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Abstract—Tasks such as clustering and classification assume
the existence of a similarity measure to assess the similarity
(or dissimilarity) of a pair of observations or clusters. The
key difference between most clustering methods is in their
similarity measures. This article proposes a new similarity mea-
sure function called PWO “Probability of the Weights between
Overlapped items ”which could be used in clustering categorical
dataset; proves that PWO is a metric; presents a framework
implementation to detect the best similarity value for different
datasets; and improves the F-tree clustering algorithm with
Semi-supervised method to refine the results. The experimental
evaluation on real categorical datasets, such as “Mushrooms,
KrVskp, Congressional Voting, Soybean-Large, Soybean-Small,
Hepatitis, Zoo, Lenses, and Adult-Stretch” shows that PWO is
more effective in measuring the similarity between categorical
data than state-of-the-art algorithms; clustering based on PWO
with pre-defined number of clusters results a good separation
of classes with a high purity of average 80% coverage of real
classes; and the overlap estimator perfectly estimates the value
of the overlap threshold using a small sample of dataset of around
5% of data size.
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categorical; F-Tree; SF-Tree

I. INTRODUCTION

General data mining applications have two types of data,
categorical and numerical. Most clustering algorithms focus
on numerical data whose inherent geometric properties can
be exploited naturally to define distance functions between
data points [1]. Categorical data refers to the data describing
objects, which have only categorical (non-numerical) attributes
[2]. Such data is often related to transactions involving a
finite set of elements, or items, in a common item universe
[3]. Transactional data is a kind of categorical data in which
records can have different sizes. It is generated by many
applications such as e-commerce, healthcare, and CRM [4].
It plays an important role in many fields like market basket
data, web usage data, customer profiles, patient symptoms’
records, and image features. This paper focuses categorical
and transactional data.

Clustering is a widely used technique in which data items
are partitioned into groups (called clusters) based on their
similarities or differences, such that data items in the same
cluster are more similar among themselves than items in other

clusters [5]. It is usually difficult to deal with categorical
attributes; therefore, clustering of categorical attributes has not
received as much attention as its numerical counterpart [6].
Categorical attributes have unique features from the definition
in [2]; therefore, the traditional approach to convert categorical
data into numerical values does not necessarily produce mean-
ingful results specially in the case where categorical domains
are not sorted [2], [7], [8]. For example, hierarchical clustering
algorithms may be unstable when used to cluster categorical
data because the distance between the centroid of clusters
of categorical data is not a good estimator of the similarity
between the data [9]. Partition clustering algorithms may also
be unsuitable because the sets of items that define clusters may
not have the same sizes since the cluster may contain a small
subset of the possible number of items. Thus, it is possible that
a pair of transactions in a cluster have few items in common
[7]. Moreover, clustering categorical data involve complexity
that is not encountered in numerical data. In addition, different
clustering algorithms hardly generate the same clustering result
for the same dataset. For these reasons, there is an unmet need
for algorithms that tackle these limitations during clustering
categorical data [6].

One of the most important aspects of data mining problem
is how similarity measure is defined [10] and calculated [11],
since the similarity measures have the effect of clustering and
classifying information with respect to data types. Clustering
techniques for categorical data are very different from those
for numerical data in terms of the definition of similarity
measure [12]. It is also rare to find the boundaries of the
clusters and avoid overlapping between them, which adds an
additional constraint to researchers when choosing the optimal
similarity measure that could be applied to a wide range of
data types. Most of the clustering algorithms have two phases:
allocation and refinement phases. The refinement phase has
two drawbacks: 1) its results depend on the results of the
allocation phase; and 2) its run time complexity is relatively
high. It is known that the size of transactional data is usually
large, so there is a great demand for fast and high quality
algorithms to cluster large-scale transactional datasets.

This article extends our prior study of measuring the
similarity between clusters of categorical (or transactional)
data in [13]. The list of this article contributions are presented
in (Tables I and II) and are summarized as follows.
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A criterion function is described in details for similarity
measure called PWO (Probability of the Weights of Over-
lapped items) for categorical data to overcome the problem of
overlapping between clusters. A new algorithm which depends
on PWO is provided for clustering categorical datasets with
possibly different dimensions. A new framework is proposed to
estimate the best similarity threshold parameters for different
datasets that could be used as the proposed clustering algo-
rithm. The similarity measure is tested on real-world datasets
obtained from the UCI Machine Learning Repository [14]
and applied to find similar groups in models constructed
from different datasets. Inferences from the similar groups
found to be logically meaningful. Finally, the algorithm is also
compared versus different state-of-the-art algorithms in terms
of the purity, the number of clusters, and the performance.

To sum up, this article extends significantly the earlier work
[13] in the aspects described in Tables (I, and II). Here, the
PWO is discussed in details, propose the PWO as a stand-
alone algorithm, improve F-Tree algorithm, and implement the
overlap estimator algorithm. The algorithms are evaluated in
details versus different algorithms using addition datasets.

The reset of this paper is organized as follows. Section
2 summarizes the general notation and definition. Section 3
discusses the related work to this paper. Section 4 discusses the
PWO similarity measure that is used to calculate the similarity
between clusters. Section 5 discusses the approach to cluster
categorical data based on PWO similarity measure. Section
6 presents the overlap estimator framework to determine
the overlap threshold. Section 7 describes F-Tree clustering
algorithm. Sections 8 and 9 describe the data mentioned in this
research followed by a comprehensive set of experiments and
related discussions. Sections 10 and 11 present the limitations
and conclusion of this study.

II. NOTATION AND DEFINITION

In order to simplify the expressions throughout this paper,
the following notations are used. Consider a categorical or
transactional dataset D consisting of a set of transactions
{t1, t2, ..., tn} of size N . where, each transaction T contains a
set of items or attributes I = {i1, i2, ..., im}. Hence, Clustering
{C1, C2, ..., Ck} is a partition of transactions{t1, t2, ..., tn}.
Where, each Ck called a cluster and K is the total number
of clusters. Mk, and Nk are used respectively to denote the
number of distinct items, and the number of transactions in the
cluster Ck. Ik represents the categorical items in a cluster Ck,
whereIk = {ik1, ik2, ..., ikM}. Sk is the sum of occurrences
of all items in cluster Ck. Θ is the minimum support or the
minimum number of item’s occurrence that should be present
in each cluster.

III. RELATED WORK

The recent categorical clustering techniques are reviewed
in this section. Each algorithm follows one concept of the
three main concepts. First, clustering algorithms based on
a predefined knowledge of the number of clusters such as
COOLCAT [15], LIMBO [16], Fast clustering [17], Ensemble
[18], and Hybrid [19]. Second, clustering algorithms without
any knowledge about the clusters such as LargeItem [20], SLR
[21], SEED [22], CACTUS [23], CLOPE [24], CLICKS [25]

TABLE I. EXTENDED EFFORTS

Prior paper [13] This article contribution

PWO Measure Summary More focus and metric proof

PWO Algorithm Novel

Overlap Estimator Proposed idea implementation

F-Tree Algorithm More description Summary, and add predefined
number of clusters

SF-Tree Algorithm Novel

TABLE II. EXTENDED EXPERIMENTS

Prior paper [13] This article contribution

PWO Measure Evaluation of metric function

PWO Algorithm Minimum
support vs
number of
clusters

Evaluation and analysis clustering
algorithm with(out) fixed number
of clusters

Overlap Estimator Analysis precision and scalability

F-Tree Algorithm Compare with 4
algorithms

Compare with more than 10 other
algorithms

SF-Tree Algorithm Analysis with predefined number
of clusters, without predefined
number of clusters, and analysis
minimum fit of training dataset

Dataset Mushroom and
Votes

Nine Datasets (Table IV)

and DELTA [26]. The last type includes clustering algorithms
that depend on the number of clusters at further step in order
to refine and improve the clustering or to have an ability to
work in the first place, such as ROCK [7], WCD [4], Squeezer
[1], and SCCADDS [27]. In addition, it have been found some
authors presented many techniques to find the best number of
clusters.

Most algorithms generate clusters in the allocation phase
then try to refine them in the refinement phase depending on
the similarity measure function. The numbers of refinement
steps are then state, as they affect the algorithm’s performance.
Measure function is applied on either local clusters or global
clusters or both. Approaches based on local function compute
the evaluation function between items inside the same cluster;
the result shows the degree of how items inside a cluster are
related to each other. On the other hand, global approaches
compute the evaluation function between clusters; the result
shows the degree of how clusters are dissimilar and more dis-
tinct. Finally, the measurement parameters and their numbers
are stated; increasing the number of parameters will increase
the complexity of the algorithm and the difficulty of the user’s
experience.

The LargeItem [20] uses the concept of large items to
divide the transactions into clusters. An item marked as large
in a cluster of transactions if its occurrence rate is larger than
a minimum support parameter that is specified by the user.
The LargeItem approach scans each transaction and either
allocates it to an existing cluster or assigns it to a new
cluster based on a cost function. The process of choosing a
cluster for each transaction is based on the global goodness
of clustering. This goodness is measured by minimizing the
total cost function. Therefore, the LargeItem algorithm needs
to set two parameters the minimum support Θ and the large
item factor or weight w. In addition, the LargeItem algorithm
is exhaustive in the decision procedure of moving a transaction
t to the best cluster. The data structure used to handle clusters
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is complex, and the approach taken to update the criterion
function is not efficient; although the implementation uses
the B-Tree structure to increase the performance of updating,
but it consumes a lot of memory in case of handling the
large dimensions of a dataset with large number of attributes.
Moreover, the procedure of scanning transactions one at a time
in each refinement phase and writing it back to the file is very
I/O consuming.

The ROCK [7] is based on the number of links between
two records of data items, instead of the distances between
them. The links capture the number of other records that the
two are both sufficiently similar to it. ROCK heuristically
optimizes a cluster quality function with respect to the number
of links in an agglomerative hierarchical fashion. ROCK has
proved to be quite effective in categorical data clustering, but
it is naturally inefficient in processing large databases [24].
The base algorithm is cubic in the dataset size, which makes
it unsuitable for large problems. Therefore, ROCK may be
suitable for small datasets. The ROCK data’s format assumes
that the similarities between data items are given. Hence,
ROCK uses the similarity measure between two transactions
as a number of common neighbors, but the computational cost
is heavy and sampling has to be used when clustering large
dataset [7]. The choice of f(T ) is critical in defining the fitness
function, and the authors point out that the function depends
on the dataset as well as on the kind of clusters that the user
is interested in. Thus, the choice of the function is a weak and
difficult task [15]. Besides, ROCK is difficult to fine-tune to
find the right parameter T .

The COOLCAT [15] algorithm is based on the idea of
entropy reduction within the generated clusters. Therefore, it
does not rely on distance on arbitrary metrics. The algorithm
groups points in the dataset trying to minimize the expected
entropy of the clusters. This approach requires only parameter,
which makes it stable and useful for larger datasets. However,
the problem appears in the order in which the points are
processed or grouped because of the point that appears to be
a good fit for a cluster using a particular order of process
may become a poor fit as more points are clustered using
another order of process. To reduce this problem, the author
added a re-processing step of a fraction of the points in the
batch, so points are clustered in each batch and the worst fit
points are re-clustered, while the number of occurrences for
each of the attributes’ values in a particular cluster is used to
determine the goodness of the fit. However, this step increases
the complexity of the algorithm specially in determining the
number of fractions and worst fit points.

The CACTUS [23] is based on the concept of the common
occurrences for the categories of different variables. The cate-
gories are considered strongly connected if the difference in the
number of occurrences is greater than a user-defined threshold.
The algorithm includes three phases: summarization, clustering
and verification. In the summarization phase, the summary
information is computed from the dataset. In the clustering
phase, the summary information is used in discovering a set
of candidate clusters. In the validation phase, the actual set
of clusters is determined from the set of candidate clusters
[6]. CACTUS could perform better, if the inter-attribute and
intra-attribute summaries fit in the main memory. Like ROCK,
this algorithm may be more suitable for small datasets. There

are main problems with CACTUS; first, it does not scale
since it requires the calculation and storage of potentially large
similarity matrices; second, it lacks stability when the data is
re-shuffled in the similarity matrices, it includes an unnatural
distinguishing set assumption; and third there is no extension
step after the cluster projections is found.

Small-Large Ratio or SLR [21] uses the measure of the
ratio between small to large items; the item is marked as
large or small depending on the number of its occurrences
in a cluster. The algorithm tries to minimize the ratio of the
number of small items to that of large items in each cluster. The
goal of this method focuses on designing an efficient algorithm
for the refinement phase of the LargeItem algorithm [20]. The
SLR algorithm compares the small to large items’ ratios with
the pre-specified SLR threshold α to decide the best cluster for
each transaction. SLR needs to set the support Θ, the weight w,
the maximal ceiling E, and the SLR threshold α. In general,
the SLR algorithm must compute all the costs of clustering
when transaction t is put into another cluster to use the small-
large ratios, which adds additional computational steps, and
the large number of parameters makes it difficult to adapt the
algorithms. Thus, the algorithm did not reduce the memory
and I/O consumption of the LargeItem method. The authors
in [22] concluded that both the LargeItem and SLR method
suffer a common drawback; that they may fail to give a good
representation of the clusters.

The CLOPE [24] approach depends on the ratio between
the height and the and width. The height represents the number
of transaction’s item occurrence, while the width represents the
number of clusters. The CLOPE tries to increase the height-to-
width ratio of the cluster histogram. The larger height-to-width
ratio of histogram the better intra-cluster similarity. CLOPE
needs to set the repulsion r. There are two disadvantages of the
r parameter. First, if there is no knowledge about the behavior
of the dataset, it is difficult for users to expect the best value
of repulsion r [4], so they must run the clustering phases
more than once to get feedback on the best values for the
clusters’ numbers. Second, the CLOPE algorithm runs slower
for non-integer repulsion r-values because of the computational
overhead that comes with the floating point. The algorithm also
requires two additional steps to handle adding and removing
a transaction into and from a cluster in case of any refinement
step.

The SEED [22] approach generates an initial seed of cluster
centroid. The algorithm starts by finding the optimal number
of clusters. SEED tries to maximize the fitness function value.
This fitness measure calculates the average similarity between
every transaction in a cluster to its centroid. The update of
centroids will result in the need for clusters’ re-organization.
The process of centroid update and clusters’ re-organization
will be repeated until a suitable point of stability of the fitness
function is reached.

The WCD [4] algorithm tries to preserve as many frequent
items as possible within clusters and controls items’ overlap
between clusters. The WCD uses a partition-based clustering
approach and tries to maximize the criterion function EWCD,
“Expected Weighted Coverage Density”. However, by default,
when all transactions are considered in a single cluster, it
will get the maximum EWCD, since this function cannot
determine when the algorithm has to stop because merging
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clusters maximizes the EWCD. Therefore, an additional phase
prior to the clustering phases is required to determine the best
number of clusters by taking a sample of data and running it on
different values of K. This makes the algorithm’s performance
poor in a dynamic environment since the number of clusters
can suddenly change.

The CLUC [28] algorithm depends on a similarity measure
called cohesion that determines the degree with which items
belong to clusters. The CLUC clusters data in two phases,
initialization and refinement as most of the algorithms. But,
this approach is most similar to LargeItem [20] except in the
way of assigning the items in each cluster. The main drawback
is found in multiple scanning of data to complete the clustering
process.

The LIMBO [16] algorithm is based on the Information
Bottleneck (IB) method, which uses the mutual information
metric to define the measure for categorical clustering. There-
fore, the algorithm works to minimize the information loss
when grouping the items into clusters. The clustering approach
works with three phases, Building Tree, Clustering, and asso-
ciating tuples with clusters. The benefit of this approach is that
it uses to cluster both tuples and attribute values; therefore, it
can be classified as a hybrid algorithm.

The CBDT [29] approach is based on the distance between
transactions. In this approach, the similarity between clusters
is processed in three stages of calculating the distances: 1)
between individual items; 2) between corresponding cells of
different transactions; and 3) between transactions themselves.
Therefore, the similarity measurements is considered time
consuming. This is in addition to the large memory needed
to store the pairwise results, which makes the algorithm’s
performance poor in large-scale data.

The Squeezer [1] approach works with one phase and is
most similar to the allocation phase of the LargeItem algorithm
with a similarity measure based on statistics. The algorithm
reads transactions data in sequence and assigns it to the first
maximum similar cluster or assigns it to a new cluster based
on a minimum similarity. The output from this approach could
change in case of change in the sequence of data input, as there
is no refinement step. In addition, the similarity measure result
will depend on the first clusters generation. The performance
of this algorithm is better for uses with large-scale data;
however, the approach use only local similarity computations
to determine the maximum similar cluster.

Table III presents a comparison between the studied algo-
rithms in the above. The clustering approach of each technique
and the clustering phases are stated, as they affect the purity
as well as the number of clusters.

IV. PROPOSED PWO SIMILARITY MEASURE

The goal of any clustering algorithm is to reach the
final pure state of clusters, so an estimation function must
be adapted to measure how many object in one cluster are
different with each objects in other clusters and at the same
time, the objects within a cluster are similar. It is noted that
the key difference between most of the methods is in defining
the criterion function for measuring similarity. However, the
difficulty lies in proposing a good scenario to solve the

overlapping between clusters that depends on the underlying
dataset. Therefore, to solve the overlapping problem, there
are two requirements need to be considered in evaluation:
the maximization of the frequent items within clusters and
the minimization of the items that are overlapping between
clusters.

A. The Overlapping Weight

It refers to the number of occurrences of an item in a
cluster C as the item weight in C. For the purpose of the
comparisons with the proposed measure function, the modified
Jaccard theory [30] of similarity between clusters is described
as in (1).

Jc(C1, C2) =
|C1

⋂
C2|

|C1

⋃
C2| − |C1

⋂
C2|+ 1

(1)

In that sense, the similarity between two clusters increases
along with the increase of the total intersection between them
comparing with the total difference of the intra-join. It is
noticed that Jaccard similarity neglects the weight (or support)
of items in the clusters, which is significant in case of cluster’s
categorical dataset. Therefore, another measure that takes the
weight of items is needed to take in consideration when
measuring similarity, not only the number of items in the
intersection.

B. The Probability of the Weights of Overlapped Items

The Probability of the Weights of Overlapped items (PWO)
is introduced as a new measure function that estimates the
goodness of clusters. Given a cluster Ck, suppose the number
of distinct items is Mk, the items set of Ck is IK =
Ik1, Ik2, . . . , IkM , and the sum of occurrences of all items in
cluster Ck is Sk, as calculated by (2).

Sk =

Mk∑
j=1

|Ikj | (2)

Now, the weight of an item,WIj , inside a cluster Ck is
defined as the ratio of occurrences of an item Ij to the sum
of occurrences of all items inside the cluster; in other words
the probability of an item inside the cluster Ck, is as shown
by (3).

WIj = P (Ij) =
|Ij |
Sk

=
|Ij |∑Mk

j=1 |Ikj |
(3)

In this sense, the total probability of all items within a
cluster is equal to one, (4).

Mk∑
j=1

WIj =

Mk∑
j=1

P (Ij) = 1 (4)

Let overlap Oij be the list of mutual items between cluster
Ci and cluster Cj , where Oij = Ci

⋂
Cj , and |Oij | represents

the number of mutual items. All items belonging to Oij have
two possible weights: its weight for each cluster separately,
and, its weight depending on the group of transactions.
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TABLE III. SUMMARY OF CATEGORICAL CLUSTERING ALGORITHMS

Algorithm Clustering Approach No. of
Phases

Measurement
Approach

Metric Parameters No. of
Parameters

No. of
Classes

Squeezer Assign data to the first max similar
cluster.

1 Local Similarity Minimum similarity s 1 N/Y

SLR Minimize the small large Ratio between
clusters

2

Local and Global
Similarity

Minimum support Θ, weight
w, maximal ceiling E, and
the SLR threshold α

4 N

LargeItem Increase items’ frequency inside clusters Minimum support Θ, and the
weight w 2

N

CACTUS Depend on shared items between
clusters

Distinguishing number K,
passes D

N

COOLCAT Minimize the expected entropy for each
clusters

Minimum Entropy

1

Y

CLOPE Increasing the high-to-width ratio of the
cluster histogram

Repulsion r N

ROCK Increase the number of links between
items inside the cluster

Fitness functionf(T ) N/Y

CLUC Depend on the cohesion measuring
similarity to assigned items to clusters

User-defined threshold α N

CBDT Pairwise less distance between
transactions

3

Number of classes r Y

WCD Increase the coverage of large items
inside the cluster

Number of classes K Y

LIMBO Minimize the information loss. Information loss threshold α Y
SEED Generated of an initial seeding of

cluster centroids
Global Similarity Minimum support Θ N

Now, let WO(Ci | Cj) represents the sum of weights of
all items of a cluster Ci that overlap or intersect with cluster
Cj , and expressed in (5).

WO(Ci | Cj) =

|Oij |∑
k=1

WIk∈(Ci
⋂
Cj) (5)

Similarly, WO(Ci | Cj) is the sum of weights of all items
of cluster Cj that overlap with cluster Ci. Now the definition
of the probability of the weights of overlapped items between
clusters Ci and Cj , PWO(Ci, Cj), is presented as (6).

PWO(Ci, Cj) = WO(Ci | Cj)�WO(Cj | Ci) (6)

Hence, the similarity measure is defined by (7).

sim(Ci, Cj) = PWO(Ci, Cj) (7)

Now, the similarity function sim(Ci, Cj) captures the
closeness between the pair of clusters Ci and Cj . Actually,
the sim values range between zero and one, with larger values
indicating that the clusters are more similar. The sim value
is one for identically matching clusters and zero for very
dissimilar clusters.

C. Proof of PWO Similarity Metric

In [31] defines the similarity measure S as a function with
a non-negative real value that satisfies three properties (1-3).
Moreover, if S satisfies properties (4) and (5) then S is called
a metric similarity measure.

1) ∃s0 ∈ R : −∞ < S(x, y) ≤ s0 < +∞,∀x, y ∈ X.
2) s(x, x) = s0∀x ∈ X .
3) s(x, y) = s(y, x)∀x, y ∈ X .
4) s(x, y) = s0 ↔ x = ys(x, y).
5) s(y, z) ≤ [s(x, y) + s(y, z)]s(x, z)∀x, y, z ∈ X .

The following is a proof of PWO being a metric similarity
measure. Proof. S = SPWO:

1) Property 1 is satisfied by the properties of probabili-
ties 0 ≤ SPWO ≤ 1, thus s0 = 1.

2) Property 2 is trivially satisfied by the fact that SPWO

is a similarity measure, thus SPWO(x, x) = 1.
3) Property 3 is also satisfied by the fact that SPWO is a

similarity measure, so SPWO(x, y) = SPWO(y, x).
4) If SPWO(x, y) = 1 then x and y are identical, which

together with (2) satisfies Property 4.
5) Property 5 is also satisfied by the properties of

probabilities.

V. PWO CLUSTERING

A. Clustering using PWO

In order to study the ability of PWO as a similarity measure
in clustering, the cost function in the LargeItem algorithm [20]
and the PWO similarity metric are compared. While the goal
of LargeItem is to minimize the total cost of each cluster, the
goal is to maximize the similarity between transactions in the
same cluster. Therefore, the LargeItem algorithm it modified
to adapt this goal. Another important point is that the cost
function of LargeItem is relative to the MinimumSupport(θ)
that is given by the user. Therefore, the similarity between a
pair of clusters is only accepted if it is larger than or equal to
the minimum support, as shown in (8). Thus, higher values of
θ correspond to higher thresholds for the similarity between a
pair of clusters before they are considered similar. Algorithm.1
illustrates an overview of the clustering algorithm.

sim(Ci, Cj)≥Minimum− support(θ) (8)

B. Merging Clusters by Groups

To speed up the clustering process, a new strategy of
merging clusters is applied. Instead of merging the most
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Algorithm 1 PWO Clustering Algorithm
while not EndOfFile do

Read the next transaction < t,− >
Allocate t to an existing Ci with MAX similarity larger
than MIN support or in a new cluster
Write < t,Ci >

end while
{Refinement phase}
not moved← true {not moved true if no transaction t is
moved between clusters.}
repeat

while not EndOfFile do
Read the next transaction < t,Ci >
Move t to an existing non-singleton cluster Cj that has
a MAX similarity with it
if Ci 6= Cj then

Write < t,Cj >
not moved← false
eliminate any empty cluster

end if
end while

until not moved

Algorithm 2 PWO-M Clustering Algorithm
while not EndOfFile do

Read the next transaction < t,− >
Allocate t to an existing Ci with MAX similarity larger
than MIN support or in a new cluster

end while
{Refinement phase}
no merge← false
{not merge: false if no similar cluster found to merge.}
repeat
num cluster ← i;
group clusters with similarity ≥α;
if num cluster == i then
no merge← true

end if
until not merge == true

similar pairs of clusters, the most similar groups of clusters are
merged. First, each transaction is allocated in a single cluster
and compute the similarity between clusters, and then each
cluster is assigned to a group if it is similar to any cluster in the
group. The similarity’s rule is applied using (8). The process
of merging group of clusters at once instead of merging pairs
of clusters minimizes the number of merging steps without
affecting the purity.

Algorithm 2 presents a fast way of clustering transactions
with the use of PWO as the similarity measure as well as
in group’s merging. To differentiate it from the previous
algorithm explained in Algorithm 1, this algorithm is called
PWO-M, in which groups of similar clusters continue to be
merged until no more merge is possible. This approach speeds
up the clustering process while maintaining the same degree
of purity and number of clusters.

Algorithm 3 PWO Clustering Algorithm with Predefined
Number of clustering

while not EndOfFile do
Read the next transaction < t,− >
Allocate t to an existing Ci with MAX similarity larger
than MIN support or in a new cluster

end while
{Refinement phase}
repeat

group pair clusters with MAX sim(Ci,Cj)
until num cluster == predefined

C. Clustering using a pre-defined number of clusters

In case there is a pre-defined number of clusters before
clustering, it can modify the algorithm presented in Algorithm
2 can modified to be as the one presented in Algorithm
3 by adding one additional step in the refinement phase.
Merging pairs is continued with maximum similarity until the
number of clusters reaches the required number. Results of this
modification presented in the Experiments.

VI. OVERLAP ESTIMATOR

The similarity of clusters changes according to the dataset,
so the overlapping between clusters varies depending on the
behavior of the dataset. An automated framework is proposed
to specify the best threshold value for determining the cluster’s
neighbor, i.e. similar clusters, according to the training dataset.

A. Cluster’s Neighbours

Initially, A cluster’s neighbors are those clusters that are
considerably similar to it, and therefore they can be merged
with it forming a large cluster.

Now, Let sim(Ci, Cj) be a similarity function that normal-
izes and captures the degree of similarity between the pair of
clusters Ci and Cj . The sim values are between zero and one,
with larger values indicating that the clusters are more similar.

Given a threshold α between 0 and 1, a pair of clusters
Ci, Cj are defined to be neighbors if (9) holds

sim(Ci, Cj)≥α (9)

In (9), α is a parameter that can be used to control how
close a pair of clusters must be in order to be considered
neighbors; it is called the “neighborhood threshold”.

Accordingly, higher values of α correspond to higher
thresholds for the similarity between the pair of clusters before
they are considered neighbors. Assuming that sim is one for
matching clusters and zero for very dissimilar clusters, a value
of one for α constrains clusters to be neighbors to only
identical clusters. On the other hand, a value of zero for α
permits any arbitrary pair of clusters to be neighbors. Equation
(8) is the same as (9) if α = θ; θ is a user parameter while α
is the clusters’ neighbor threshold.
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Fig. 1. The Neighbour’s threshold relationship with purity and number of
clusters.

B. Characteristics of the Neighbor’s Threshold

The neighbor’s threshold α has the following characteris-
tics:

• Increasing (decreasing) the neighbour’s threshold α
increases (decreases) purity and increases (decreases)
the number of clusters.

• Its result depends on the data type. A value of α
that produces a purity of 100% on data D1 does not
necessarily produce a purity of 100% on data D2.

Fig. 1 summarizes the relationship between the neighbor’s
threshold from one side, and purity and number of clusters
from another side. In addition, it represents different dataset
type curves. The growth rate with purity is appearing logarith-
mically in Fig. 1(a), while it is exponential with the number
of clusters as shown in Fig. 1(b).

C. Estimating the overlap parameter

The best value of the neighbor’s threshold α is the value
that would get high purity with minimum number of clusters.
The best value is called the overlap threshold α. The overlap
estimator is used to estimate the best value of the neighbor’s
threshold α. The framework tries to find the minimum value of
closeness of cluster’s neighbor that will produce 100% purity
of clusters, and uses this value in clustering the transactions
of dataset.

To estimate the best overlap threshold α value, the follow-
ing approach is applied:

1) Starting by clustering the training dataset at a mini-
mum support of 100%.

2) Merging the clusters using different values of the
neighbour’s threshold α.

3) Test the purity of the output clusters based on the
training set classes values.

4) Repeating steps (2-3) until reaching the minimum
value of the neighbour threshold α getting 100%
purity value.

In addition, it is noticed that starting from α = 0 ascending
to one is faster than starting from α = 1 descending to zero
in computing the similarities. Algorithm 4 shows the overlap
estimator algorithm.

Algorithm 4 The Overlap Estimator Algorithm
Ensure: Input: The training dataset Dn, Classes Cn
α← 0 {α is the threshold paramter}
while Purity!=1 do
α← α+ 0.1
PWO-M (Dn, α, Output)
Check(Cn, Output, Purity)

end while
return α− 0.1

VII. F-TREE CLUSTERING

Unlike traditional data, categorical clustering requires
transactions to be partitioned across clusters in such a manner
that instances within a cluster share a common set of large
items, where the concept of the large follows the same meaning
attributed to frequent items in association rule mining [32].
Thus, it is clear that categorical clustering requires a fun-
damentally different approach from the traditional clustering
technique. F-Tree [13] is a summarization clustering algorithm
that clusters categorical data based on a new tree structure.

A. F-Tree Clustering Algorithm

The basic F-Tree approach consists of the four main steps
as follows:

1) Calculating items’ frequencies: it scans the input
dataset to rank all items.

2) Building a F-Tree: it inserts all transactional items
of the dataset into F-Tree structure; it uses the fre-
quencies of items to reorder the transactional items
before inserting it into the F-Tree as discussed in the
previous example.

3) Extracting initial clusters: initial clusters are gener-
ated using F-Tree by pruning the F-Tree at some level
based on the minimum support.

4) Refining clusters: it applies the merging algorithm
operated with PWO measurement to merge similar
clusters that are extracted from the previous step.

All the above steps are divided in two phases. The allo-
cation phase is concerned with the first three steps; while the
refinement phase is concerned with only the last step.

1) F-Tree Data Structure: The F-Tree data structure is
designed to compress the categorical dataset. As the categorical
dataset contains a set of records, the F-Tree groups the records
using their shared items or attributes in the tree. In the
beginning, the global item frequencies are computed. Then
all transactions’ items are inserted in the F-tree using the item
as the node key. The insertion of item is based on the global
frequency order. As a result, the groups of items that get in
the path starting from the tree root to any leaf node composes
a single record, and so all paths from root to leaves nodes
compose all transactions in the dataset. Thus, each sub-path
can represent a set of transactions, which share the same path
prefix. The following example illustrates the F-Tree process.

Suppose the following is the transaction records {ACF,
ACH, BDE, AE, BF}. Computing the global items frequency
gives {A(3), C(2), B(2), F(2), E(2), D(1), H(1)}. Now sorting
the records’ items based on global frequency gives {ACF,
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Fig. 2. An example diagram of an F-Tree structure.

ACH, BED, AE, BF}. Fig. 2 shows the F-Tree structure of
these records; then, it can absolutely be seen that node A is
a shared item between three records {ACF, ACH, AE}. In
addition, Node B is a shared item between two records {BED,
BF}.

2) Generate Clusters from F-Tree: Extract the clusters
from the F-Tree depending on the F-Tree levels since each
inner node shares all items in the upper level. Hence, the
minimum support parameter is replaced by F-Tree depth, and
for generalization, (10) is used.

ClusterLevel = MinimumSupport ∗ treedepth (10)

To illustrate how the clusters are extracted from the previ-
ous graph in Fig. 2, for instance if the minimum supportθ =
75% , and tree depth = 3 then the cluster level = 2. At
the second level (depth) there are four nodes. Each of those
nodes contains one or more transaction in it or in its children.
Therefore, there are four clusters as {{ACF, ACH}, {AE},
{BED}, {BF}}.

While if extracting clusters at the first level (depth), there
are only two clusters as well as there are two nodes. These
clusters are {{ACF, ACH, AE} , {BED, BF}}. At this point,
it easy to notice that the number of clusters decreases as the
level goes up to the root of the tree.

3) Merging Clustering Algorithm: The major steps of the
merging algorithm are defined as the following:

• Computing the similarity list between clusters.

• Creating the group of neighbour clusters.

• Merging all clusters in the same group.

• Repeating these steps until there is no further merging.

The similarity list between clusters are computed using
the merging overlap threshold α. Then, any similar cluster
will belong to the same group in which the group of clusters
contains only neighbour pairs of clusters. Lastly, it merges all
clusters’ neighbours inside the same group. A new generation
of clusters could be more likely similar or dissimilar based
on the result of merging. Therefore, the refinement procedure
will repeat the merging algorithm until there is no more merge
done or no new cluster’s neighbour found.

Algorithm 5 The SP-TREE Algorithm
Ensure: The dataset Dn, Training set Sm

F-Tree (Dn + Sm, α, Ci)
for all s Cluster in Seed Sm do

Merge all clusters c contains any items ∈ s
end for
return Clusters Ck

B. Semi-Supervisor F-Tree Clustering

The F-Tree generates a large set of pure clusters, and
although the refinement step breaks down the number of
generated clusters, the refinement step needs a learning process
to minimize the number of pure clusters without losing its
precision specially when there is a predefined number of
clusters. So, a training data base could be used as a seed in the
merging phase. These seeds will be used to guide the merge
algorithm with correct similar sets to speed up and correct
the fitting of the merging algorithm. Algorithm 5 shows the
ST-Tree algorithm.

VIII. EXPERIMENTS

In this section, the accuracy is analyzed, precision and
execution time of the proposed measure metric and clustering
algorithms with real-life datasets. Several experiments are
conducted for clustering to evaluate the general purity of the
clustering algorithm using PWO. The version of LargeItem
[20] algorithm is implemented for comparing performance
and precision of clustering purpose, as well as LargeItem
algorithm is a tree based techniques. Others algorithms results
are collected from authors references.

A. Empirical Datasets

labeled datasets in Table (IV) are obtained from the UCI
Machine Learning Repository [14] are used. The number
of clustering presented in this table are used in clustering
evaluation.

B. Pre-processing The Dataset

The input dataset is converted into a format that can be
processed by algorithms handling transactional datasets. First,
the class label is removed from all datasets. Second, each
record of dataset is converted to a list of distinct items by
mapping each property character for any attribute to a distinct
numerical number for all, since each record of transactional
data always contains a list of distinct items, and the record
of a dataset has a list of properties’ characters that may be
duplicate throughout different attributes.

For instance, if there are the following dataset record {{F,
G, F, F, F}, {F, G, T, N, F}, {Y, N, T, N, F}} with five
attributes, then after mapping the transaction record would be
{{1, 3, 5, 7, 9}, {1, 3, 6, 8, 9}, {2, 4, 6, 8, 9}. The same
mapping process is applied if the dataset contained Boolean
values. For instance, if the dataset record is {{1, 0, 0, 1, 0},
{1, 0, 0, 1, 1}, {0, 1, 1, 0, 0}}, then the equivalent transaction
record would be {{1, 3, 5, 7, 9}, {1, 3, 5, 7, 10}, {2, 4, 6, 8,
9}}.
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TABLE IV. DATASET PROPERTIES

Dataset Size
No. of classes No. of

features
Total
Attribute

Missing
ValuesNum. Cat.

Mushroom 8124 2 1 22 23 2480

Chess 3196 2 0 36 36 0

Car 1728 4 0 6 6 0

Pima diabetes 768 3 8 0 8 0

Breast cancer 699 2 0 9 9 0

Vote 435 2 0 16 16 288

Wine 178 3 13 0 13 0

Iris 150 3 4 0 4 0

Zoo 101 7 1 15 16 0

Fig. 3. The effect of threshold value on the data purity after merging clusters
with Jaccard metric on the mushroom dataset.

IX. EVALUATION STUDY

A. PWO Evaluations

1) Experiment 1: Evaluation of PWO Metric Function: To
illustrate the advantage of PWO metric function, an analytical
test is performed, in which the PWO and Jaccard capability are
compared in grouping similar clusters. First, the base clusters
are generated, then the similar clusters are computed using
the Jaccard coefficient and then the PWO metric to merge the
similar clusters in groups. Similar clusters are determined if
the metric result is above the threshold value. Fig. 3 and 4
shows the result of purity with number of clusters using the
Jaccard coefficient and PWO metric respectively applied on
the mushroom dataset. In Fig. 4, the “100%” purity is reached
when threshold value of Jaccard is equal to 1.5 and the number
of clusters is “23”. While in Fig. 4, the “100%” purity is
reached at threshold value of PWO equal to 0.7 and the number
of clusters is 23. Comparing between the two figures indicate
the normalization strength of PWO to measure the similarity.

2) Experiment 2: Evaluation of PWO Based Clustering
Algorithms: In this experiment, the LargeItem algorithm is
modified by changing its cost function with PWO.

First, the purity of resulting clusters are compared from
both algorithms on the mushroom dataset. Fig. 5 shows the
result of this test, and it is observed that PWO reaches purity
of 90% with minimum support of 35%. As a conclusion it is
found that PWO is a powerful clustering similarity measure.

Second, the resulting number of clusters is compared. It is
a fact that the purity of clusters is proportional to the number

Fig. 4. The effect of threshold value on the data purity after merging clusters
with PWO metric on the mushroom dataset.

Fig. 5. Clusters Purity Results LargeItem vs. PWO on the mushroom dataset.

of clusters generated. Fig. 6 shows the numbers of clusters
generated by LargeItem and PWO. it is observed that when the
minimum support equals to 100% the PWO algorithm handles
each transaction in an individual cluster because PWO equals
to one.

To minimize the number of clusters, the merge strategy is
applied with with PWO-M algorithm, and then compare the
number of clusters with PWO algorithm. Fig. 7 illustrates the
effect of group merging on minimizing the number of clusters
depending on the minimum overlap value. Next, LargeItem,
PWO, and PWO-M are put in comparison of their final
number of clusters, as illustrated in Fig. 8. There are two
tests for LargeItem when (Intra=1) and when (Intra=10). It
is obvious that LargeItem produces two very different results.
However, PWO-M returns a reasonable number of clusters
while illustrating high accuracy and best stable result.

3) Experiment 3: Comparison of Different Clustering Algo-
rithms vs. PWO: In this experiment, the following algorithms:
PWO, PWO-M, LargeItem, and CLOPE are compared using
the datasets and parameters in Table V.

Fig. 9 illustrates their comparison in terms of purity of
resulting clusters. It was seen that PWO and PWO-M are
more accurate and more stable. Second, the output number of
clusters between the four algorithms are compared, illustrated
in Fig. 10. It is noticed that LargeItem returns the minimum
number of clusters for all datasets, while PWO and PWO-
M return a very large number of clusters for Voting and
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Fig. 6. Final No. of clusters using LargeItem vs. PWO on the mushroom
dataset.

Fig. 7. Final No. of clusters using PWO vs. PWO-M on the mushroom
dataset.

Fig. 8. Number of clusters vs. minimum support on the mushroom dataset.

Hepatitis datasets, but for the remaining datasets, they return
a reasonably larger number of clusters if it is taken into
consideration the gain of clusters’ purity. From this test, it
is concluded that PWO is measurable and its strength appears
in the purity of resulting clusters.

4) Experiment 4: Evaluation of PWO Algorithm using
Fixed Number Clustering : As previously explained, PWO-M
is adapted to work with the case when there is a pre-defined

TABLE V. DATASETS AND SELECTED PARAMETERS

Dataset Size Overlap/Minimum Support

Mushroom 8124 0.7

Voting 435 0.8

Hepatitis 155 0.5

Zoo 101 0.75

Lenses 24 0.6

Adult-Stretch 20 0.6

Fig. 9. Data purity in all algorithms using different datasets.

Fig. 10. Number of clusters resulting from algorithms using different datasets.

TABLE VI. SUMMARY OF FIXED-N CLUSTERING RESULTS

Dataset No. of Classes Purity Avg. Classes Coverage

Mushroom 2 83.26 88.20

Zoo 7 88.12 74.28

Hepatitis 2 83.87 63.24

Voting 2 89.20 90.65

number of clusters. The result of fixed-N clustering of the
Zoo dataset is 88.12% purity. The Mushroom dataset output
classes having an average of 83.26% purity, while the result of
the Congressional vote is 89.19% of clusters’ purity. Table VI
is a summary of the fixed-N clustering results. One can notice
that the total average of clusters’ purity is above 85%, while
the average of classes’ coverage is above 75%.

5) Experiment 5: Evaluation of the Overlap Estimator’s
Precision: To evaluate the precision of the proposed overlap
estimator, at first a small training sample of the mushroom
dataset is used as an input to the algorithm, 800 out of 8124
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Fig. 11. Number of Clusters vs. purity in case of different neighbour’s
threshold values.

TABLE VII. OVERLAP THRESHOLD VALUES FOR DIFFERENT
DATASET

Dataset Total Size Sample Size Overlap threshold

Mushroom 8124 100 0.70

Voting 435 20 0.80

Hepatitis 155 16 0.50

Zoo 101 10 0.75

Lenses 24 12 0.60

Adult-Stretch 20 10 0.60

Fig. 12. Purity of clustering different datasets using the estimated overlap
threshold values.

transactions selected randomly from the mushroom dataset.
The overlap estimator selects a value of α = 0.7 as an overlap
threshold. Second, all the mushroom dataset is clustered and
then the clusters are merged using different values of the
neighbor’s threshold, and the resulting number of clusters and
the purity of clusters in each case are compared. The result is
shown in Fig. 11, which illustrates that the value of α = 0.7
returns the minimum number of clusters with high purity.

The same experiment is repeated using different datasets.
The overlap threshold values for the datasets is listed in Table
VII, while the purity and number of clusters for each dataset
is displayed in Fig. 12. it is noticed that the clusters’ purity
for all datasets is above 95%; this indicates that the overlap
estimator is very effective in detecting the behavior of data.

6) Experiment 6: Evaluation of Overlap Estimator Scala-
bility: In this experiment, the scalability degree or the effect
of the sample size is evaluated to estimate accurate neighbor’s
threshold. In Fig. 13, the clusters’ purity is measured versus

Fig. 13. Purity vs. Neighbour’s threshold value using different sizes of the
mushroom dataset.

Fig. 14. Overlap Estimation Based on Sample Sizes of different datasets.

neighbor’s threshold values on different percentages of the
mushroom dataset size. it is noticed that all dataset sizes reach
100% purity when the neighbor’s threshold value of 0.7 is
used. So, the perfect estimate of overlap threshold for the
mushroom dataset should be 0.7 regardless of the dataset size.

Now, the overlap estimator is applied using different sizes
of dataset sample to compare the accuracy of the overlap
threshold. The overlap estimator has perfectly estimated the
value of the overlap threshold starting from 10% sample of
the dataset, although with a 5% sample dataset (around 406
transactions) the overlap threshold is α = 0.6 and the purity
of the clusters is 93.6%, which is also acceptable.

Fig. 14 illustrates the effect of three sample sizes (10%,
50%, and 100%) on estimating the overlap threshold for the
different datasets. The Adult-Stretch dataset is very small and
therefore the different sample sizes produced very different
estimated thresholds, i.e. it is difficult to estimate the clusters’
behavior. From this experiment, it is observed that the overlap
estimator could expect the best overlap threshold using a small
sample if the sample is normally distributed on all classes.

Fig. 15 illustrates the clusters’ purity when 10%, 50% and
100% of dataset size is used as a sample for estimation for
different datasets using the PWO-M algorithm. It is seen that
a nearly 100% purity is achieved from using only 10% of the
dataset as a sample in the case of the Mushroom, Hepatitis,
Zoo and Lenses datasets. However, this is not the case for
other datasets due to the following reasons: 1) there are missing
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Fig. 15. Clusters’ purity vs. Sample Sizes for different datasets using PWO-
M.

TABLE VIII. MUSHROOM CLUSTERING PURITY VS NO. CLUSTERS

Clustering Algorithm Purity No. of Clusters

F-Tree (θ = 0.8) 100 23

Hybrid 100 23

CLUC 100 24

CLOPE 100 30

CLICKS 100 553

Fast Clustering 99.90 23

Squeezer 99.90 24

ROCK 99.60 21

SCCADDS 99.00 19

CLICKS 97.00 19

LargeItem 95.62 14

F-Tree (θ = 0.3) 95.42 16

CLICKS 87.10 14

attributes’ values as in the Voting dataset. 2) The dataset could
be very small as in the Adult-Stretch dataset that has 20
transactions and Soybean-Small that has 47 transactions. 3)
There is a large number of clusters such as in Soybean-Large
that has 19 classes. 4) There is a large number of attributes per
transaction, such as in the KrVskp dataset that has 36 attributes
and Soybean-Large that has 35 attributes.

Finally, three results are concluded. First, the overlap
threshold value can be change for different data types. Second,
the estimation of the overlap threshold using a small size of
data would depend on the data type and number of clusters
in the dataset. Third, the overlap estimator could improve the
clusters’ purity.

B. F-Tree Clustering Evaluations

1) Experiment 1: Comparing clustering algorithms without
pre-defined number of clusters: In this experiment, almost all
of the algorithms are compared for best purity with closer
number of clusters. The algorithms are run without pre-
defined number of clusters. Table VIII lists different clustering
algorithms in order to evaluate the clustering purity versus
the number of clustering. This table is sorted by purity in
descending order and by number of clusters in ascending order.
The algorithms that are given the closer number of clusters
with high purity are both F-Tree [13] and Hybrid [19], which
gives 100% of purity with only 23 clusters. It is also figured
that LargeItem returned the minimum number of clusters but
with higher purity than CLICKS [25].

TABLE IX. DIFFERENT DATASET CLUSTERING PURITIES

Algorithm Mushroom Car Zoo Hepatitis Voting Cancer

ROCK 77.00 77.08 - 99.35 79.00 97.20

COOLCAT 76.00 - - - 87.00 -

Squeezer 53.60 - 89.00 - 61.80 86.20

LIMBO 89.00 44.50 - 84.52 87.12 69.93

DELTA 89.02 30.15 - 69.67 89.43 70.97

SCCADDS 89.00 - - - 88.00 -

Ensemble 89.00 - 93.00 - 87.00 96.70

SF-Tree
(10% seed)

99.00 89.90 93.00 79.00 87.00 96.20

CBDA 89.02 - - - 91.95 -

DILCA M 89.02 70.08 - 83.22 91.95 74.47

DILCA RR 89.02 70.08 - 69.67 89.43 74.47

Fig. 16. Clusters’ purity vs. No of clusters for different values of Repulsion
of CLOPE algorithm.

2) Experiment 2: Comparing clustering algorithms with
pre-defined number of clusters: In this experiment, almost all
of the algorithms are compared for best purity but with pre-
defined number of clusters given prior to the clustering process.
In Table IX, the results are presented across different datasets.
it could notice that SF-Tree is the best algorithm across
different full categorical datasets such as Mushroom, Car, and
Zoo. However Voting dataset is categorical but contains a lot
of missing data which affects the purity of algorithm. But, in
numeric dataset such as Hepatitis and Cancer, It fail to get a
competitive result as this version of F-Tree is based on exact
matching of feature’s value or records.

3) Experiment 3: Evaluation of CLOPE cost function: It is
implemented the CLOPE clustering algorithm to analyze the
effect of CLOPE [24] cost function on merging pure clusters.
In this experiment, there is a try to minimize the number of
clusters generated from F-Tree using CLOPE cost function. On
mushroom dataset, F-Tree generates 23 pure clusters. These
clusters are input to CLOPE algorithm as existing clusters,
then run algorithm to minimize the number of clusters. there
is a try of a range of r-parameter (from 0 to 6) of CLOPE
algorithm and measure the number of clusters and purity each
time. In Fig. 16, it is noticed that at value of (4.9) the number of
clusters is decreased, but with an effect on purity. The CLOPE
cost function is failed to minimize the number of clusters in
addition to the main problem of determining the best value of
r-parameter or “Repulsion”.
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TABLE X. ANALYSIS OF SF-TREE ON DIFFERENT DATASETS

Dataset Mushroom Cancer Voting Zoo

Number of samples 100 50 25 20

DB Size 8124 699 435 101

Seed Percent(%) 1% 7% 6% 20%

Class 2 2 2 7

Entropy 1.003 0.942 1.012 2.201

CAIR 0.972 0.868 0.762 0.946

Info-Loss 0.014 0.066 0.118 0.032

E-min 0.010 0.044 0.090 0.059

Precision 0.990 0.956 0.910 0.941

Recall 0.990 0.956 0.916 0.976

F-Measure 0.990 0.956 0.911 0.940

Purity 99.00 95.60 91.00 94.10

4) Experiment 4: Analysis of Clustering with SF-Tree: The
goal of this experiment is to test the dependence between the
dataset and seed percentage, it is noticed that the seed can be
used randomly but it is effective if the dataset size is smaller.
Table X shows that in Zoo dataset it is used 20% of dataset as
a seed in order to gain the purity because the Zoo is very small
dataset around 101 records, while in mushroom the use of 1%
of dataset is sufficient to gain a good purity value because the
dataset is large enough.

X. LIMITATIONS

This clustering approach using PWO was unable to suffi-
ciently minimize the number of resulting clusters and further
research is needed to overcome this drawback. The over-
lap estimator framework is designed for categorical datasets;
extending it to domains with continuous values will be a
challenging task.

XI. CONCLUSION AND FUTURE WORK

In this paper, a new similarity measure, “PWO” is pro-
posed to overcomes the overlapping between clusters. From
the experiments, it is concluded that PWO is applicable to
different categorical datasets and generates acceptable degree
of clusters’ purity. New clustering algorithms using PWO
is presented and experiments showed that this approach is
effective. PWO also can be applied in many applications, so
it can be used in 1) measuring the similarity between clusters
of categorical or transactional dataset, 2) measuring the best
pair of clusters, and 3) classifying the dataset based on the
similarity between categorical items. Since it is important to
determine the best similarity threshold for different datasets,
the overlap estimator framework based on the training dataset
is proposed. Experiments show that only 10% of the total
datasets is sufficient to detect the best similarity threshold
value.
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