
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

12 | P a g e

www.ijacsa.thesai.org

Flow-Length Aware Cache Replacement Policy for

Packet Processing Cache

Hayato Yamaki

Dept. of Computer and Network Engineering

The University of Electro-Communications

Chofu, Japan

Abstract—Recent core routers are required to process packets

not only at high throughput but also with low power

consumption due to the increase in the network traffic amount.

Packet processing cache (PPC) is one of the effective approaches

to meet the requirements. PPC enables to process a packet

without accessing to a ternary content addressable memory

(TCAM) by storing the TCAM lookup results of a flow in a

cache. Because the cache miss rate of PPC directly impacts on the

packet processing throughput and the power consumption of

core routers, it is important for PPC to reduce the number of

cache misses. In this study, we focus on characteristics of flows

and propose an effective cache replacement policy for PPC. The

proposed policy, named Hit Dominance Cache (HDC), divides

the cache into two areas and assigns flows to the appropriate

area to evict mice flows rapidly and to retain elephant flows

preferentially. Simulation results with 15 real network traces

show that HDC can reduce the number of cache misses in PPC

by up to 29.1% and 12.5% on average when compared to 4-way

LRU, conventionally used in PPC. Furthermore, the hardware

implementation using Verilog-HDL shows that the hardware

costs of HDC is comparable to those of 4-way LRU though HDC

performs as if the cache was composed of 8-way set associativity.

Finally, we show that HDC can achieve 503 Gbps with 88.8%

energy of conventional PPC (20.5% energy of TCAM only

architecture).

Keywords—Router; packet processing; cache replacement

I. INTRODUCTION

Internet traffic has increased year by year due to the
popularization of internet applications which generate a large
number of packets, such as file sharing, cloud services, and
video streaming. Because the traffic concentrates on routers,
the processing load of routers has increased and becomes a
serious problem. According to The Ministry in Japan [1], [2], it
is reported that the total amount of internet traffic and the
power consumption of network devices will increase
approximately 190 times and 10 times, respectively, in 2025
compared to 2006. The power consumption of routers is no
longer negligible because it will account for several
percentages of total power consumption in the world [3], [4].
Not only high throughput but also low power consumption is
required for routers and especially for core routers, which
handle the huge traffic close to the center of the internet.

In a core router, table lookups for packet processing is
known as the main cause of both degrading the throughput and

consuming the power [5]-[7]. To determine how to process a
packet (i.e., where to transmit or how to filter the packet, etc.),
routers are required to retrieve tables such as the routing table,
the address resolution protocol (ARP) table, the access control
list (ACL), and the quality of service (QoS) table. In recent
core routers, these tables are stored in a ternary content
addressable memory (TCAM), which is a memory specialized
in high-speed data search. While the TCAM can obtain a table
lookup result with one cycle, it consumes approximately 16
times as large power as a same sized static random access
memory (SRAM) [8]. Due to this, it is indicated that the
TCAM accounts for 40% of all power consumed in a router [9],
[10]. Make matter worse, the lookup performance of the
TCAM cannot reach the throughput required for future internet
(i.e., more than 400 Gbps) because of the low operation
frequency. Thus, improvement of the TCAM lookups is
important for future core routers to achieve both high
throughput and low power consumption.

As one of the solutions, optimizing the TCAM use is the
most popular approach. Nawa et al. proposed a novel searching
scheme for the TCAM [9]. They enabled to reduce the dynamic
energy of the TCAM lookups by dividing the all TCAM entries
into several groups and searching only appropriate group.
Gamage et al. proposed a method for high-throughput table
lookups with parallelized TCAMs [5]. The proposed method
enabled to accelerate the packet processing by assigning
packets to the suitable TCAMs. However, it is still difficult to
achieve more than 400-Gbps throughput and SRAM-like
power. Other approaches are required for further improvement.

Packet processing cache (PPC) is another approach and
recently reevaluated because it can improve the table lookup
performance without impeding the TCAM-based approaches
and thus adopt concurrently with them. PPC includes a cache
which retains the TCAM lookup results of packets and reuses
them to process following packets. If the TCAM lookup result
of a packet is in the cache, PPC can process the packet without
accessing the TCAM using the cache. The more PPC can
process packets with the cache, the larger PPC can acquire the
throughput and the power reduction because of a small number
of TCAM accesses. In other words, the performance of PPC
depends on the cache hit/miss rate. Thus, to reduce the number
of cache misses is an important issue for PPC. In this study, we
investigate causes of the cache misses in PPC and propose an
effective cache replacement policy for PPC to reduce the
number of cache misses.

This work was supported by KAKENHI 18K18022, a research grant from
The Mazda Foundation, and a research grant from Sumitomo Foundation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

13 | P a g e

www.ijacsa.thesai.org

The contribution of this paper is summarized as follows:

 Major Causes of the cache misses in PPC are suggested.
We show that two types of flows make a large number
of cache misses.

 Our simulation shows that Hit Dominance Cache
(HDC), proposed in this paper, reduces the number of
cache misses in PPC by up to 29.1% (12.5% on
average) with comparable hardware cost to 4-way Least
Recently Used (LRU), typically used in PPC.

 The performance of cache replacement policies to
various types of traffic patterns is evaluated. Although
the cache access patterns in PPC (i.e., behavior of
packets) differ depending on the network structure,
previous studies simulated with only a few network
traces. This study uses 15 network traces for evaluation.

 This paper is an expansion of the paper [11], which
published in the proceedings of Future of Information
and Communication Conference (FICC) 2018. It newly
reveals more detailed relation between flows and the
PPC cache misses. In addition, the performance
difference of variable HDC designs and the more
detailed hardware costs are also evaluated.

The rest of this paper is organized as follows. We first
show the more details of PPC in Section 2 and introduce the
related works of reducing the number of cache misses in PPC
in Section 3. After that, we investigate major causes of the
cache misses in PPC and propose our technique HDC in
Section 4. Section 5 evaluates HDC performance from the
aspects of the cache miss reduction, the implementation costs,
the throughput, and the energy consumption. Finally, we
conclude this paper in Section 6.

Fig. 1. Outline of packet processing by PPC.

II. PACKET PROCESSING CACHE

In the routers, the TCAM lookup results depend on several
fields in the packet header (e.g., IP addresses) because they are
used as a key for retrieval. In particular, the five-tuple (i.e., the
source and destination IP addresses, the source and destination
port numbers, and the protocol number) are used in most tables
in a router. Based on this fact, PPC defines packets which have
the same five-tuple as a flow and stores the TCAM lookup
results of the first packets of flows to a cache memory. If the
TCAM lookup result of a flow is in the cache, PPC can process
the subsequent packets of the flow without accessing the
TCAM using the cached result and reduce the number of
TCAM accesses. Because the packets of the same flow arrive
in a router at short intervals [12], [13], routers can benefit from
the cache. The outline of the packet processing by PPC is
shown in Fig. 1. The latency and the energy consumption of
the cache are considerably lower than those of the TCAM, and
therefore PPC can process packets at high speed with low
energy consumption if the cache hits occur.

The cache is composed of 13-byte flow information as a
cache tag and 15+-byte TCAM lookup results as cache data.
The cache data include 1 byte as a result of the routing table
lookup (output interface number), 12 bytes as a result of the
ARP table lookup (MAC address), 1 byte as a result of the
ACL (filtering decision), 1 byte as a result of the QoS table
(priority value). Moreover, the cache can also store other
processing results such as filtering results of NIDS (Network
Intrusion Detection System), encapsulation results, and
encryption results by expanding the cache data field. PPC can
perform many packet processing with one cache access.

In PPC, TCAM accesses are required only when the
TCAM lookup results of the corresponding flows are not in the
cache. For this reason, the performance of PPC depends on the
cache miss rate. We define the throughput and the energy
consumption of the table lookups per packet with PPC as
and , respectively. These variables are calculated as:

)(byte 64
1

)(byte 64
1

mll
ml

mll
l

T

TCAMCache

TCAM

TCAMCache

Cache

PPC

　

　　
 (1)

).()(TCAMCacheTCAMCachePPC SESEmnDEDEE

Here, and represent the latencies of the cache
and the TCAM, respectively. Likewise, and
represent the dynamic energy of the cache and the TCAM per
access, respectively, while and represent the
static power of them. Conventionally, the impact of the static
power in the memories can be ignored because the dynamic
energy dominates the total energy consumed by a memory in a
router [14].

Packet Processing Engine
Packet

Cache Tag

5tuple

Cache Data

Table lookup res.

Flow A Send from port1, Permit, High priority, …

Flow D Send from port3, Deny, Low priority, …

Flow B Send from port1, Permit, Low priority, …

Routing

Table

ARP

Table
ACL QoS

Table

② TCAM is accessed only when the cache miss occurs.

① First, the cache is accessed.

Cache

Memory

TCAM

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

14 | P a g e

www.ijacsa.thesai.org

Fig. 2. Outline of LRU entry replacement.

Fig. 3. Comparison of cache miss rates between LRU and OPT.

However, we consider both of energies in this paper
because the static power is not negligible in case of a small
cache memory. m represents the cache miss rate. n represents
the number of TCAM accesses needed to process a packet. In
this paper, we suppose n = 4 because popular routers have four
types of tables as shown in Fig. 1. 64 bytes referred in (1)
represents the shortest packet length. Equation (1) means that
the table lookup throughput with PPC is limited by the smaller
throughput of the cache or the TCAM. These equations
indicate that the throughput and the power consumption with
PPC are mainly determined by the cache miss rate due to the
large latency and high energy consumption of the TCAM.
Thus, to achieve low cache miss rate is important to improve
both the throughput and the power consumption with PPC.

To increase the total number of cache entries is the most
simple and effective solution to reduce the number of cache
misses for many cache systems. However, for PPC, this
approach leads to the increase in the cache capacity easily due
to the large entry size (28 bytes per entry). As a result, it
increases in both the latency and the power consumption of the
cache. Unlike processor caches, the gap of the latencies
between the cache and the TCAM is small. Thus, it is desirable
for PPC to use a small cache memory such as level-1 (L1)
caches in processors. In this paper, we aim to reduce the
number of cache misses in L1-sized PPC without increasing
the cache capacity by improving the use of the cache space.

Conventionally, PPC is designed by a 4-way set associative
cache from the aspects of the cache miss rate and the hardware
complexity [15]-[17]. It means that each cache line has four
entries, and PPC can keep useful entries in the cache by
applying a suitable cache replacement policy. The cache
replacement policy is used to determine which entry should be
replaced when the cache line is full. It is known that the cache
replacement policy impacts on the cache miss rate significantly.
In PPC, Least Recently Used (LRU), whose concept is to evict
the entry hit oldest, is empirically used as the cache
replacement policy. As shown in Fig. 2, LRU inserts a new
entry into the Most Recently Used (MRU) position and evicts
it from the Least Recently Used (LRU) position. In addition,
when an entry is referenced, LRU shifts it to the MRU position.
LRU performs good in many cache systems because it can

utilize the temporal locality of data; however, it is not certain
that 4-way LRU is suitable for PPC. Fig. 3 shows the
difference of the cache miss rates measured by a simulation
with real network traffics. The details of the simulation are
described in Section 5. In this simulation, we designed 4-way
LRU and optimal page replacement algorithm (OPT) [18] as
the cache replacement policy in PPC. OPT is an ideal
replacement policy which uses the information of all future
arrived data. Thus, the performance of OPT is the best of all
cache replacement policies; however, it cannot be implemented
for practical use in most cases. Fig. 3 indicates that
approximately 30% of all the cache misses in PPC have the
opportunities to be reduced by replacing entries more
effectively than LRU. In this study, in order to close the gap of
the cache miss rates between LRU and OPT, we consider the
effective replacement policy.

III. RELATED WORK

Various cache replacement policies have been proposed in
previous studies for many cache systems. However, they are
not always effective for PPC because of the difference of the
cache access patterns. In this section, we introduce a few
studies focusing on the reduction in the number of cache
misses in PPC and reveal the problems of the proposed
methods.

Chang et al. pointed out that PPC cannot prepare a large
number of cache entries due to the large tag size and proposed
a method to compress the cache tag [19]. They used a 32-bit
hash value calculated from the five-tuple as the cache tag
instead of the 104-bit flow information. However, adding extra
hardware is needed to avoid the conflicts of the hash values.
Similarly, Ata et al. compressed the cache tag of PPC by using
only three fields of the five-tuple: the source and destination IP
addresses and the smaller number of ports [20]. However, it
cannot meet demands of recent routers. For example, the QoS
table requires the five-tuple to determine the QoS value.
Compressing the cache tag sacrifices the information stored in
the cache or requires to add extra hardware.

Li et al. discussed the appropriate cache design for PPC
[17]. In order to use the cache space efficiently, they focused
on three viewpoints: the cache associativity, the cache
replacement policy, and the hash function. In [17], the authors
concluded that a 4-way set associativity with LRU is the best
design from the balance between the implementation costs and
the cache hit rate. Additionally, they show that the difference
of the hash functions does not impact on the cache hit rate
largely. While the authors evaluated three policies (LRU, least
frequently used (LFU), and round robin), other policies were
not considered.

Kim et al. proposed an effective cache replacement policy
for PPC [21]. They indicated that LRU was not suitable for
PPC because LRU focused on only temporal locality and
cannot utilize activities of networks. The proposed policy
classifies the cache entries into two types: a switching entry
and a non-switching entry. The switching entry is the entry hit
at least once; non-switching entry is the entry never hit. The
entry is replaced from the non-switching entries. Furthermore,
they proposed two types of cache replacement policies called
Weighted Priority LRU Scheme and L2A Cache Scheme. In

EvictionInsertion

MRU LRU

Hit

Way

1

Way

2

Way

3

Way

4

0

0.1

0.2

0.3

0.4

0.5

Academic WIDE UFL CNIC APN IND BUF

C
a
ch

e
 M

is
s

R
a
ti
o

Network Trace

4way LRU OPT

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

15 | P a g e

www.ijacsa.thesai.org

Weighted Priority LRU Scheme, the non-switching entries
cannot be replaced until a threshold time passes because it is
expected that the non-switching entries are referenced again in
a short time. In L2A Cache Scheme, the replaced entry is
decided by the amount of the timestamp values in last two
packets. L2A Cache Scheme can reduce the number of cache
misses compared to LRU in case that the cache size is small.
However, concrete hardware requirements, such as the number
of bits for storing the timestamp to the cache and the way for
getting the time, were not referred. The increase in the memory
costs becomes a critical problem especially in PPC.

Yamaki et al. considered the methods of denying the cache
registration of one-packet flows because they have no
opportunities to hit in the cache [22], [23]. They proposed
several methods to specify applications which create flows
composed of only one packet, such as flows created by domain
name system (DNS) or by several types of network attacks, and
not to store these flows in the cache. While the proposed
methods can reduce the number of cache misses in PPC by
approximately 8%, the misses caused by various small factors
cannot be improved because the methods handle the misses of
only specific applications.

IV. CACHE REPLACEMENT POLICY

In this paper, we focus on the cache replacement policy
because it has a potential to reduce a large number of cache
misses as shown in Fig. 2 with small hardware modification. In
this section, we first analyze the flow behavior in PPC to reveal
the cause of the cache misses in PPC. After that, we propose a
novel cache replacement policy based on the above analysis.

A. Analysis of Flow Behavior in PPC

Flows composed of a few packets (referred to as mice
flows) are one of the main causes of increasing the cache
misses in PPC [23]. The mice flows cause cache pollution due
to the occupation of entries in spite of a few cache hits. In
particular, flows composed of one packet are not needed for the
cache because they never hit in the cache. In [23], it was
indicated that 99% of all flows are the mice flows composed of
less than 10 packets. Moreover, the flows composed of one
packet accounts for about half of all flows in networks.
Therefore, mice flows occupy most entries in the cache and
impact on the cache performance significantly. It is important
for PPC to evict the mice flows from the cache rapidly.

Unlike the mice flows, there are flows composed of a large
number of packets (referred to as elephant flows), such as
video flows. These elephant flows are composed of more than
1,000 packets. Although the number of elephant flows are few,
they have great impact on the cache miss rate because of a
large number of cache references. These trends that a large
number of mice flows and a few number of elephant flows
account for most packets in networks is known as the elephant
and mice phenomenon [24]. We analyze the behavior of the
elephant flows in the cache and show the examples in Fig. 4.
This graph shows logs of the cache hits and misses in elephant
flows. Contrary to expectation, many packets in an elephant
flow make the cache misses. It means that entries of the
elephant flows are replaced repeatedly though they are
referenced many times.

Fig. 4. Logs of the cache hits and misses in elephant flows.

We also investigate the impact of the mice flows and
elephant flows on the number of cache misses. Fig. 5 shows the
total amount of packets, compulsory misses, and other misses
in the flows composed of the specific number of packets.
Compulsory misses shown in the figure are misses caused by
first packets of flows, and thus it is difficult for PPC to prevent
them. In contrast, other misses shown in the figure can be
reduced by retaining entries of the corresponding flows
appropriately. This figure indicates that a large number of
misses, especially compulsory misses, are caused by mice
flows, and it pollutes the cache. In addition, we show the ratios
of each cache miss to all packets in Fig. 6. As shown in Fig. 4,
it also indicates that packets in elephant flows cause the cache
misses at a higher rate than we expect. Thus, it has better for
PPC to prevent the cache pollution caused by mice flows and
to prioritize elephant flows.

B. Hit Dominance Cache

Based on above considerations, we propose Hit Dominance
Cache (HDC) to prevent the cache pollution caused by mice
flows and retain elephant flows preferentially. The main
concept of HDC is to provide difference cache priorities to
elephant flows and mice flows by assigning difference cache
areas to them. Because it is difficult to identify whether a
packet is belonging to an elephant flow or a mice flow
accurately when the packet comes, HDC judges it from the
number of cache hits. HDC prioritizes entries which hit many
times as elephantish flows.

Fig. 7 shows the outline of HDC entry replacement. In
HDC, the cache area is divided into two areas: the hit area and
the primary area. Entries are inserted in and evicted from the
LRU position of the primary area. Thereby, new entries can be
evicted by one replacement at the shortest. It enables to evict
the mice flows rapidly. When an entry in each area is
referenced, the entry is shifted to the MRU position in each
area. In addition, one notable behavior of HDC is that the entry
in the primary area is swapped for the LRU position entry in
the hit area if the entry is referenced threshold times (we define
it as the HDC threshold). It enables to retain elephant flows
preferentially because mice flows disturb entries in only the
primary area. In Fig. 7, HDC is depicted as the combination of
4-way hit area and 4-way primary area; however, each area can
be designed variably.

Elephant Flow A

Elephant Flow B

Elephant Flow C

0 50 100 150 200 250 300
Packet #

Hit

Miss

0 50 100 150 200 250 300
Packet #

Hit

Miss

0 50 100 150 200 250 300
Packet #

Hit

Miss

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

16 | P a g e

www.ijacsa.thesai.org

Fig. 5. Total amount of all packets, compulsory misses, and other misses in

the flows composed of the specific number of packets.

Fig. 6. Average ratios of two types of cache misses to all packets in the

corresponding flow. For example, this graph shows all packets in the flows

composed of one packet cause the compulsory misses.

Fig. 7. Outline of HDC entry replacement.

V. EVALUATION

This section evaluates the usefulness of HDC. In this paper,
we simulated the packet processing with PPC including HDC
using a software PPC simulator and implemented HDC using a
hardware description language to evaluate HDC from
following three aspects:

 Cache miss reduction

 Implementation costs

 Overall throughput and energy consumption.

Fig. 8. Block diagram of PPC simulator.

A. Cache Miss Reduction

To measure the cache miss rate of PPC, we prepared a
cycle-based PPC simulator written in C++. The block diagram
of the PPC simulator is shown in Fig. 8. The simulator models
the PPC behavior such as reading packets, extracting the flow
information, calculating the cache index, referring to and
updating the cache, and referring to the TCAM. First, pcap-
format file is read, and a packet is extracted based on the
timestamp value. After that, the cache index is calculated from
the five-tuple of the packet using CRC hash function module.
Next, the cache is referenced using the cache index. If the
packet hits in the cache, the PPC simulator finishes processing
the packet and extracts the next packet. On the other hand, if
the packet misses in the cache, the packet is forwarded to
Cache Miss Handler (CMH). CMH is a module to prevent the
cache misses caused by the time-lag between the cache
reference and the cache update. Because it takes a little time to
insert a new entry in the cache, cache misses may be occurred
if subsequent packets of the same flow come before updating
the cache. CMH manages the flows just processed in the
TCAM and stores the subsequent packets of the same flows
until the corresponding entry is prepared in the cache. More
details of CMH is described in [25]. If the packet misses in
CMH, the packet is forwarded to the TCAM module. After the
TCAM access latency, the PPC simulator finishes processing
the packet and updates the cache.

Table I shows the parameters of the PPC simulator. The
cache was estimated as an L1-sized cache. The latencies of the
cache and the TCAM were set to 0.5 ns and 5 ns, respectively.
Note that we assumed the sizes of CMH and queues shown in
Fig. 8 were enough large, and the simulator can process
packets without any packet losses. Besides, we used 15 types
of network traces shown in Table II as workloads to reveal the
performance of the cache replacement policies without
depending on the network traffic patterns. The network traces
were acquired from RIPE Network Coordination Centre [26]
and Widely Integrated Distributed Environment (WIDE) [27].
Furthermore, an academic trace acquired from a core network
in Japan was used as a high-bandwidth workload.

First, the suitable design for each area of HDC was
evaluated. As described in Section 4, HDC can variably design
the number of associativity sets in each area. We implemented
2-way hit area 4-way primary area HDC (2-4 HDC), 4-way hit
area 2-way primary area HDC (4-2 HDC), and 4-way hit area
4-way primary area HDC (4-4 HDC) and compared the cache
miss rates of them. In this simulation, each HDC design had

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000

All packets Compulsory misses Other misses

The number of packets composing a flow

T
h

e
n

u
m

b
e

r
o

f
p

a
c
k
e

ts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

All packets Compulsory misses Other misses

P
ro

p
o

rt
io

n

The number of packets composing a flow

Eviction

Insertion

Hit Area Primary Area

MRU LRU MRU LRU

Hit N timesHit Hit

Way

1

Way

2

Way

3

Way

4
Way

1

Way

2

Way

3

Way

4

5-tuple
Extractor

CRC
Function

L1-sized
cache Cache

Miss
Handler

TCAM

Finish

Finish

Packet

5 tuple

Hash
value

Cache
index

Tag
matching

Cache update

Finish

Hit

HitMiss

Miss

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

17 | P a g e

www.ijacsa.thesai.org

the same total number of entries and set the HDC threshold = 8.
Note that 8-way design was not evaluated in this simulation
because it cannot be implemented for practical use due to the
high implementation costs as described later. Fig. 9 shows the
cache miss rates of 4-way LRU and each HDC design. In this
figure, we showed the results of only three networks (i.e., TXG,
IPLS, and UFL) because the trends of all the results are mostly
the same. Fig. 9 indicates that 4-4 HDC is the best design to
achieve the low cache miss rate. 4-4 HDC can reduce the
number of cache misses by up to 20.8% and 16.7%, when
compared to 2-4 HDC and 4-2 HDC, respectively. We consider
it is because the total amounts of the mice flow packets and the
elephant flow packets are almost the same as shown in Fig. 5,
and one to one design is fitting to split these flows
symmetrically. From this result, we adopt 4-4 HDC design
hereafter.

Next, the impact of the HDC threshold was evaluated.
Figure 10 shows the difference of the cache miss rates among
4-way LRU and HDCs with various HDC thresholds. We set
the HDC threshold to 1, 2, 4, 8, and 16 and represented them
from HDC 1 to HDC 16 in the figure. As well as Fig. 9, we
showed the results of only three networks because of the
similar trend. This result indicates that it is the best to set the
HDC threshold to eight.

TABLE I. PARAMETERS OF PPC SIMULATOR

Parameter Value

Total cache entries 1,024 entries

Latency of the cache 0.5 ns

Latency of the TCAM 5 ns

TABLE II. DETAILS OF NETWORK TRACES

Trace Captured date
Average # of packets

[pps (packets per second)]

IND[26] 2003/1/6 15,540

BUF [26] 2003/1/18 8,380

TXG [26] 2004/3/26 12,475

APN [26] 2004/3/26 20,330

IPLS3 [26] 2004/6/1 116,778

BWY [26] 2004/10/7 17,922

COS [26] 2005/1/8 8,051

CNIC [26] 2005/3/17 28,440

MRA [26] 2005/3/21 41,372

UFL [26] 2005/3/21 50,769

FRG [26] 2006/1/10 32,955

PSC [26] 2006/2/20 26,912

PUR [26] 2006/2/20 42,515

Academic 2010/6/17 371,013

WIDE [27] 2017/4/12 58,776

Fig. 9. Cache miss rates of various HDC designs.

Fig. 10. Cache miss rates of various HDC thresholds.

Fig. 11. Outline of SLRU entry replacement.

Finally, the cache miss reduction of HDC was evaluated. In
this evaluation, 4-way LRU, 8-way LRU, OPT, and segmented
LRU (SLRU) [28] were used as the cache replacement policies
for comparison. SLRU is a cache replacement policy which
resembles HDC and divides the cache area into two areas: the
probationary segment and the protected segment. Fig. 11
shows the outline of SLRU entry replacement. In SLRU, a new
entry is inserted into the MRU position of the probationary
segment and evicted from the LRU position of the probationary
segment. When an entry is referenced, the entry is set on the
MRU position of the protected segment. Although SLRU
divides the cache into two areas, it is the same as 8-way LRU
whose inserted position of a new entry is changed to the middle
of the 8-way entries.

Fig. 12 and 13 show the cache miss rates of various LRUs,
HDC, and OPT with 15 types of network traces and the
improvement ratios of them to 4-way LRU. The results showed
that HDC performed the best in nine networks. HDC can
reduce the cache misses by up to 29.1% (12.5% on average)
compared to 4-way LRU, while SLRU can reduce the cache
misses by up to 20.2% (11.1% on average) compared to 4-way
LRU. SLRU performed better than HDC in six network traces;
however, SLRU is not suitable for practical use because of the
high implementation cost like 8-way LRU, as mentioned later.
By contrast, 8-way LRU cannot achieve major improvement to
4-way LRU though 8-way LRU can achieve considerably
lower cache miss rate than 4-way LRU in many other cache
systems. It is because 8-way LRU cannot evict mice flows
rapidly, and thus the cache entries are polluted by them. In this
simulation, HDC provided up to 84.6% of the OPT
performance; however, the average performance of HDC is
44.5% of the OPT performance. It means that there is still
room for improvement.

0%

5%

10%

15%

20%

25%

30%

TXG IPLS UFL

4way LRU 2-4 HDC 4-2 HDC 4-4 HDC

Network name

C
ac

h
e

m
is

s
ra

te

14%

16%

18%

20%

22%

24%

26%

28%

30%

TXG IPLS UFL

4way LRU HDC 1 HDC 2 HDC 4 HDC 8 HDC 16

Network name

C
ac

h
e

m
is

s
ra

te

Eviction

Insertion

Protected Segment Probationary Segment

MRU LRU

Hit

Way

1

Way

2

Way

3

Way

4
Way

5

Way

6

Way

7

Way

8

MRULRU

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

18 | P a g e

www.ijacsa.thesai.org

Fig. 12. Cache miss rates of various LRUs, HDC, and OPT in 15 types of network traces.

Fig. 13. Improvement ratios of the cache misses of various LRUs, HDC, and OPT to 4-way LRU.

B. Implementation Costs

When we consider a cache replacement policy, not only the
cache miss reduction but also the implementation costs are an
important issue because the cache replacement policy requires
a large circuit area which cannot be ignored in some cases. In
general, two modules are required to implement a cache
replacement policy. One is a memory to store the replacement
priorities of entries per cache line, and the other is a module to
update these priorities when a cache hit or a new entry
insertion occurs.

In the case of 4-way LRU, 5 bits are required per cache line
to handle 24 possible combinations of the replacement
priorities (because each entry is ranked from 1 to 4). On the
other hand, 8-way LRU needs 16 bits per cache line to handle
40,320 possible combinations of those (because each entry is
ranked from 1 to 8). Furthermore, the module to update the
replacement priorities in the 8-way LRU is significant larger
than those in the 4-way LRU because there are 40,320 * 7
possible patterns of the replacement priority transitions in 8-
way LRU though 4-way LRU needs 24 * 3 possible patterns of
the replacement priority transitions. As a result, it is not
realistic to implement 8-way LRU on hardware. Similarly,
SLRU cannot be implemented with realistic hardware costs.

Fig. 14. An example of the method to manage the replacement priorities in 4-

4 HDC 8.

Against above consideration, although HDC performs as if
the cache was composed of 8-way set associativity, it enables
to manage the replacement priorities in the same way as the 4-
way LRU. Fig. 14 shows an example of how to manage the
replacement priorities in 4-4 HDC. In order to swap the entries
between the primary area and the hit area, hit counters are
needed for each entry in the primary area to count the number
of references. In the case of HDC 8, 3 bit * (1,024 entries / 2),
namely 1.5K bits are needed as the hit counter. When a hit
counter overflows, the corresponding entry is swapped for the
LRU position entry in the hit area of the same cache line. At
this time, the replacement priorities are updated in only the
primary area because the replacement priority of the swapped
entry in the hit area is not changed and keeps LRU position.
Furthermore, unlike LRU, HDC does not need to update the
replacement priorities when a new entry is inserted into the
primary area.

Fig. 15. Hardware architecture of general cache replacement policies.

TABLE III. SIMULATION ENVIRONMENT

Item Tool Name

Hardware description language Verilog-HDL

Logic simulation Cadence NC-Verilog LDV5.7

ASIC synthesis
Synopsys Design Compiler X-

2005.09

Libraries for ASIC synthesis Free PDK OSU Library (45nm) [29]

0%

10%

20%

30%

40%

50%

60%

IND BUF TXG APN IPLS BWY COS CNIC MRA UFL FRG PSC PUR Academic WIDE Avg.

4way LRU 8way LRU SLRU 4-4 HDC 8 OPT

Network name

C
ac

h
e

m
is

s
ra

te

0

0.1

0.2

0.3

0.4

IND BUF TXG APN IPLS BWY COS CNIC MRA UFL FRG PSC PUR Academic WIDE Avg.

8way LRU 4way-4way SLRU HDC 8 OPT

Im
p

ro
ve

m
e

n
t

ra
ti

o

Network name

4
A

2
B

1
C

3
D

3
E

4
F

2
G

1
H

0 0 7 2

Hit Area Primary Area

Priority
Flow ID

Flow E comes
(Cache hit)

4
A

2
B

1
C

3
D

1
E

4
F

3
G

2
H

1 0 7 2

Flow G comes
(Cache hit)

4
G

2
B

1
C

3
D

2
E

4
F

1
A

3
H

1 0 0 2

Flow G comes
(Cache hit)

1
G

3
B

2
C

4
D

2
E

4
F

1
A

3
H

1 0 0 2

Flow K comes
(Cache miss)

1
G

3
B

2
C

4
D

2
E

4
K

1
A

3
H

1 0 0 2

Hit

Hit
Swapp

Hit

Hit Counter

Hit way

Hit Status
Priority
Updater

Priority
Management
Memory

Index

Combination of replacement priorities

2

1

8

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

19 | P a g e

www.ijacsa.thesai.org

TABLE IV. SYNTHESIS RESULTS OF 4-WAY LRU AND HDC.

 4-way LRU HDC

Combinational circuit
area

110.66 80.332

Memory requirement 1,280 bit 2,816 bit

TABLE V. LATENCIES AND ENERGIES OF CACHE AND TCAM

 Cache TCAM

Latency 0.598 ns 5 ns

Dynamic energy 0.0539 nJ / access 30 nJ / access

Static power 0.0159 J/s 0.85 J/s

TABLE VI. THROUGHPUT AND ENERGY OF TABLE LOOKUPS

Only

TCAM

PPC with

4-way LRU
PPC with HDC

Throughput 102 Gbps 445 Gbps 503 Gbps

Energy per packet 124 nJ 28.6 nJ 25.4 nJ

In order to evaluate the implementation costs of HDC, the
hardware implementation of HDC and LRU was simulated
using a hardware description language. Fig. 15 and Table III
show the hardware architecture of the cache replacement
policies and the tools used for the evaluation, respectively. The
priority updater shown in Fig. 14 receives the cache-hit status
and the hit way number from the cache and the combination of
the replacement priorities from the priority management
memory when a cache hit occurs. After updating the
replacement priorities, the priority updater writes them back to
the priority management memory. The index of the priority
management memory is the same as that of the cache in PPC.

Table IV shows the ASIC synthesis results of 4-way LRU
and HDC. Note that we did not implement SLRU and 8-way
LRU in this simulation because the hardware costs of them
were obviously oversize for practical use. Table IV indicates
that HDC can be implemented with 72.6% of the circuit area of
4-way LRU. It is because HDC does not need to update the
replacement priorities when a new entry is inserted. On the
other hand, the priority management memory size of HDC is
2.2 times as large as that of 4-way LRU. However, this
increase is negligible because the priority management
memory is small when compared to the cache. As a result, the
implementation costs of HDC are comparable to 4-way LRU.

C. Overall Throughput and Energy Consumption

We finally estimated the overall throughput and the energy
consumption of the table lookups. The throughput and the
energy consumption with PPC can be calculated from (1) and
(2), introduced in Section 2. Here, the latency, the dynamic
energy, and the static power of the cache were estimated using
a cache model CACTI 6.5 [30]; those of the TCAM were
estimated using a TCAM power and timing model [8] (1 Mbit
TCAM with 70 nm process was assumed). We show each
estimated value in Table V. It indicates that both energies of
the cache are remarkably smaller than those of the TCAM, and
thus the cache miss of PPC significantly impacts on the table
lookup performance.

Taking these estimations, we calculated the throughput and
the energy of the table lookups and showed the result in
Table VI. It was shown that PPC with HDC can achieve 503
Gbps throughput with 25.4 nJ energy per packet. It is 4.93

times high throughput and 20.4% energy, when compared to
the conventional TCAM only architecture. In addition, when
compared to PPC with 4-way LRU, PPC with HDC can
improve the throughput and the energy by 13.0% and 11.2%,
respectively.

VI. CONCLUSION

In this paper, an efficient cache replacement policy named
Hit Dominance Cache (HDC) was proposed to reduce the
number of cache misses in Packet Processing Cache (PPC)
without increasing the cache size. Conventionally, Least
Recently Used (LRU) is used as the cache replacement policy
of PPC because it is known that LRU performs good in many
cache systems. However, from the difference of the cache
access patterns, LRU is not suitable for PPC. LRU cannot evict
mice flows, which account for most flows in networks and
make few hits in the cache, rapidly. As a result, the cache
entries are polluted by the mice flows.

HDC divides the cache into two areas and assigns flows to
the appropriate area depending on the number of references in
the cache. HDC can evict the mice flows rapidly by inserting a
new entry into the least recently used position and retain the
elephant flows preferentially by shifting the entry hit many
times to another area. The simulation result with 15 real
network traces showed that HDC (4-way hit area, 4-way
primary area, and HDC threshold = 8) can reduce the cache
misses by up to 29.1% (12.5% on average) compared to 4-way
LRU. Furthermore, the hardware implementation using
Verilog-HDL showed that the hardware costs of HDC are
comparable to those of 4-way LRU. Finally, we showed that
PPC with HDC can achieve approximately 500 Gbps with
88.8% energy of conventional PPC (20.5% energy of TCAM
only architecture).

REFERENCES

[1] The Ministry, “Tabulation and Estimation of Internet Traffic in Japan,”
2016, Available: http://www.soumu.go.jp/main_content/000462459.pdf.
[Accessed May. 6, 2018]

[2] METI, “Green IT Initiative in Japan,” Available: http://www.meti.go.jp/
english/policy/GreenITInitiativeInJapan.pdf.[Accessed May. 6, 2018]

[3] J. Fan, C. Hu, K. He, J. Jiang, and B. Liuy, “Reducing power of traffic
manager in routers via dynamic on/off-chip scheduling,” 2012 Proc.
IEEE INFOCOM, Orlando, FL, 2012, pp. 1925-1933.

[4] X. Zheng, X. Wang, “Comparative study of power consumption of a
NetFPGA-based forwarding node in publish–subscribe Internet routing,”
Computer Communications, vol. 44, 2014, pp. 36-43.

[5] S. Gamage and A. Pasqual, “High performance parallel packet
Classification architecture with Popular Rule Caching,” 2012 18th IEEE
Int’l. Conf. on Networks (ICON), Singapore, 2012, pp. 52-57.

[6] B. Talbot, T. Sherwood, and B. Lin, “IP caching for terabit speed
routers,” Global Telecommunications Conference (GLOBECOM '99),
Brazil, vol.2, 1999, pp.1565-1569.

[7] N. B. Guinde, R. Rojas-Cessa, and S. G. Ziavras, “Packet classification
using rule caching,” 2013 Fourth International Conference on
Information, Intelligence, Systems and Applications (IISA 2013),
Piraeus, 2013, pp.1-6.

[8] B. Agrawal and T. Sherwood, "Ternary CAM Power and Delay Model:
Extensions and Uses," in IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, vol. 16, no. 5, 2008, pp. 554-564.

[9] M. Nawa et al., "Energy-efficient high-speed search engine using a
multi-dimensional TCAM architecture with parallel pipelined
subdivided structure," 2016 13th IEEE Annual Consumer

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 5, 2018

20 | P a g e

www.ijacsa.thesai.org

Communications & Networking Conference (CCNC), Las Vegas, NV,
2016, pp. 309-314.

[10] Hewlett-Packard Development Company, “Energy Efficient Networking
- Business white paper,” 2011, Available: http://h17007.www1.hp.com/
docs/mark/4AA3-3866ENW.pdf. [Accessed May. 6, 2018]

[11] H. Yamaki, “Flow Characteristic-Aware Cache Replacement Policy for
Packet Processing Cache,” In Proc. of Future of Information and
Communication Conference (FICC 2018), Singapore, 2018, pp.1-8.

[12] G. S. Shenoy, J. Tubella, A. Gonzalez, “Exploiting temporal locality in
network traffic using commodity multi-cores,” 2012 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS), 2012, pp.110-111.

[13] C. Girish and R. Govindarajan, “Improving performance of digest
caches in network processors,” In Proc. of the 15th Int’l. Conf. on High
performance computing (HiPC'08), India, 2008, pp.6-17.

[14] B. Agrawal and T. Sherwood, "Modeling TCAM power for next
generation network devices," 2006 IEEE International Symposium on
Performance Analysis of Systems and Software, 2006, pp. 120-129.

[15] C. Kim, M. Caesar, A. Gerber, and J. Rexford, “Revisiting Route
Caching: The World Should Be Flat,” In Proc. of the 10th International
Conference on Passive and Active Network Measurement (PAM '09),
Berlin, 2009, pp.3-12.

[16] K. Y. Ho and Y. C. Chen, “Performance evaluation of ipv6 packet
classfication with caching,” 2008 Third Int’l Conf. on Communications
and Networking in China, Hangzhou, 2008, pp. 669-673.

[17] K. Li, F. Chang, D. Berger, F. Wu-chang, “Architectures for packet
classification caching,” The 11th IEEE International Conference on
Networks (ICON2003), Sydney, 2003, pp. 111-117.

[18] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer.” IBM Syst. J. vol. 5, no. 2, 1966, pp. 78-101.

[19] F. Chang, W. C. Feng, and K. Li, “Efficient Packet Classification with
Digest Caches,” Proc. Third Workshop Network Processors and
Applications (NP-3), 2005.

[20] S. Ata, M. Murata, and H. Miyahara, “Efficient cache structures of IP
routers to provide policy-based services,” IEEE Int’l. Conf. on
Communications (ICC 2001), Helsinki, vol.5, 2001, pp. 1561-1565.

[21] N. Kim, S. Jean, J. Kim, and H. Yoon, ”Cache replacement schemes for
data-driven label switching networks,” 2001 IEEE Workshop on High
Performance Switching and Routing, Dallas, TX, 2001, pp. 223-227.

[22] H. Yamaki and H. Nishi, “An Improved Cache Mechanism for a Cache-
based Network Processor,” In Proc. of the Int’l. Conf. on Parallel and
Distributed Processing Techniques and Applications (PDPTA '12), Las
Vegas, NV, 2012, pp. 1-7.

[23] H. Yamaki and H. Nishi, “Line Replacement Algorithm for L1-scale
Packet Processing Cache,” In Adjunct Proc. of the 13th Int’l. Conf. on
Mobile and Ubiquitous Systems: Computing Networking and Services
(MOBIQUITOUS 2016), Hiroshima, Japan, 2016, pp. 12-17.

[24] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto, “Identifying
elephant flows through periodically sampled packets,” In Proceedings of
the 4th ACM SIGCOMM conference on Internet measurement (IMC
'04). ACM, New York, USA, 2004, pp.115-120.

[25] M. Okuno and H. Nishi, “Network-Processor Acceleration-Architecture
Using Header-Learning Cache and Cache-Miss Handler,” The 8th
World Multi-Conference on Systemics, Cybernetics and Informatics
(SCI2004), 2004, pp. 108-113.

[26] RIPE Network Coordination Centre, “Réseaux IP Européens Network
Coordination Centre RIPE NCC,” Available: http://www.ripe.net/.
[Accessed May. 6, 2018]

[27] WIDE MAWI WorkingGroup,“MAWI Working Group Traffic
Archive” Available: http://mawi.wide.ad.jp/mawi/. [Accessed May. 6,
2018]

[28] R. Karedla, J. S. Love, B. G. Wherry, “Caching strategies to improve
disk system performance,” in Computer, vol. 27, no. 3, 1994, pp. 38-46.

[29] North Carolina State University, “FreePDK45:Contents,” Available:
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents. [Accessed May. 6,
2018]

[30] N. Muralimanohar et al., “Optimizing NUCA organizations and wiring
alternatives for large caches with CACTI 6.0,” In Proc. of the 40th
Annual IEEE/ACM Int’l. Symposium on Microarchitecture (MICRO
40), Chicago, USA, 2007, pp.3-14.

