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Abstract—The visual extraction of cellular, nuclear and tissue 

components from medical images is very vital in the diagnosis 

routine of different health related abnormalities and diseases. 

The objective of this work is to modify and efficiently combine 

different image processing methods supported by cascaded 

artificial neural networks in an automated system to perform 

segmentation analysis of medical microscopy images to extract 

nuclei located in either simple or complex clusters. The proposed 

system is applied on a publicly available data sets of microscopy 

nuclei cells. A GUI is designed and presented in this work to ease 

the analysis and screening of these images. The proposed system 

shows promising performance and reduced computational time 

cost. It is hoped that thus system and the corresponding GUI will 

construct platform base for several biomedical studies in the field 

of cellular imaging where further complex investigations and 

modelling of microscopy images could take place. 
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fluorescence microscopy; biomedical imaging; cell nuclei; image 
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I. INTRODUCTION 

 Digital Image Processing A.

Digital image processing and analysis is among rapidly 
growing technologies. It encompasses a wide-ranging field of 
applications in our everyday life. Medical, industrial, text 
recognition, biometrics and graphics, are just examples of 
hundreds of possible applications of image processing. 
Although every single application needs a well-designed 
approach to parse and extract the required useful information 
and, most of these approaches can be categorized under a 
single or multiple major aspects that include but are not 
limited to: image visualization, sharpening, enhancement, 
recognition, verification, retrieval, segmentation and /or 
restoration, etc. [1]-[4]. 

Most of the image processing-based applications are 
assembled and designed by applying a schematic classical 
methodology that includes one or more of the following 
phases [1]. Image pre-processing and enhancement, Objects 
segmentation (extraction), Statistical features extraction, 
Objects (Candidates) selection and pruning, Objects post-
processing and (or) Features classification. 

Segmentation is an important phase in image analysis 
where the image is divided into meaningful disjoint regions 
with similar properties, such as gray level, color, texture, 
brightness, contrast, etc. It is often one of the first and most 
difficult phases in image analysis. Due to its importance, a 
great variety of segmentation algorithms have been proposed 
to tackle a wide range of applications such as microscopy, 
biomedical engineering, biomedical imaging, bioinformatics 
and pattern recognition [5]-[9]. The segmentation process will 
be the focus of our attention in this work and more details 
about segmentation process will be highlighted in Section II. 

 Medical Imaging and Computer Aided Diagnosis (CAD) B.

Medical imaging techniques are usually implemented to 
greatly enhance the extraction process of numerical features 
that provide efficient and as sufficient as possible 
representation of medical signs features, activities or general 
regions of interest in the different types of medical images 
acquired by different types of medical instruments. These 
images along with the possible integration of advanced image 
processing techniques and medical and physiology concepts 
can positively improve the ability of knowledge extraction and 
increase the ability to screen and (or) predict diseases that may 
have serious impacts on our daily life [10]-[12].  

The difficult medical diagnostic routine (time consuming 
and tedious process) can be improved by providing the 
specialists (e.g. radiologists, pathologists, biologists) with 
quantitative data and statistical measurements which are 
extracted from such medical images so that the visualized 
version is much more informative [1], [13]. The development 
in computational power (e.g. processor speed, RAM, graphical 
hardware) has driven the development of several image 
processing algorithms that have had a significant impact in 
several medical research and applications. 

Recently, computer aided diagnosis (CAD) has quickly 
become a widespread and unescapable useful tool for 
diagnostic examinations in many daily routine works across a 
wide range of medical and clinical areas such as microscopy 
imaging, tissue culturing, cancer research, Confocal 
microscopy, heart diseases, brain tumors, blood diseases 
screening, etc. [14]-[18]. Such CAD (Fig. 1) systems have 
drawn a lot of attention because they can represents a second 
opinion for the specialist and they allow a large scale 
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statistical evaluation besides the classical human screening 
evaluation [19], [20]. 

 Fluorescence Microscopy and Nuclei Image Segmentation C.

In fluorescence microscopy, the object under consideration 
is itself the light source rather than a light reflector. This is 
due the fact that certain material absorbs light at one 
wavelength (excitation) and emits a detectable visible (i.e. 
longer specific wavelength) light. This physical phenomenon 
(fluorescence) is utilized to visually and separately observe 
different components of the specimen such as cell membrane, 
cytoplasm, nuclei, gene, tissue, or proteins (Fig. 2). 

The component of interest is specifically stained in the 
specimen using particular fluorescent dyes and then the 
fluorescence microscopes make it possible to visualize and 
store digital images of this component [21]. In fluorescence 
microscopy applications, researchers are typically interested in 
as much as accurate localization of the boundaries of the 
observed fluorescently labelled structural and functional units 
(cell nuclei, genes, etc.). 

Heterogeneity of different biological features can be an 
issue arising from the use of fluorescence imaging data. 
However, to a large extent this may be overcome by specially 
designed CADs, which can correctly take into account the 
physical variations seen between cells and therefore across a 
set of fluorescence microscopy images. 

 
Fig. 1. Example of a CAD microscope (Image courtesy: Carl Zeiss- ELYRA 

Super resolution Microscopy). 

 
Fig. 2.  (A) The main cell structure, (B) A specimen showing Endothelial 

cells stained with different dyes (Image courtesy: 

http://en.wikipedia.org/wiki/Fluorescence_microscope). 

II. REALTED WORKS  

 Cellular and Nuclear Image Segmentation Literature A.

Background 

Semantic image segmentation in fluorescence microscopy 
analysis refers to the separation process of cell components 
from the surrounding background by finding the boundaries of 
cellular, nuclear or histological structures with an adequate 
accuracy from images of stained tissues with different 

markers, Fig. 2B. Nuclear segmentation is an important step in 
the pipeline of many cytometry analyses because it forms the 
basis of many other operations (e.g. cell counting, cell-cycle 
assignment, cell tracing) and is often the first step in the 
overall cell segmentation [22]. An increasing number of 
screenings and investigations are done using different types of 
fluorescence microscopy images either on individual or 
sequence (i.e. live-cells imaging) images. 

In fluorescence labelled images of blood and bone 
marrow, high degrees of nuclei segmentation accuracy is 
reported by applying a classical image processing techniques 
such as shading correction and background (grayscale 
opening) followed by Otsu’s method and watershed algorithm 
based on inverse distance transform [23]. In [24] a modified 
algorithm using the watershed algorithm based on 
morphological filtering operations is applied to choose the 
seeds of cell nuclei in tissue sections (i.e. foreground) and 
background as well. In this case, the merging of touching and 
overlapping regions is used to solve the over-seeded 
situations. In [24] method, it is required to manually choose 
and set specific values of certain parameters based on test 
images and then use them on images of the same dataset or 
images taken under the same conditions. 

In [25], the problem of touching cells is addressed and 
treated by detecting the concave points from the polygonal 
approximations. After applying morphological filtering and 
adaptive thresholding to detect contour, this contours are 
segmented using the concave points. This approach is 
combined with a customized ellipse shape fitting such that 
each segment of the contour has a fitted ellipse. 

A fully automated approach based on graph cut model is 
also used for segmenting the touching cell nuclei [26]. The 
background and the foreground separation is achieved using a 
minimal geodesic length, then the individual nuclei are found 
by a graph cut which include image gradient information and a 
priori knowledge about the shape of the nuclei. The graph-cut 
is also used for cells segmentation for the tracking problem in 
microscopy images [27]. 

The advantages of active contour method (flexibility), 
multi-resolution methods (low processing time), multi-scale 
methods (smoothing) and region-growing methods (statistical 
modelling) are combined in [28] to construct an accurate and 
fast cell nuclei segmentation algorithm. 

A new method for leucocytes segmentation based on 
nuclei classification is presented in [29]. The overlapping and 
isolated configuration situations are classified based on 
Bayesian networks and stepwise merging strategy. Some 
morphological features of the nuclei, such as the compactness, 
smoothness and moments are used followed by a watershed 
algorithm to find the proper nuclei boundaries. The 
overlapping nuclei are segmented into isolated nuclei using an 
intensity gradient transform and watershed algorithm. 

Some artificial neural network based approaches such as 
bidirectional associative memory (BAM) [9] is effectively 
used in medical segmentation application because it has some 
preferable features such as: supervision is required only for 
selecting texture primitives, no training is required and it is 
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robust for the presence of noise and distortion. More reported 
segmentation algorithms in the field of fluorescence cell 
nuclei and histological structures can be found in [19]. In [30], 
a supervised learning-based system is proposed for 
segmenting different types of biomedical images where the 
focus was to describe a general purpose system that can, with 
few modifications, be used in a variety of image segmentation 
applications as long as enough labeled data is available for 
training. The system used the intensity neighborhoods as 
nonparametric feature vectors for pixel classification. 

Although Fluorescence microscopy is a rapid expanding 
technique and it has made it possible to identify cellular 
components with a high degree of specificity, more attention 
is required to make its analysis fully automated and as 
meaningful as possible.  Such work is challenging due to the 
large variations of features of the cellular components (size, 
shape, orientation, texture, etc.). 

A totally automatic system is still not a reality; so much 
work remains, mainly in the early steps, which may involve 
segmentation, recognition of nuclei from the background 
followed by refinement, counting, and statistics calculations. 
From another side, many works still focus in certain regions 
(ROI) inside the image under processing rather than 
processing the whole image (i.e. inner and boundaries). 

The main aim of this work and its further consequence 
modules is to focus on the specifics of images acquired by 
fluorescence microscopes (in particular, images cell nuclei) 
and design successful and efficient fully automated 
segmentation system that can be used to overcome these 
specifics simultaneously using tuned image processing and 
artificial intelligence techniques. 

 Clinical Nuclei Related Work B.

Many variations of the basic and CAD microscope 
instrument are now available and used in great success 
applications, allowing us to look into spaces much too small to 
be seen with the naked eye. The processing of digital 
microscope images includes the utilization of digital image 
processing technologies to analyze, model and visualize these 
images. Medicine, chemistry, cancer research, pharmacology, 
biological research and numerous related fields are common 
places for this type of microscope image processing. The 
processing of such images is improved by designing a direct 
special interfacing of microscope imaging instruments with 
image processing systems and interfaces (Fig. 1) [20], [21]. 

In many applications, it is very important to achieve 
accurate and efficient segmentation, classification and 
grouping of nuclei and cells in fluorescence microscopy 
images. This importance comes to enhance the understanding 
of cells functions [31] and enters the processing workflow of 
pathological diagnosis [32]. Examples of this include the 
immune-histochemically staining estimation and 
morphological grading where the detection of cell nuclei on 
histological slides is required. 

From another hand, the precise quantitative statistics about 
nuclear structure and morphology along with their 
visualization can uncover important clues for the diagnosis of 
benign, pre-neoplastic, and neoplastic (cancer) lesions. Also, 
this type of quantification and classification should ease the 
understanding of the anatomical variation of different organs 
by the analysis of their corresponding tissues [33]. 

The nuclei segmentation were used as a basis to 
investigate the subcellular localization of proteins at a 
proteome-wide scale [34]. The cell nuclei were considered as 
seeds to perform protein segmentation using the watershed 
method and hence be able to identify the subcellular 
localization patterns even of complex ones. 

  Dataset C.

In this paper, the publicly available U2OS dataset 
described in [22] will be considered. Fig. 3 shows three 
images from the datasets under consideration. Although these 
images depict different levels of segmentation difficulty, most 
of them follow a similar histogram general profile where 
double-peaks (bimodal) are clear. It can be distinguished that 
in many occasions clustered touching nuclei are exist. Also, it 
is easy to figure out that the histograms of these images do not 
occupy the full dynamic range of the gray scale (i.e. 0-255) 
and they are concentrated on the low (dark) side of the scale. 
Different issues such as touching objects also takes place; 
these issues will be considered in the design of the different 
stages of the proposed segmentation system as will be 
described later. 

III. PROPOSED METHODOLOGY 

The main outline of the proposed methodology can be 
summarized as follow (Fig. 4) Stage-1) Preprocessing. Stage-
2) Detecting the nuclei candidates using NN, Stage-3) 
Classification of candidates into single isolated nucleus or 
clustered (overlapped or touching) nuclei, Stage-4) Separation 
of individual nucleus within clusters using modified watershed 
algorithm combined with NN iteratively, and 5) Refining each 
separated nucleus. The following subsections describe the 
details of these stages, followed by qualitative and quantitative 
evaluations. 

 
Fig. 3.  (Top) Three examples of different cell nuclei images. (Left) dna-20, 

well separated with low number of nuclei, (Middle) dna-19, moderate level. 
(Right) dna-41, difficult clustered nuclei [22]. (Bottom) The corresponding 

histograms. 
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Fig. 4. The proposed cell nuclei segmentation system showing the multi stages of detection and verification.

 Preprocessing Stage A.

Some input images contain no meaningful visual data, 
hence no nuclei can be identified or some noisy bright areas 
may be wrongly identified as nuclei. In the preprocessing 
stage, a neural network (NN-A) with back propagation 
algorithm (BPA) is used to identify this type of images. Part of 
the images were manually investigated and each image is 
assigned a flag (F1, for meaningful images; F2, for non-
meaningful images). Then, three statistical features [(1)-(3)] 
were calculated for each image. The NN-A structure is: three 
inputs nodes, one hidden layer of 5 nodes and two output 
nodes. The training vector of NN-A is [     ] and the neuron 
for output layer indicates F1 or F2 cases. 
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where        are the mean, standard deviation and entropy 
of the input image (IM), respectively. R and C are the number 
of rows and columns of IM, respectively, and   contains the 
255-bins histogram count of IM. It is found that NN-A can 

exclude all non-meaningful images. This step will be useful in 
the generalization of the proposed method for other types of 
medical images. 

Original image (hereinafter,    ) that has high information 
content is then preprocessed to reduce the noise and enhance 
the quality. Although the nuclei in such images are usually 
brighter than the dark background of the surrounding tissue, it 
is usually difficult to identify nuclei consistently over the 
whole image because some of these images are subject to non-
uniform illumination and noise. To smooth out the possibility 
of uneven illumination, a gray morphological top-hat operator 
is applied.  

         ((         )        ) (4) 

where   and   denote erosion and dilation, respectively 
and       is the structure element used to perform the opening 
operation. It is found that the optimum size of       is 
correlated to the mean value of the image (the greater the area 
of nuclei in the image, the lesser the background area and 
hence the mean is greater). 

Then, a common adaptive histogram stretching approach is 
applied on     to enhance the image contrast. In this approach, 
(18 pixels × 18 pixels) sub images are processed individually 
to achieve contrast stretching of 95% (centered) of the sub 
image histogram, then the processed sub images are combined 
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through a bilinear interpolation to compensate for the possible 
induced boundaries between these processed portions. Then a 
9×9 median filter is applied to compensate for the increase in 
the noise amplitude which comes as a result of the above 
enhancement steps [1]. The result of this step is hereinafter 
called (    ), an example is shown in Fig. 8B. 

 Segmentation Stage B.

Generally, segmentation process can be achieved based on 
the separation of regions that have similar properties, such as 
gray level, color, texture, brightness, contrast, etc. In this 
stage, an adaptive gray level based thresholding approach is 
employed as follows: 

1) Calculate    ; the Otsu’s [35] threshold of the global 

preprocessed image (    ). 
2) Divide      into square blocks (64 pixels × 64 pixels) 

containing the gray levels (    ).  

3) For each block i (     ), do the following: 

a) Calculate 

              (   )     (5) 

where      is the Otsu’s threshold of      . And w is 
weighting factor, it is found experimentally that w = .85 is an 
optimum choice. 

b) Convert each block       individually to a binary 

block (      ) using       threshold calculated in step 0.  

c) Combine the resulted binary blocks together to form 

the whole black-white image     . 

4) Repeat steps 2) and 3) above using a block size of (32 

pixels × 32 pixels), this ends up with     . 

5) Calculate                     ; the bitwise logical 

Anding operation.  

6) A series of morphological opening (using a disk shaped 

structure elements of 2, 3, 4 pixels radius) are performed on 

     image to refine the shapes of the detected objects and 

remove noisy pixels and tiny white objects. Also, this operation 

removes small objects (i.e. dark pixels) inside the foreground 

of an image. 

7) Then, a morphological flood filling operation is 

performed to remove small holes in the foreground. 

  Single Nucleus and Clustered Nuclei Separation C.

In this stage, the foreground objects in the binary       
image are isolated and indexed (labelled) individually, each 
object forms a region of possible nuclei candidates (    ). 
Some cand regions contain single nucleus, some regions 
contain nuclei cluster. These two types are called (candT). 
From the other hand, some regions contain faulty cand 
(candF) (i.e. Noise detected as nucleus), (Fig. 5). 

 Non-nucleus Candidates Pruning D.

It is recognized that some gray intensity properties of 
candF regions are not highly changeable. As an example, it is 
found by deep investigation that the Otsu’s threshold of nuclei 
blocks (i.e. blocks contains true nuclei) is almost close to the 
mean of the pixels within the block, while non-nuclei blocks 

don’t satisfy this. Also, for the nuclei blocks, it is found that 
Kurtosis (peakedness) [36] of the part of the histogram right to 
the Otsu’s threshold is higher than that of non-nuclei blocks, 
Fig. 6. 

To prune candF, a NN (hereinafter NN-B) with BPA 
training is used. Several NN topologies were designed and 
tested to determine the optimum NN-B. It is found that the 
optimum NN-B contains (7 input nodes, one hidden layer with 
9 nodes, 2 output nodes). 

A number of (candF) and (candT) regions (similar to 
Fig. 5) were manually cropped. Then, the features described in 
(6)-(12) were calculated for these regions. The vector 
[                                  ] after 
normalization represent the input training vector to NN-B. The 
neuron of the output layer indicates whether the block is 
(candF) or (candT). 
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where                       are the mean, standard 

deviation, skew, kurtosis of the cropped region (candR), 
respectively.    and    are the number of rows and columns 
of candR, respectively.     represent the dynamic range of 
intensities of candR,    represents the number of bright 
pixels in candR nprmalized to the full image size, and 
     represents the ratio of bright pixels to the total area of 
candR. R and C as defined in (1). 

By training and testing, it is found that NN-B is capable to 
prune candF and accept candT for further processes with 
higher degree of accuracy. Numerical evaluation of the NN-B 
goodness is included in section IV. 

 Separation of Clustered Nuclei  E.

Some       contain more than one nuclei, this is caused 
by touching or overlapping nuclei Fig. 5-B. To get accurate 
count and statistics of nuclei, it is important to split       
regions that contain clustered nuclei into single nucleus 
(      ). To achieve this, a region based segmentation using 
watershed transform is applied on      . The idea behind the 
basic watershed transform is to define the catchment basins 
and the watershed lines between them. Generally, the 
watershed transform is applied to the image gradient. 
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Fig. 5. Samples of different regions, (A) single nucleus (candT), (B) clustered touching nuclei (candT), (C and D) non-nuclei (candF). 

 

Fig. 6. Samples of different sub regions: (Left) nuclei and their corresponding histograms (right) non-nuclei region and their corresponding histograms. 

Direct application of the watershed transform results in a 
large number of tiny regions. To solve this problem, the 
proposed system presents a modified iterative watershed 
algorithm to separate the touching nuclei in nuclei clusters. 
The iterative scenario is controlled and tuned using a neural 
network (hereinafter NN-C). To control the number of 
separated nuclei within each candT, candT is scaled using a 
variable scaling parameter (SP). The separation algorithms are 
as follows: 

a) Initiate SP to 1. (all watershed regions are detected). 

b) Define ScandT; the scaled version of candT using SP. 

c) Apply watershed transform on ScandT 

d) Calculate the areas of the detected regions in step C, 

and choose the 10 largest (        *    +). 

e) For each     , using (13)-(19), calculate the 

following features’ vector: 

   
  ,                                           -   

f) For each      , use the trained NN-C to estimate 

another version of     (called         ) 

g) Calculate the squared error (SErr) 

between     and        . 

h) If SErr is reducing, then reduce SP linearly and 

perform a new iteration starting from step B. If the reduction in 

SErr is below a predefined threshold, then stop iterations and 

choose the regions candTS that have small SErr less than a 

predefined threshold that were calculated during training.  
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where    and    are the number of pixels in the area and in 

the perimeter of the region i, respectively.      ,     ,       
and       are the area, perimeter, center of mass in horizontal 
direction and center of mass in vertical direction, respectively.  

        vector represents the neuron of the output layer of 
the NN-C. candT and ScandT are normalized to a fixed 
dimension (Rn*Cn) and the mean value for each row and the 
mean value for each column of both candT and ScandT are 
calculated and saved. These constructed vector have a length 
(2*Rn+2*Cn) represent the input training and testing vector 
for NN-C. Fig. 7. shows examples’ results of the separation 
step. 

 Refinement Stage F.

In this stage, every single nuclei        is processed 
alone to refine its borders. This stage will take out local non-
nuclei pixels that were misclassified as nuclei members. From 
the other hand, the local nuclei pixels that were misclassified 
as non-nuclei will be added to their corresponding nucleus. 
This is done as follows: 
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Fig. 7. Two examples of Separation of clustered nuclei. (Left) Enhanced cropped regions. (Center) Initial segmentation (CandT). (Right) Split nucleus (CandTS) 

using modified watershed and NN-C. 

 
Fig. 8. (A) Input image. (B) Enhanced image. (C) Segmented image. (D) Refined result. (E) Color labeling. (F) Original gray scale profile of the segmented 

nuclei. 

a) Calculate the centroid of the       . 

b) Define the bounding rectangular box       that 

contains all the pixels of        and 10% more pixels from 

each side (Top, Bottom, Lift, and Right). 

c) From the original image     ; crop out the sub image 

        contained within the boundaries of      . 

d) Enhance        individually by applying a histogram 

stretching transform over 95% of the range and a median filter 

of size 8*8. This step will increase the independency of each 

nuclei boundary. 

e) Use the calculated centroid in step 1 as a seed to start 

a region growing based thresholding within       . In this 

step, the region growing is not allowed to expand in the 

directions where other candTS are located. This vital to avoid 

rejoining of separated nuclei. 

It is found that this enhancement stage highly improves the 
local region of each individual nuclei and hence provide more 
fine and accurate details of the nuclei borders.  

An intensive empirical study based on several cross 
validation runs were carried out on different nuclei images of 

different noise levels and different segmentation difficulty to 
choose some features’ values in the above stages. Some 
parameters were fixed and some of them are automatically 
changing (tuned) according to other statistics calculated during 
the processing of each individual image. No assumptions were 
assumed and no human interaction is required to choose 
certain areas in the image under processing (i.e. the proposed 
system operates on the whole image rather than a specific 
region of interest ROI). 

Along with the proposed system, an interactive graphical 
user interface (GUI) has been developed. This GUI allows the 
user to select the data set and then all the associated images 
are displayed. Fig. 9. shows the developed GUI including all 
the display options. 

IV. PERFORMANCE EVALUATION AND DISCUSSION  

For evaluation, the proposed methodology is applied on the 
(U20S) dataset described above. In order to evaluate the NN-B 
performance, the false acceptance rate (FDR) is calculated. 
FDR is an error measure that shows the probability that a 
candF is detected as a candT. Samples of the calculated FDR 
for randomly selected images are shown in Table I. 
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 Row 3 shows the FDR without using the NN-B, while 
row 4 shows the FDR using the NN-B. It is apparent that the 
FDR is reduced using the NN-B. Using NN-B reduces the 
average FDR from 12.8% to 2.1%. 

Fig. 10 shows examples of the segmentation obtained by 
the proposed methodology compared to the provided hand-
labelled (ground truth) images. For finer details comparison, a 
zoomed version for some of the nuclei shown in Fig. 10. are 
also shown in Fig. 11. 

 
Fig. 9. The proposed GUI. 

TABLE I. FDR FOR RANDOMLY SELECTED IMAGES WITH AND WITHOUT USING NN-B 

Image number (dna-) 0 10 14 18 23 29 3 30 35 39 4 40 45 48 8  

Number of candT 41 42 47 44 43 37 28 33 29 35 27 34 28 32 28 Avg. 

FDR  

(No NN-B) (%) 
4.90 4.80 8.50 20.5 4.70 8.10 21.4 9.10 20.7 14.3 11.1 17.6 3.60 6.30 21.4 12.8 

FDR  
(NN-B) (%) 

0 0 2.1 2.3 0 2.7 3.6 0 6.9 2.9 0 2.9 0 3.1 0 2.1 

 

Fig. 10. Three examples of nuclei segmentation. (top) original, (middle) ground truth, (bottom) proposed. 

Almost, as Fig. 11 depicts, it is found that ground truth 
nuclei borders are bigger (outer) than the segmented ones. It is 
thought that this is due to an oversize segmentation in the 
hand labelling. Anyway, a simple morphological dilation 
process could overcome this issue. However, we purposely 
prefer not to apply this post processing in the refinement stage 
since the main focus is to describe and evaluate the proposed 
method. Fig. 12 depicts this fact clearly, it is clear that the 
total area of all segmented nuclei - using the proposed method 
- in each image is less than that in the ground truth reference 
images. This is ensures that a simple dilation process could 

lead to more area convergence. Again, we purposively prefer 
not to apply this step.  

Although Fig. 10 and 11 show a very qualitative 
reasonable result, quantitative evaluation should provide 
another proof of satisfaction. To this end, the proposed 
method is compared to other methods in literature [22] that 
were applied on the (U20S) dataset. 

Let (IP) represents the proposed binary image output and 
(IGT) represents the ground truth binary image, [22] described 
different quantitative performance metrics that include: 
(1) Hausdroff (HD) metric and normalized sum of distances 
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(NSD), both can be considered as a spatially based metrics, 
(2) (Split) error: two IP nuclei are assigned to a single IGT 
nucleus, (Merge): single IP nucleus embody two IGT nuclei, 
(Add): an IP nucleus is assigned to the IGT background, and 
(Miss): an IGT nucleus is assigned to the IP background. 
Table II shows the result of the proposed methodology 
compared to other methods. 

As stated above, the proposed method provides slight less 
area in most of the cases. However, this does not affect the 
error count metrics as they depend on counting objects 
numbers and comparing pairs of objects (i.e. one to one object 
in IP and IGT). From the other hand, this slightly affects the 
values of the HD and NSD as they are aware of the spatial 
locations of nuclei and their contours so that good values of 
HD and NSD metrics can still apparently be obtained.  

For the same reason, we got lower Dice metric value 
(0.88), this value can reach an average of 0.94 when a dilation 
operation is applied on the final segmented binary nuclei. 
Again, we purposively prefer not apply such preprocessing 
step. 

In general, using the watershed approach leads to less 
merge errors while increasing the split error [22]. In the 

proposed algorithm, it is apparent (Table II) that we can 
achieve less merge errors using the watershed while keeping 
split errors at low levels. This is due to applying a modified 
region growing algorithms that can merge regions that are 
wrongly separated (split) in the watershed step. 

Also, a reasonable (add error) metric were obtained due to 
applying the non-nucleus pruning operation based on an NN 
training. From the other hand, the (miss error) were kept at 
low levels due to applying an adaptive thresholding criteria 
that takes into account the local and global intensity variations 
through the image. 

It is important to compare the computational cost of the 
proposed method to some previous methods. It can be shown 
that the proposed method presents a low computational 
approach while providing reasonable results. In average, the 
proposed method takes ~32 seconds to label the input image. 
This represents a significant reduction in computational cost 
compared to many other methods that include [30] which 
takes 49.2 minutes using a supervised learning approach, 
while in [41] it takes 30 minutes using the template matching 
approach. 

TABLE II. QUANTITATIVE COMPARISON OF THE PROPOSED METHOD AND OTHER METHODS. EACH VALUE REPRESENTS AN AVERAGED PERFORMANCE 

METRIC OVER ALL THE IMAGES IN THE DATASET 

Method Reference 
Pixel Spatially Based Error Count 

Dice HD NSD Split Merge Add Miss 

Otsu’s [35] 0.88 30.6 0.11 1.10 2.40 0.3 5.60 

(RC) 

Iterative Thresholding 
[37] 0.92 34.8 0.12 1.10 2.40 0.3 5.50 

Watershed (direct) [24] 0.82 25.9 0.34 13.2 1.20 1.8 3.20 

Watershed (gradient) [38] 0.85 34.6 0.30 7.70 2.00 2.0 2.90 

Merging [39] 0.91 13.1 0.07 1.80 2.10 1.0 3.30 

Active Mask [40] - 148.3 0.55 10.50 2.10 0.4 10.8 

Template matching [41] - 77.8 0.06 0.58 1.45 0.9 3.48 

Level set  [42] - 96.6 0.09 1.10 0.35 2.75 0.85 

K-means [43] - 94.6 0.11 1.56 0.30 2.6 1.60 

Proposed  0.88 23.3 0.07 0.46 0.30 0.35 1.10 

 
Fig. 11. Zoomed versions of Fig. 10. (left) original (right-red) ground truth (right-yellow) proposed. 
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Fig. 12. Total area of nuclei detected in both ground truth reference images and the proposed methodology. 

Good computational time cost of 15 seconds were 
achieved by [31], but using a (Linux system of 48GB RAM). 
It is still thought that the proposed algorithm dramatically 
outperforms this time because a (Windows system of 2G 
RAM) is used compared to 48GB RAM. 

V. CONCLUSIONS AND FURTHER WORK 

The proposed system in this work combined many image 
processing techniques in a single automated platform to 
automate processing of microscopy cell images. Different 
stages of the proposed system are supported by cascaded 
neural networks used to extract features and tune other 
processes. A GUI is also designed and provided to make the 
proposed system more user friendly and helpful in the 
forthcoming works. It was shown that the proposed system is 
capable of providing reasonable and very good promising 
results in the segmentation stages. It is hoped that the 
successful of this work and its subsequent development will 
pave the way for our vision of advanced levels of processing 
that includes real time processing of living cells and nuclei, 
and the three dimensional modelling of cells and histological 
structures. Future work to improve the outcome of the current 
work should include more accurate and efficient techniques 
for improving the nuclei segmentation. Another types of 
analysis such as automated cell detection, counting, 
classification, and tracking could then be built into a toolbox 
that would facilitate automation analysis of stem cell behavior 
as an example. 

The proposed system is designed to deal with the whole 
image region without focusing into certain (ROI) regions 
which means more accurate and meaningful results. The 
proposed system depends on auto tuning of some related 
parameters which means that it can be extended to be applied 
on other datasets without the need for new methodologies. The 
proposed system shows a promising results compared to other 
systems. It also shows a rescannable reduction in processing 
time which makes it applicable in near real time diagnosis 
systems. 

The ground truth images of the database under 
consideration are hand-segmented to separate touching nuclei 

without labelling overlapped regions. So that, the separation 
stage described in the methodology section is designed to get 
accurate count of nuclei without taking into account the full 
area of each nucleus. As future work, it is hoped to enhance 
the refinement stage by increasing the accuracy of separation 
of clustered nuclei so that overlapped region is associated 
more accurately and more meaningfully to the separated 
nuclei. From the other hand, it is of the future planes to 
provide such system as a software as a service (SaaS) [44] and 
to allow the integration of this system with other related 
systems. 
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