrier -0.608 0.025

Risk -0.727 -0.045
Injustice in promotions -0.167 0.207

Political environment 0.682 -0.904

Unsupportive management 0.050 -0.085
Non-interesting work -0.209 0.738

Stress 0.916 0.185

APPENDIX B

Fig. 9 shows the variation among all factors.

Fig. 10 provides the analysis of relationships amongst all the factors in
the form of groups. This graph provides different relations in the context of
positive and negative.

Fig. 11 tells the co-relationships in two ways amongst factors vertically
and horizontally. These relationships are between two factors.

Fig. 12 biplot shows by using the both points.

Fig. 9. Factors list analysis variation graph.

1413121110987654321

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Factor Number

E
ig

e
n

v
a
lu

e

Scree Plot of personal preferences, ..., Stress

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

247 | P a g e

www.ijacsa.thesai.org

Fig. 10. Score plot.

Fig. 11. Loading plot.

Fig. 12. Biplot.

1.00.80.60.40.20.0-0.2-0.4

0.50

0.25

0.00

-0.25

-0.50

First Factor

Se
co

nd
 F

ac
to

r

Stress

Non-interesting work

Unsupportive management

Political environment

Injustice in promotions

Risk

Communication barrier

Lack of relationship opportunit

Unfair reward system

Lack of influence

Uncompetitive pay

Poor quality software
Unrealistic goals

personal preferences

Loading Plot of personal preferences, ..., Stress

6543210-1-2

4

3

2

1

0

-1

-2

-3

First Factor

S
ec

o
n

d
 F

ac
to

r

Stress

Non-interesting work
Unsupportive managementPolitical environment

Injustice in promotions

Risk

Communication barrier

Lack of relationship opportunit

Unfair reward system
Lack of influence
Uncompetitive pay
Poor quality softwareUnrealistic goalspersonal preferences

Biplot of personal preferences, ..., Stress

