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Abstract—In cloud environments, load balancing task 

scheduling is an important issue that directly affects resource 

utilization. Unquestionably, load balancing scheduling is a 

serious aspect that must be considered in the cloud research field 

due to the significant impact on both the back end and front end. 

Whenever an effective load balance has been achieved in the 

cloud then good resource utilization will also be achieved. An 

effective load balance means distributing the submitted workload 

over cloud VMs in a balanced way, leading to high resource 

utilization and high user satisfaction. In this paper, we propose a 

load balancing algorithm, Binary Load Balancing – Hybrid 

Particle Swarm Optimization and Gravitational Search 

Algorithm (Bin-LB-PSOGSA), which is a bio-inspired load 

balancing scheduling algorithm that efficiently enables the 

scheduling process to improve load balance level on VMs. The 

proposed algorithm finds the best Task-to-Virtual machine 

mapping that is influenced by the length of submitted workload 

and VM processing speed. Results show that the proposed Bin-

LB-PSOGSA achieves better VM load average than the pure 

Bin-LB-PSO and other benchmark algorithms in terms of load 

balance level. 
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I. INTRODUCTION 

In the last few years, cloud computing has emerged as a 
new computing paradigm that primarily aims to provide 
reliable, customized, and Quality of Service guaranteed 
dynamic computing environments for end users. Simply, 
cloud computing is the technology that provides a shared pool 
of computing resources in the base of on-demand services. In 
other words, cloud computing is the delivery of computing 
services such as hosts, storage, databases, networking, 
software, and more over the Internet. In fact, there are three 
basic models of services, namely Infrastructure as a Service 
(IaaS), Platform as a Service (PaaS), and Software as a 
Service (SaaS). First, in the service model IaaS, a cloud 
provider delivers datacenters, hosts and virtual machines, 
storage, networks, and operating systems to cloud users on a 
pay-as-you-go basis. Second, the service model PaaS delivers 

services that supply an on-demand environment for cloud 
users such as developing, testing, delivering, and managing 
software applications. It is mainly used by application and 
software developers. Third and finally, the service model SaaS 
delivers software applications over the Internet to cloud users 
on-demand and typically on a subscription basis. It is essential 
to cloud providers to tend the management operations in both 
task-level and resource-level services. The task-level 
scheduling allocates a task to a virtual machine (which we 
address in this study), while the resource-level scheduling 
allocates a virtual machine to a host. The other important issue 
is to keep cloud resources balanced. Therefore, they also tend 
to schedule the incoming application requests to virtual 
machines in order to complete submitted tasks at the expected 
time in a balanced way. Numerous objectives have been 
addressed in the literature, such as minimizing makespan, 
maximizing load balancing, minimizing flowtime, and 
minimizing monetary cost. 

Considering that task scheduling is NP-complete, many 
heuristics have already entered the scene, and some have 
emerged. For instance, Greedy heuristic, Genetic heuristic, 
Swarm Intelligence-based heuristics such as Ant colony 
inspired algorithms, Bee Colony inspired algorithms, Fish-
inspired algorithms, the Gravitational Search algorithm, and 
Particle Swarm algorithms. Swarm Intelligence (SI)-based 
algorithms are population-based and stochastic search 
algorithms, as these are evolutionary algorithms. In this work, 
Swarm Intelligence based algorithms are used due to their 
amazing results achieved in different problems. The SI 
concept refers to the collective behavior that emerges from the 
swarms of social insects. Swarms can solve complex problems 
that exceed the capabilities of their insects without central 
supervision. What is important, in SI-based scheduling 
algorithms, is that social insects collectively solve complex 
problems that are beyond their individual capabilities in an 
intelligent and decentralized way. As a result, these collective, 
intelligent, and decentralized behaviors of insects have 
become a model for solving the problem of task-level 
scheduling [1], [2]. Due to the impressive performance of SI-
based algorithms, researchers have been attracted to this 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 5, 2018 

256 | P a g e  

www.ijacsa.thesai.org 

strategy over the last years. Therefore, we have been inspired 
by the hybrid of a gravitational search algorithm and particle 
swarm optimization to propose a bio-inspired task scheduling 
algorithm that can solve the problem of load balancing task 
scheduling. 

By definition, cloud environments are continuously 
changed since cloud resources are usually dynamically 
reallocated per demand. This behavior must be captured by the 
proposed load balancing task scheduling algorithm to manage 
the process of allocating virtual machines to tasks. The task-
level load balancing can explicitly improve makespan, 
throughput, and scheduling time. On the other hand, resource-
level load balancing has also succeeded in increasing the 
performance in terms of response time, VM migration number 
and time, and resource utilization [3]. In this paper, we 
propose a load balancing task scheduling algorithm that has 
been inspired by the hybrid of particle swarm optimization 
and gravitational search algorithm to find a near-optimal Task-
to-Virtual machine mapping to achieve best-balanced resource 
allocation as well as minimize makespan. The proposed 
algorithm is a dynamic load balancing algorithm that is more 
suitable for cloud environments due to its dynamic nature. 
Although the dynamic load balancing algorithm can consider 
all changes during runtime, it achieves better results than static 
algorithms [4]. 

The rest of the paper is organized as follows. Section II 
discusses related works. Sections III, IV, and V present a brief 
introduction to the standard GSA, Standard PSO, and Standard 
PSOGSA algorithms, respectively. Section VI explains the 
proposed binary load balancing PSOGSA. Section VII 
discusses the complexity of the proposed algorithm. 
Section VIII describes the neighborhood topology of the 
proposed algorithm. The objective function is discussed in 
Section IX. Section X explains in detail the technical 
processes of the proposed algorithm. The experimental results 
are presented in Section XI. Finally, Section XII concludes the 
work and suggests some directions for future work. 

II. RELATED WORK 

This literature review presents many works under the 
umbrella of Load Balancing to resolve problems related to 
different performance parameters, such as throughput, CPU 
utilization, overhead, fault tolerance, migration time, number 
of migrations, response time, and makespan. Some of these 
parameters involve the efficiency of task-level schedulers, and 
some involve resource-level schedulers. 

ParticleZ in [4] solves the problem of task scheduling in 
grids through four phases: job submission, queuing, node 
communication, and job exchanging. In particular, the role of 
PSO appears in the phases of communication and exchange. In 
those phases, particles (nodes) search to find the best position 
(node with minimum load among neighbor positions). Further, 
to guarantee load balancing all the time, each node (particle) 
exchanges its loads with its neighbors in a parallel way. In 
load search space, the lower the load is, the higher the velocity 
of the particle. On the other hand, to establish a fair load 
distribution between each neighbor’s set, the exchanged loads 
have to be under a predefined threshold (second lightest load 
of neighbor’s set - lightest load). 

Aslanzedh et al. [5] have been inspired by the endocrine 
system to improve the load balancing technique in cloud 
management. In fact, they have combined the endocrine 
system and PSO (Endocrine-PSO), aiming to schedule tasks as 
well as minimize makespan in load-balanced resources. The 
Endocrine-PSO algorithm has employed the functions of 
hormone regulation (load balance side) and PSO (task 
scheduling side) to perform the scheduling process efficiently. 
By endocrinology science, there is the push-pull procedure, 
which describes the hormone regulation process in the human 
body (push means stimulating a hormone from a gland, while 
pull means inhabitation the hormone to another gland). 
Technically, Endocrine-PSO provides two particles: one for 
the push operation (St), and the other for pull (Dt). The St and 
Dt carry values of stimulating hormones and inhibiting 
hormones respectively. Results show that the Endocrine-PSO 
can find the best mapping, either for choosing the best task-to-
VM schedule or migrating the tasks from overloaded under-
loaded VM. 

Different criteria have been evaluated in [6] for the PSO-
based scheduling algorithm that has developed to increase the 
efficiency of the load balancing scheduling process in clouds. 
This algorithm (LBMPSO) aims to minimize makespan, 
transmission time, and transmission cost, and to maximize 
reliability and load balancing.  LBMPSO guarantees the 
reliability of clouds by rescheduling tasks that have failed to 
be scheduled as well as guarantees load balancing between 
tasks and available VMs. 

Jena [7] has proposed a Nested and Multi-objective PSO 
Framework for task scheduling in a cloud environment. 
Furthermore, other criteria have been addressed in this paper. 
The MOPSO (Multi objective PSO) algorithm has been 
proposed to minimize energy and makespan. The author has 
hybridized PSO with an evolutionary algorithm to create the 
proposed multi-objective algorithm. Additionally, another 
concept has been considered to make solutions of MOPSO 
valuable spread solutions that are selected based on Pareto 
dominance. 

Dasgupta et al. [8] have modified the load balancing 
genetic algorithm with a new objective function that 
guarantees the user’s QoS preferences as well as minimizes 
response time. The authors have contributed the weights of the 
objective function to satisfy users’ preferences. This algorithm 
outperforms its rivals such as SCH, RR, and FCFS. However, 
a limitation in this load balancing algorithm has been 
observed: it considers that all jobs have the same priority, 
which is not the case of real-world jobs. 

Xin Lu and Zilong Gu [9] have proposed an ACO-inspired 
load-adaptive cloud resource scheduling algorithm to 
maximize CPU utilization. It has solved two issues, the 
detection of hotspot node (the overloaded VM) and adaptive 
resource scheduling. The proposed model would monitor the 
CPU usage, memory, and bandwidth of all VMs within a 
cluster, and if a hotspot VM is detected, the scheduling 
process starts. The resource scheduling process is performed 
to find the idle node that contributes to lighten the load over 
the hotspot node. The authors added an expansion factor to the 
global update to enable faster convergence of the ant to the 
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path that has the desired resources by expanding its 
pheromone intensity. Results show that the proposed 
algorithm easily detects overloaded VMs and finds the nearest 
idle node. 

More related research has addressed the load balancing 
issue in grid environments. Ludwig et al. [4] have introduced 
the AntZ approach. They have enhanced the previous works 
[10] and [11] to adopt the problem of load balancing 
efficiently. They take advantage of decay rate in [11] and 
mutation rate in [10] and then combine them into AntZ. 
Specifically, the mutation rate addresses the problem of load 
balancing due to its effect on guiding ants to the best path. 

Dhinesh Babu and Venkata Krishna [12] have proposed a 
honey bee inspired load balancing algorithm (HBB-LB). The 
proposed HBB-LB strategy schedules tasks by taking into 
consideration the VMs’ load balance aiming to minimize 
makespan, response time, and number of migrations. The 
proposed algorithm divides VMs based on its computing 
capacity into overloaded VMs, under-loaded VMs, and 
balanced VMs. The balancing process is performed by 
removing tasks from the overloaded VMs and submitting them 
to the under-loaded VMs with respect to task priority. The 
removed tasks act as honeybees, and the under-loaded VMs 
represent a profitable nectar source. Results show that the 
HBB-LB algorithm works robustly without heavy overhead, 
and also works efficiently in heterogeneous cloud systems. 

Lili Xu and Kun Wang in [13] have proposed a green 
cloud task scheduling algorithm (GCTA) based on an 
improved binary PSO variant. In the proposed algorithm, they 
tried to enhance the binary PSO solution by avoiding matrix 
operations and using pipelined numbers for virtual machines. 
The authors have compared the performance of the proposed 
GCTA algorithm with a sequential scheduling algorithm and 
found that the proposed GCTA strategy achieves better 
performance. 

III. STANDARD GSA 

The GSA treats masses as search agents. The Newtonian 
laws of gravity and motion define how all masses move in the 
direction of other masses and the speed at which they do so. 
The greater the mass, the slower the movement and the greater 
the attraction to the other masses is. Since, in the GSA, a 
greater mass means a better solution, the GSA is seen as an 
excellent way to guarantee convergence with the optimum. 
Every mass has a position; it also has inertial, active 
gravitational and passive gravitational masses. Theoretical 
physics defines these properties in the following way [14]: 

Active gravitational mass: measures how strong an 
object’s gravitational field is. Objects with small active 
gravitational mass have weaker gravitational fields than 
objects with greater active gravitational mass. 

 Passive gravitational mass: measures how strong is the 
interaction of an object with the gravitational field. 
Objects with small passive gravitational mass are 
subject to a weaker force than objects in the same 
gravitational field with larger passive gravitational 
mass. 

 Inertial mass: measures the strength of the resistance 
offered by an object to changes in its motion state as a 
result of the application of force. Objects with large 
inertial mass will undergo a slower state change as a 
result of the application of force than objects with small 
inertial mass. 

If we assume the existence of s masses, then the position 
vector of the k

th
 mass object at time(t)  Xk (t) will be as set out 

in (1): 

                    ( )    
   

       
    

                       (1) 
As well as positional property, each mass also possesses 

velocity and acceleration, and these may be represented using 
a vector. 

The acceleration vector Acck(t) of mass object k at time t 
is a vector of n elements as follows: 
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 +                         (2) 
while the velocity vector also has n elements as follows:  
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Additionally, the vector of global best positions at time t 

is:          
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Equation (5) sets out the force exerted on object i by the 
object j: 

               
  ( )   ( )  

  ( )    ( )

   ( )  
(     –     )                              (5) 

In this equation, Mj is the value of the mass related to mass 
object j, Mi is the value of the mass related to mass object i, ε 
is a small constant, and Rij(t) is the straight-line distance in 
Euclidean space between mass object i and mass object j. 
Equation (6) gives us the value of G(t) as a function of initial 
value G0 at iteration t: 

                   ( )         ( 
–     

    

)                                          (6) 

In this equation, G0 is the initial gravitational constant and 
α is a user-defined descending constant, t is the current 
iteration, and tmax is the maximum number of possible 
iterations. F

i
d (t) is the total force exerted in the d

th
 direction 

on mass object i and is a sum (randomly weighted) of the d 
components of other mass objects’ forces: 

                    
     ∑           

  ( )
 

   

                                       (7) 

In this equation, randi is a uniform random variable in the 
interval [0, 1]. 

The object i accelerates in the d
th

 direction at time t at the 
rate of Acc

i
d(t), calculable according to (8): 

                                 
 ( )  

       

      
                                    (8) 

where Mii is the mass object i inertial mass. Equations (9) 
and (10) calculate, respectively, this object’s next velocity and 
position at time t+1: 

                 
 (   )           

 ( )      
 ( )                            (9) 

                             
 (   )    

        
                                             (10) 

where randi is, once again, a uniform random constant in 
the interval [0, 1]. Its purpose is to give the search a 
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randomized characteristic. Current velocity and current 
position are, respectively, expressed as v

i
d (t) and x

i
d (t). 

IV. STANDARD PSO 

The usual use of the population-based algorithm PSO 
(Particle swarm optimization) is the efficient solution of 
problems of optimization, and PSO is one of various 
techniques of swarm intelligence used to solve problems of 
optimization. 

In this class of techniques, “particles” (search agents) fly 
in the optimization problem’s search space. This activity is a 
representation of the process of searching – it is, in effect, a 
journey that searches for the best position that can be taken by 
a particle. Each search agent, or particle, is a candidate for the 
role of optimal optimization problem solution, and each 
changes velocity and position to look for an improved position 
in the search space. These changes of velocity and position 
follow the rules deduced originally from behavioral models 
representing the flocking of birds as proposed by Kennedy and 
Eberhart in [15]. In each case, calculation of next velocity and 
position (respectively vi,d (t+1) and xi,d (t+1)) is specified 
(again respectively) by (11) and (12):  

  
 (   ) (      

    ) (                  
 

 
       

     ) 

                    
 

 
   -   

                                              (11) 

        

               
 (   )     

 ( )     
 (   )                               (12) 

Once again, randi is a uniform random constant in the 
interval [0,1] and is used to randomize the search. The pbest

i
d 

represents the current mass object’s personal best position on 
the d

th
 direction, while gbestd represents the ith mass object’s 

global best position on the d
th

 direction at iteration t. Current 
velocity and position are represented respectively by vi,d (t) 
and xi,d (t). 

In fact, Kennedy and Eberhart have proposed another 
variant of PSO. In [16], they have proposed the binary version 
of PSO that is proposed to solve discrete problems. The 
significant difference in binary PSO is the way in which 
positions can be updated. Updating of positions is specified by 
finding the value of the sigmoid function for each mass’ 
velocities as in the following (13): 

                          (    
   ) 

 

      -  
   

   
  
                                     (13) 

Values that returned from the sigmoid function are 
normalized, as defined in (14): 

                        xij
k  {

 ,  randi    vi,d
t  

 , Otherwise
                                           (14) 

where randi is a uniform random constant in the interval 
[0,1]. Here, the sigmoid function is used to transfer a real-
valued velocity vi,d to a probability value in the range of 
[0, 1] [23]. 

V. STANDARD HYBRID PSOGSA 

The Hybrid PSOGSA metaheuristic is a low-level bio-
inspired heterogeneous hybrid algorithm. Seyedali Mirjalili 
and Siti Zaiton Mohd Hashim have proposed the Hybrid 
PSOGSA in [17] as a novel algorithm. In fact, they have 

hybridized the standard PSO, and Standard GSA mentioned in 
the last two sections, to balance the exploration and 
exploitation abilities of GSA and PSO. The core idea of the 
Hybrid PSOGSA is to combine the exploration of GSA and 
the exploitation of PSO.  

In other words, the strong points of both PSO and GSA 
were taken into consideration to improve the weakness of 
GSA exploitation ability as well as PSO exploration. As tested 
in [17], the Hybrid PSOGSA has very good exploration and 
exploitation abilities, which are due to its ability to avoid 
becoming stuck in local optima and tending to converge to the 
best solution quickly. 

The combination of PSO exploitation and GSA 
exploration is translated into a new velocity equation (1). That 
Hybrid PSOGSA velocity integrates the velocity of both GSA 
and PSO to boost the balance between global search capability 
of GSA and local search capability of PSO. The Hybrid 
PSOGSA velocity equation considers the acceleration of the 
mass object rather than pbest as in PSO velocity, which 
indicates that the Hybrid PSOGSA relies on the global search 
of PSO with the local search of GSA. The velocity of mass 
object i on the d

th
 dimension at next iteration (t+1) is vi,d (t+1) 

and its position x
i
d (t+1) is calculated according to (15) and 

(16), respectively: 

  
 (   ) (      

    ) (                 
 ( )) 

                    
 

 
   -   

                                                  (15) 
        

            
 (   )    

        
                                                   (16) 

where randi is a uniform random constant in the interval 
[0,1]. This random number is used to give a randomized 
characteristic to the search, acc

i
d(t) is the acceleration of the 

current mass object on the d
th

 direction, and gbestd is the 
global best position of i

th
 mass object on d

th
 direction in 

iteration t. The vi,d (t) and xi,d (t) are its current velocity and 
position, respectively. 

A good balance between exploration and exploitation can 
be achieved by controlling terms of the velocity equation 
based on its factors w, c1, and c2. The functions of these terms 
and these factors are explained as follows:  

1) Momentum component (w × vid(t)): The inertial factor 

w characterizes inertia of masses, i.e., it controls the 

momentum of masses and how much mass remembers its 

previous velocity. Larger w causes the mass to have a better 

exploration ability, and smaller w values allow the mass to 

have a better exploitation ability. 

2) Cognitive component (c1 × randi × acc
i
d(t) ): The first 

behavioral factor c1 controls how much mass can be 

influenced by its acceleration at iteration t. 

3) Social component (c2 × randi × (gbest - xi(t)): The 

second behavioral factor c2 controls how much a mass can 

head toward the population's best mass. 

In the case of c1 and c2, the larger values cause the mass 
to have a better exploitation ability.  In fact, effective values 
can permit these three factors to achieve a good balance 
between exploration and exploitation. 
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VI. PROPOSED BINARY LOAD BALANCING PSOGSA 

The Bin-LB-PSOGSA (Binary Load Balancing PSOGSA) 
works to distribute submitted application requests over VMs 
in an efficient, balanced distribution. At each time, requests of 
different users are submitted at different submission times to 
the cloud system. Then, a search process is performed by Bin-
LB-PSOGSA to assign tasks of submitted application requests 
to VMs in a dynamic way. At the same time, a rescheduling of 
tasks that have already been submitted is re-applied, i.e., the 
task is bound to the submitted requests list, and a new search 
process is performed based on the new submitted requests list. 

Unlike continuous search space, the search space is 
represented as a hypercube. Each mass moves over hypercube 
nodes (corners) by flipping one or more bits of the mass 
position matrix. Iteratively, the position matrix of a mass is 
binary-coded. But, the velocity matrix still consists of 
continuous values belonging to the real numbers. Each 
velocity element value holds the probability to flip or change 
the binary value of the corresponding position element. The 
process of flipping (or changing binary value) is performed by 
using a transfer function. In fact, transfer functions are used to 
determine the probability of the value of each bit in the mass 
position matrix (0 or 1). [18]  

In the deep search process of Bin-LB-PSOGSA, each mass 
in the population represents one candidate solution or, in other 
words, a task-to-VM mapping. Each candidate solution has a 
fitness value, which is the value of the expected finish time of 
each submitted application request. 

In pseudo code of the Bin-LB-PSOGSA (see Algorithm 1), 
first, the masses’ population is initialized by the function 
initialize Masses (tasks, VMs) at line 2. In the initialization 
phase, tasks are assigned randomly to VMs. Then, for each 
iteration, global variables are updated that have to be changed 
iteratively, such as gravitational constant, best mass, and worst 
mass, by updateGlobalVariables(iteration) at line 4. Until the 
maximum iteration is reached and for each mass object in the 
population, the mass value of each mass object and 
gravitational force exerted by the population masses is 
calculated at lines 6 and 7, respectively. Then, at lines 8 to 10, 
mass position, velocity, and fitness are updated. As in 
Algorithm 2, the pseudo code that has clarified the way to 
update the velocity of each mass is presented. 

After updating the mass’s fitness, it is necessary to decide 
if the new fitness is better than what the mass object already 
found in its trip; this is done in line 12. If the new fitness is 
better, the personal best fitness and mass will be updated. 
Consequently, if the personal best mass is better than all 
solutions found by all mass objects, the global best mass is 
updated as in line 16. In fact, the global best mass is the 
promising best mass object that attracts most of the population 
due to its mass value (biggest mass value or heaviest mass). 
Based on the topology of the neighborhood that has been 
considered in this variant, Gbest topology (discussed in 

subsection VIII), the population is influenced by the best 
global mass positions that are updated at line 18. In the next 
iteration, by updating the best global positions so far, other 
masses’ objects take their new positions. Over time, most of 
the population comes increasingly closer to the best global 
mass, and finally, if the maximum iteration number is reached, 
the search process is terminated. Eventually, the best global 
mass is returned in the form of the best task-to-VM mapping 
at line 22. 

VII. BIN-LB-PSOGSA COMPLEXITY 

Let s be population size, v be VMs size, and c be 
submitted requests’ tasks size. Initialization of masses is used 
to add random positions and velocities of each mass in the 
population. During initialization, the fitness of the current 
position of the mass is calculated. The time complexity of 
mass initialization is O(v × c). So, the time complexity for 
initialization of the whole population is O(s × v × c). 

In the iterations loop, first, global variables are being 
updated. The time complexity of that action is O(s

3
 + s × c). 

The reason for such time complexity is that inside update 
Global Variables (iteration) there is a need for collecting the 
best and worst fitnesses from the whole swarm. The time 
complexity of those actions is O(s). Inside this method, we 
also calculate the total forces that act on each mass and 
acceleration of the mass. The time complexity of those actions 
is O(s

3
 + s × c). This is also the time complexity of the method 

update Global Variables (iteration). 

Second, a loop is iterated for each mass in the population. 
Each mass’s velocity and position are being updated. The time 
complexity of both of these updates is O(v × c). The next step 
is to update the fitness of the mass. The time complexity of 
that action is O(v). The overall time complexity of the particle 
loop is O(s × v × c). 

For the iterations loop, the time complexity is therefore 
O(s × MAX_ITERATION × (s

2
 + v × c)). 

The final step is to return the mapping from cloudlet to 
VM. The time complexity of this action is O(v × c). 
Eventually, if the time complexity of each step is combined, 
the final result is O(s × MAX_ITERATION × (s

2
 + v × c)). 

VIII. NEIGHBORHOOD TOPOLOGY 

The neighborhood topology adopted in the proposed Bin-

LB-PSOGSA is the global neighborhood topology (Gbest) 

[19]. In other words, Gbest is a fully connected topology 

where all the masses are neighbors of each other and able to 

exchange information with each other. Further, the process of 

exchanging is fast due to the full connection between all 

population masses. Gbest topology makes the proposed Bin-

LB-PSOGSA a fully informed strategy where every mass in 

the population learns from the same global best mass and is 

influenced by its positions. 
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IX. OBJECTIVE FUNCTION 

The solution of proposed algorithms is to minimize the 
expected execution time of each task in submitted application 
requests or ETij of the task Ti that is running on VMj. The 
calculation of ETij is as follows: 

     
   

    
  (17) 

The processing speed PSij related to Ti running on VMj in 
the cloud depends on how many request tasks have been 
mapped to that VM (or n) as well as the total allocated MIPS 
of VMj along all its processing elements or Pes (or Capacityj). 
Calculation of the request processing speed PSi is shown 
in (18): 

      
         

 
  (18) 

X. BIN-LB-PSOGSA TECHNICAL PROCESSES 

In this section, the mathematical notations and technical 
processes’ steps are discussed. In the proposed algorithms, 
binary search space is considered. Therefore, the binary matrix 
encoding form in [13] is adopted to represent mass objects. 
Accordingly, each mass object has properties of mass position 
matrix and mass velocity matrix that will be decoded to a two-
dimensional matrix. The first dimension represents the VM 

number and the other tasks number. The position matrix takes 
binary values, while the velocity matrix keeps the continuous 
values. Additionally, each corresponds to a task-to-VM 
mapping as a candidate solution. 

Here, the mathematical notation of the problem is 
described. The task set T   { T ,T2, ….. ,Ti, …… , Tc } will 
be mapped to VMs set VM   { VM ,VM2, ….. ,VMj, …… , 
VMv } using the relationship matrix representation in (18). 
Let s be the masses’ population size, each mass object m 
represented by position matrix Xm of c × v position elements ( 
c is the number of tasks and v is the number of VMs where i = 
{ , 2, 3, …. , c} and j   { , 2, 3, ….. , v} and m   {  , 2 , 3 , 
….. , s}) as given in follows: 

    (

   
     

      
 

   
    

       
 

   
    

      
 

) 

The element x
m

ij is the position of mass object m in row i 
and column j; actually, it represents the distribution 
relationship between task Ti and virtual machine VMj, i.e., it 
explains whether Ti is mapped to VMj or not. Position x

m
ij 

takes values of either 0 or 1. Namely, it indicates on which 
VM task Ti is working. So, if Ti is running on VMj then 
position x

m
ij is equal to 1, but it equals 0 otherwise. Finally, 

positions x
m

ij that are equal to 1 are recorded composing 
solution position vector Pm (t) at time t as in (19): 

                            
  

   
    

   
   

   
                          (19) 

where p
m

i,j can take one of x
m

ij of the relation distribution 
matrix that has a value equal to 1 and j = (1, 2, … , v). 

Here, the technical steps of the proposed algorithms are 
explained in detail. 

A. Population Initialization 

Initially, position elements x
m

ij of each mass m position 
matrix Xm are initiated randomly by mapping each task to 
random VM, i. e. for each column at index i, one element is 
arbitrary assigned to the value 1 and the remaining elements 
(in that column) to 0. Iteratively, this process – initiating mass 
position matrix -- is repeated c×v times for each mass in the 
population. 

For instance, assume that there are seven tasks and three 
VMs, and the population consists of 50 masses; therefore, the 
initial position matrix of mass 20 (X20) will be as follows: 

     (
   
   
   

 
  
  
  

 
  
  
  

) 

Namely, it is shown in the matrix (X20) that T1 is mapped 
to VM2, T2 is mapped to VM3, T3 is mapped to VM2, T4 is 
mapped to VM12, T5 is mapped to VM1, T6 is mapped to VM1, 

and T7 is mapped to VM3. 

Finally, the tasks-to-VM vector or dimension vector    is 
defined in which indices of tasks’ positions that hold value   
are stored in it respectively as in (20): 

             *  
   

       
    

 +                             (20) 
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where   
  is the index of assigned task Ti in position matrix Xk 

of the mass k, and vector indices are the VMs’ IDs. 

B. Mass Value, Relevance Force, and Acceleration 

Calculation 

In this step, a mass value, relevance force, and finally the 
acceleration are calculated based on the gravity law equations 
in [14]. First, the mass value    ( ) of each mass object at 
iteration t is calculated based on (21) and (22): 

                                  ( )  
       

 
 ( ) -      ( ) 

     ( ) -      ( )
                          (21) 

                           Mm(t)  
massm(t) 

 ∑ massb(t)
s- 

 

                                     (22) 

where         ( ) is the fitness value of the mass m at 
iteration t ,      ( ) is the global worst fitness in iteration t, 
and      ( )  is the best one at that iteration. Further, 
     ( )  is the current mass value where      

 ( )  is a 
vector that holds the mass values of neighbor masses’ objects 
at iteration t as shown in (23). This is because 
∑      ( )
   
  is the summation of other masses’ values. In 

fact, global best fitness represents the minimum expected 
finish time that can be achieved by the best global task-to-VM 
mapping since the global worst is the longest expected finish 
time. 

           
                                -             (23) 

Second, the relevance gravitational forces exerted on mass 
m by another mass b is calculated based on (24): 

             
   ( )   ( )  

  ( )    ( )

        
(   

  –   
  )                      (24) 

In this equation, Mb is the value of the mass related to the 
active gravitational mass of object b, Mm is the value of the 
mass related to passive gravitational mass of object m, ε is a 
small constant, and Rmb(t) is the straight-line distance in 
Euclidean space between mass object m and mass object b, 
and xd

m
 and xd

b
 are the corresponding positions at dimension d 

in both of the passive masses m and b. It is useful to mention 
that the active mass is the mass that generates the gravity, 
while the passive mass the mass responds to the gravity. The 
relevant gravitational force values are defined in a vector as 
in (25): 

                     
   

        
 

   
 
 

   
   

 

     
 

   
             (25) 

where   
   

 is the value of the exerted force on passive 

mass m from active mass b in the dimension d (number of 
dimensions d equals the number of tasks c). 

Then, the total result gravitational forces exerted on mass 
m on the d

th
 direction at time (t) are as in (26): 

                      
 ( ) ∑           

   ( )
 - 

        

                    (26) 

In this equation, randm is a uniform random variable in the 
interval [0, 1] generated for each mass m. 

Based on Newton’s law of gravity and Newton’s law of 
motion, each mass object m moves toward the global best 
mass object by updating the acceleration vector of that object 

iteratively. Under the concept of motion law, the acceleration 
of the mass object m on the d

th
 direction at time t is Accm,d(t) 

as in the following equation: 

                             
 ( )  

       

      
                                            (27) 

where Mmm is the mass object m inertial mass. 

C. Velocity Updating 

The binary version of the velocity equation is as follows: 

  (   ) (       
    ) (                 

 ( )) 

                    
  

 
   -    

                                              (28) 

where   (   ) is the velocity matrix of mass object m for 
the next iteration, and    

 ( ) is the current velocity value of 

the element related to Ti and VMj. The acceleration of mass m 
is     

 ( ). The inertial weight (w) is calculated based on (29) 
where acceleration coefficients C1 and C2 are based on, 
respectively, (30) and (31). The randm is a uniform random 
constant in the interval [0, 1] generated for each mass object 
m. Its purpose is to give the search process a randomised 
characteristic. 

For each iteration (t), mass object m records the best 
global positions in its memory so that all masses can be 
increasingly closer until a maximum number of iterations is 
reached. Iteratively, the distance between masses and global 
best mass is decreased by subtracting the distance between 
positions x 

m
ij (t) and gbest 

m
ij (t), as stated in equation 28, term 

(gbest 
m

ij (t) – x 
m

ij (t)). Elements Xgbestm and current mass 
position matrix are subtracted one by one. In the case of the 
acceleration of masses’ objects, a constant random value (c1 × 

randm) is multiplied with all elements in the acceleration 
vector, element by element. Also, in the current velocity 
matrix, the current value of the inertia weight is multiplied 
with all elements in the velocity matrix. The velocity matrix 
will be as follows: 

    (

   
     

      
 

   
    

       
 

   
    

      
 

) 

To enhance the search process, we have considered a time-
adaptive approach for the other controlling parameters such as 
inertia weight and acceleration coefficients (c1 and c2) as in 
(28), (29), and (30). For the inertia weight, we have adopted a 
time-varying inertia weight as introduced in [20] and 
acceleration coefficients in [21]. Here, wmax and wmin have 
constant values equal to 0.9 and 0.4, respectively, t is the 
current iteration, and tmax is the maximum iteration. 

                            
    -     

 
                                               (29) 

                             -  
  

    

                                                  (30) 

                             
  

    

                                                      (31) 

D. Position Updating 

Each mass moves to the global best mass by updating 
positions and becomes increasingly closer to the global best 
mass over iterations.  
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Also, for the transfer function in the proposed Bin-LB-
PSOGSA, we have used a time-adaptive approach as 
introduced in [22]. The time-varying transfer function is used 
here to enhance the exploration and exploitation processes. 
Moreover, to transform a real-valued velocity VM to a binary 
value (0 or 1) in the process of updating positions (re-
encoding) values of relation distribution matrix elements x

k
i,j 

[13]. In fact, if the absolute value is large, the probability to 
flip a bit is higher. Updating of the position matrix elements is 
performed by applying the time-varying transfer function 
(TVt) for each    

  in mass’ velocity matrix as stated in (32) 

and (33). 

                                  ( )  
 

    
-
   
 

 

                                    (32) 

 

                            
   

-    
     -      

    
                          (33) 

where      and       have constant values equal to  1.0 
and 5.0, respectively. 

E. Finding Global best Task-to-VM mapping 

By the end of each iteration t, the best task-to-VM maps 
have been read from the global best mass position matrix. This 
process happens t times and for only the global best mass 
found during the searching process. 

XI. EVALUATION  

In this section, we show how to evaluate the proposed Bin-
LB-PSOGSA to test its efficiency in achieving cloud 
balancing in term of the submitted load. The next subsections 
discuss the simulation tool and simulation setup we have used 
in the experiments. Additionally, we explain the algorithm 
meta-parameters, and finally, we conclude with the results of 
these experiments. In the last subsection, we assess the 
performance of the proposed algorithm in terms of load 
average and processing speed average against the Bin-LB-
PSO algorithm. 

A. Experimental Tool 

The performance analysis of the proposed algorithm is 
carried out in a cloud simulator. The simulator CloudSim [23] 
is one of the best simulators for experimental purposes. This 
simulator is a generalized simulation framework that allows 
modeling, simulation, and experimenting with cloud 
computing infrastructure and application services. 

In this section, we have analyzed the performance of our 
algorithm based on the results of simulation done using 
CloudSim. We have extended the classes of the CloudSim 
simulator to simulate our algorithm. 

B. Simulation Setup 

The simulation setup is detailed in Tables I and II. The 
experiment is carried out with 3 Datacenters each having two 
hosts, and the characteristics are 1024 MIPS Host processing 
power, 2 GB RAM, 1000 GB storage, 10240 Mbps 
(bandwidth), and 2 PEs (or cores). Each PE had the same 
processing power, as clarified in Table I. 

In Table II, there are 5 VMs, and the characteristics are 

128 MIPS (VM processing power) and 2 PEs (or cores). 

In this experiment, the workload has been selected as 
introduced in [24]. Each task in the workload log, called a 
cloudlet by Cloudsim, was determined by the parameter PEs, 
or the number of processing elements (cores) required to 
perform each task. Each cloudlet required 4 to 256 PEs. The 
number of PEs is limited to powers of 2 due to the architecture 
of the supercomputer used in the log. 

TABLE I. DATACENTER CONFIGURATION 

Number of datacenters 1 

Number of hosts per 
datacenter 

4 

Number of PEs per host 1 

Number of MIPS per PE 1024 MI 

RAM 2048 MB 

Storage 1048576 MB 

Bandwidth 10240 MB/s 

TABLE II. VM CONFIGURATION 

Number of VMs per host 5 

Number of PEs per VM 2 

Number of MIPS per PE 128 

C. Algorithm Meta-Parameters 

The algorithm meta-parameters, or in other words, the 
controlling parameter settings of Bin-LB-PSOGSA, are as 
mentioned in equations 28, 29, and 30. The maximum number 
of iterations is 500, and population size (number of masses) is 
50. The acceleration constants C1 and C2 are set to 2 and 2, 
the inertial weight is linearly decreasing from 0.9 to 0.4. The 
initial gravitational constant (G ) is  , descending constant (α) 
is 20, and small gravitational constant (ε) is e

-1
. The search 

space bounds are in the range [0, 100], and the velocity range 
is [-8, 8]. 

D. Experimental Results 

Here, the performance of the proposed algorithm in terms 
of average VM load and average VM processing speed is 
discussed. The next subsections explain the performance from 
different sides in detail. 

1) Average VM load over time 
Fig. 1 shows that in comparison with Bin-LB-PSO, the 

load of the proposed Bin-LB-PSOGSA is smaller than the 
load of Bin-LB-PSO in general. In particular, both Bin-LB-
PSO and the proposed Bin-LB- PSOGSA have stable load 
values for a long time. This situation is due to the stability of 
the system because of the number of running application 
requests. After time passes, both as the time passes, the load 
increases due to the growth in the number of running 
application requests. Under the same environmental 
conditions, the proposed Bin-LB-PSOGSA outperformed Bin-
LB-PSO in keeping the system balanced much longer. For 
instance, at moment 28, the load value of Bin-LB-PSO leaps 
due to the gap of some successes of application requests 
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before and after this moment (before it was 2 and after is 61). 
On the other hand, the load average in the proposed Bin-LB- 
PSOGSA has lower load average values than Bin-LB-PSO. 

2) Average VM processing speed over time 
Fig. 2 shows that over time, the average processing speed 

of application requests of both algorithms decreases in 
general. In particular, at moment 28, processing speed 
decreased dramatically due to the obvious increase in the 
running requests, which indicates the efficiency of both 
algorithms to utilize VMs. Therefore, it is clear that both Bin-
LB-PSO and the proposed Bin-LB-PSOGSA have utilized 
VMs efficiently over time. 

Both Fig. 1 and 2 shows that as the load increases over 
time, the processing speed of the submitted applications 
decreases, which proves that the proposed Bin-LB- PSOGSA 
is more efficient in keeping the load balanced over time as 
shown in Table III. 

TABLE III. PERFORMANCE COMPARISON 

Criteria Bin-LB-PSOGSA Bin-LB-PSO 

VM processing speed 

(MIPS) 

4376.84346 4376.84346 

VM Load 389.0400819 451.3841267 

Expected execution 
time (ms) 

3900000  3800000 

Performance 

efficiency 

Better Limited 

 
Fig. 1. Average VM load over time. 

 
Fig. 2. Average VM processing speed over time. 

XII. CONCLUSION 

In this paper, we have proposed a load balancing task 
scheduling algorithm for cloud computing environments based 
on the binary hybrid gravitational search and particle swarm 
optimization strategy. It balances the load of application 
requests submitted from cloud users over virtual machines in 

the cloud. The proposed algorithm enhances the overall VM 
utilization of the cloud system. We have compared our 
proposed hybrid algorithm with the pure Bin-LB-PSO. Results 
show that as the load increases over time, the processing speed 
of submitted applications decreases, which proves that the 
proposed Bin-LB-PSOGSA is more efficient in keeping the 
load balanced over time. 

In the future, we plan to extend this kind of load balancing 
for workloads with dependent tasks. Also, we plan to improve 
this algorithm by considering other QoS factors, as well. 

REFERENCES 

[1] Babu, K. R. Remesh, and P. Samuel. "Enhanced Bee Colony Algorithm 
for Efficient Load Balancing and Scheduling in Cloud." In Innovations 
in Bio-Inspired Computing and Applications, pp. 67-78. Springer 
International Publishing, 2016. 

[2] E. Pacini, C. Mateos, and C. G. Garino, "Distributed job scheduling 
based on Swarm Intelligence: A survey," Computers & Electrical 
Engineering, vol. 40, no. 1, pp. 252-269 2014. 

[3] E. Pacinia, C. Mateosb, and C. G. Garinoa, "Balancing Throughput and 
Response Time in Online Scientific Clouds via Ant Colony 
Optimization," Advances in Engineering Software, in press. 
Elsevier 2014. 

[4] S. A. Ludwig and A. Moallem, "Swarm intelligence approaches for grid 
load balancing," Journal of Grid Computing, vol. 9, no. 3, pp. 279-301, 
2011. 

[5] S. Aslanzadeh and Z. Chaczko, "Load balancing optimization in cloud 
computing: Applying Endocrine-particale swarm optimization," in 
Electro/Information Technology (EIT), 2015 IEEE International 
Conference on, IEEE, 2015, pp. 165-169. 

[6] Awad, A. I., N. A. El-Hefnawy, and H. M. Abdel_kader. "Enhanced 
Particle Swarm Optimization for Task Scheduling in Cloud Computing 
Environments." Procedia Computer Science 65 (2015): 920-929. 

[7] R. K. Jena, "Multi Objective Task Scheduling in Cloud Environment 
Using Nested PSO Framework," Procedia Computer Science, vol. 57, 
pp.1219-1227, 2015. 

[8] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, and S. Dam, "A genetic 
algorithm (ga) based load balancing strategy for cloud 
computing," Procedia Technology. vol. 10, pp. 340-347, 2013. 

[9] X. Lu and Z. Gu, "A load-adapative cloud resource scheduling model 
based on ant colony algorithm," in Cloud Computing and Intelligence 
Systems (CCIS), 2011 IEEE International Conference on, IEEE, 2011, 
pp. 296-300. 

[10] S-S. Kim, J-H. Byeon, H. Liu, A. Abraham, and S. McLoone, "Optimal 
job scheduling in grid computing using efficient binary artificial bee 
colony optimization," Soft Computing, vol. 17, no. 5, pp. 867-882, 2013. 

[11] Z. Mousavinasab, R. Entezari-Maleki, and A. Movaghar, "A bee colony 
task scheduling algorithm in computational grids," in Digital 
Information Processing and Communications, Heidelberg, Springer 
Berlin, 2011, pp. 200-210. 

[12] D. Babu and P. V. Krishna,"Honey bee behavior inspired load balancing 
of tasks in cloud computing environments," Applied Soft Computing, 
vol. 13, no. 5, pp. 2292-2303, 2013. 

[13] L. Xu, K. Wang, Z. Ouyang, and X. Qi, “An improved binary PSO-
based task scheduling algorithm in green cloud computing. 
In Communications and Networking in China (CHINACOM),” 2  4 9th 
International Conference on, IEEE, 2014, pp. 126-131. 

[14] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “GSA: a 
gravitational search algorithm,” Information Sciences, vol. 179, no. 13, 
pp. 2232-2248, 2009. 

[15] Kennedy J, Eberhart R. “Particle swarm optimization.” Proceedings of 
the 4th IEEE International Conference on Neural Networks, 1995, pp. 
1942-1948. 

[16] J. Kennedy, “A discrete binary version of the particle swarm algorithm,” 
Proceedings of the 1997 IEEE International Conference on Systems, 
Man and Cybernetics, vol. 5, IEEE press, New York, NY 1997, pp. 
4104–4108. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 5, 2018 

264 | P a g e  

www.ijacsa.thesai.org 

[17] Mirjalili, S., & Hashim, S. Z. M. (2010, December). A new hybrid 
PSOGSA algorithm for function optimization. In Computer and 
information application (ICCIA), 2010 International Conference on (pp. 
374-377). IEEE. 

[18] F. Marini and B. Walczak,  “Particle swarm optimization (PSO). A 
tutorial,” Chemometrics and Intelligent Laboratory Systems, vol. 149, 
pp. 153-165, 2015. 

[19] D. Bratton, D. and J. Kennedy (2007, April). “Defining a standard for 
particle swarm optimization In Swarm Intelligence Symposium, 2007. 
SIS 2007. IEEE (pp. 120-127). IEEE. 

[20] C. Yang, W. Gao, N., Liu, and C. Song (2015). “Low-discrepancy 
sequence initialized particle swarm optimization algorithm with high-
order nonlinear time-varying inertia weight.” Applied Soft 
Computing, 29, 386-394. 

[21] G. Sun, A. Zhang, Z. Wang, Y. Yao, J., Ma, and G. D. Couples, (2016). 
Locally informed gravitational search algorithm. Knowledge-Based 
Systems, 104, 134-144. 

[22] J. Islam, X. Li, and Y. Mei, “A Time-Varying Transfer Function for 
Balancing the Exploration and Exploitation ability of a Binary 
PSO,” Applied Soft Computing, vol. 59, pp. 182-196, 2017. 

[23] R. N. Calheiros, R. Ranjan, R., C. A. De Rose, and R. Buyya, , 
"CloudSim: a toolkit for modeling and simulation of cloud computing 
environments and evaluation of resource provisioning 
algorithms," Software: Practice and Experience, vol. 41. no. 1 23-50, 
2011. 

[24] K. Windisch, V. Lo, R. Moore, D. Feitelson, and B. Nitzberg, "A 
comparison of workload traces from two production parallel machines,” 
in Frontiers of Massively Parallel Computing, Proceedings Frontiers' 96, 
Sixth Symposium on the IEEE. 1996, pp. 319-326. 


