
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

115 | P a g e

www.ijacsa.thesai.org

MapReduce Performance in MongoDB Sharded

Collections

Jaumin Ajdari, Brilant Kasami

Faculty of Contemporary Sciences and Technologies

South East European University (SEEU)

Tetovo, Macedonia

Abstract—In the modern era of computing and countless of

online services that gather and serve huge data around the world,

processing and analyzing Big Data has rapidly developed into an

area of its own. In this paper, we focus on the MapReduce

programming model and associated implementation for

processing and analyzing large datasets in a NoSQL database

such as MongoDB. Furthermore, we analyze the performance of

MapReduce in sharded collections with huge dataset and we

measure how the execution time scales when the number of

shards increases. As a result, we try to explain when MapReduce

is an appropriate processing technique in MongoDB and also to

give some measures and alternatives to take when MapReduce is

used.

Keywords—NoSQL; big data; MapReduce; sharding;

MongoDB

I. INTRODUCTION

We live in the era of the Information Age. Everything is
connected and online services are more and more oriented to
user data gathering. Major companies process hundreds of
petabytes daily at their servers and the computations have to be
distributed across hundreds or thousands of machines in order
to finish it in a reasonable amount of time. The issues of how to
parallelize the computation, distribute the data, and handle
failures obscure the simple computations within a large
amounts of complex code in dealing with them. With these
problems in mind engineers try to borrow ideas from functional
programming languages by using the map and reduce
primitives as an abstraction that allows to express the simple
computations, and hide the complex details of parallelization,
fault-tolerance, data distribution and load balancing, hence
MapReduce was introduced. The main purposes of this paper
are:

 Analyzing MongoDB sharding capabilities

 What is MapReduce and why use it

 Presentation of the results using MapReduce in sharded
collections by number of shards used.

In this paper we measure MapReduce time performance
through MongoDB, and try to find out how the MapReduce
execution time changes with increased number of MongoDB
shards. We have described the environment, defined a mini
cluster of three virtual machines on which MongoDB is run
and we have experimented with a collection of relatively large
number of documents. And at the end, the results and
conclusions are shown, tried to answer some questions such are

the use of MapReduce within MongoDB when is a good
option, what needs to be done to speed up the processing and
what alternatives to consider.

The rest of this paper is organized as follows: Section 2
presents a summary of some related work in this area.
Section 3 contains a short description of the MongoDB where
the main point is the shard techniques and possibility of
sharding. Section 4 provides the testing results and MapReduce
performance evaluation implemented on MongoDB by use
different number of shards. Finally, Section 5 provides some
conclusions.

II. RELATED WORK

Big companies started facing issues on how to handle the
huge amount of data they were receiving and how to process
those. Google as the pioneer in search technologies needed
computations that process a large amounts of data such as
crawled documents, web request logs, graph structure of web
documents, etc. According to authors Jeffrey D. and Sanjay G.,
Google needed a simple solution that was easy to understand,
fault tolerant, cheap and reliable. In their paper [1] they analyze
MapReduce in large clusters that are highly scalable where
hundreds of programs are run and thousands of MapReduce
jobs are executed, what is Google on a daily basis.

The authors Smita A. et al., in their paper [2] have
introduced an explanation of the MongoDB, its features,
advantages and disadvantages. Especially, they address the
MongoDB features such as MapReduce, Auto – sharding,
MongoDump, etc. They continue with their analyses in case of
dealing with small and large amount of unstructured/semi
structured data and at the end the conclude that if the amount of
the data is big and permanently increases, and high
performance and availability are required then MongoDB
should be considered as options to use as database.

The authors Zeba Khanam and Shafali Agarwal, in their
paper [3], explore large scale data processing using
MapReduce and its various implementations to facilitate the
database, researchers and other communities in developing the
technical understanding of the MapReduce framework. They
continue with exploring different MapReduce
implementations; most popular Hadoop implementations and
other similar implementations using other platforms and
compare those based on different parameters.

The authors A. Elsayed et al., in their paper [4], look back
to the MapReduce and try to find out the strengths and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

116 | P a g e

www.ijacsa.thesai.org

weaknesses, dealing with failures and enhancements that could
be made to it. Furthermore, they argue that MapReduce doesn’t
show the expressiveness of query languages like SQL and it
needs improvement of limitations such as collocation of related
data, implementing efficient iterative algorithms, and
managing skew of data.

Another study shows an attempt to analyze user data with
MapReduce in real time [5]. The authors Ian B. and Joe D., in
their paper show a system which uses the information state
collected during a person-machine conversation and a case-
based analysis to derive preferences for the person participating
in that conversation. They use MapReduce in their processing
model to achieve a near real – time generation of user
preferences regardless of total case memory size.

Authors Michael T. G. et al., in their paper [6], study the
MapReduce framework from an algorithmic standpoint and
demonstrate the usefulness of approach by designing and
analyzing efficient MapReduce algorithms for fundamental
sorting, searching, and simulation problems.

In time when not only big data but also fast data are
exploded in volume and availability, authors Wang L. et. al. in
their paper [7], address the key challenges that MapReduce is
not well suited for and provide solutions with MapUpdate use
which is a framework like MapReduce and specifically
developed for fast data.

Into the researches [8]-[10] are analyzed the MongoDB,
NoSQL databases and reasoning behind choose of them, query
optimizations, and comparisons between NoSQL and SQL
databases are shown.

Authors Shuai Z. et al., in their paper [11], analyze the
MongoDB clusters and introduce how to partition spatial data
to distributed nodes in the parallel environment, using its
spatial relationships between features.

Mohan and Govardhan, in the papers [12], [13], have
analyzed MapReduce as a paradigm and combine it with online
aggregation used in MongoDB. Online aggregation, according
to them is useful when the data collected from massive clusters
and can be very advantageous when the data are collected and
estimated from sensors, various social media or Google search.
Combining those two area (MapReduce and Online
Aggregation) they introduced a new methodology that uses
MapReduce paradigm along with online aggregation.

Dede et al. in their paper [14], have evaluated the
combination of the MapReduce capabilities of Hadoop with the
schema – less database MongoDB, as implemented by the
mongo – Hadoop plugin. This study provides insights into the
relative strengths and weaknesses of using the MapReduce
paradigm with different storage implementations, under
different usage scenarios. They have concluded that, in general,
if the workload uses MongoDB as a database that needs to be
occasionally used as a source of data for analytics then
MongoDB is appropriate solution, however, it is not
appropriate when using MongoDB as an analytics platform that
sometimes must act like a database. Also, they show that using
Hadoop for MapReduce jobs is several times faster than using
the built-in MongoDB MapReduce capability and this is due to
Hadoop file management system (HDFS).

III. MONGODB

Document oriented databases are designated to work
without of use of SQL, and instead of it, they use a different
language to communicate. A document can have any number
of fields listed in any order, like in a relational database. Unlike
to relational databases, a row inside a document oriented
database, not need to have the same number and types of fields
as any other row inside the database. This is due to the fact that
there is no schema that restricts a row to be identical in number
and the sequence of fields. While there are many document
based databases, MongoDB stands out due to its high
performance and ease of setup.

MongoDB as document based database uses BSON to
store the data, which is the binary – encoded serialization of
JSON format. JSON currently supports the following data
types: string, number, Boolean, array and object. BSON
supports: string, int, double, Boolean, date, byte array, object,
array and others. BSON’s only restriction is that data must be
serialized in little – endian format. Since BSON is a format that
the data are sent/retrieved and stored, there is the need of
decode those to text. In an analogy with the relational database,
a table into MongoDB is a collection of the documents and a
database is a group of collections. A document is the most
basic entity where MongoDB stores information, similar to a
row inside a table in relational database, except the data
structure is schema – less. One of the best features of a
document is that it may contain other documents embedded
inside.

Indexes in MongoDB work almost the same as in relational
databases. MongoDB uses B-Tree to implement the indexes
and also allows two – dimensional geospatial indexing which is
very useful when dealing with location based services.

A. Sharding

The problem of huge amount of data, MongoDB solves in
an effective fashion with use of the horizontal data distribution,
known as horizontal scaling. Horizontal scaling is shown as
very well solution and means a distributed and balanced work
across the machines. This way of work in MongoDB is known
with the name sharding. Sharding in MongoDB is designed to
partition the database into smaller pieces accommodated to
different machines, so that no single machine has to store all
the data or handle with all the load. MongoDB handles
sharding very easily and transparently which means that the
interface for querying a sharded cluster is exactly the same as
the interface for a single MongoDB instance.

Usually, there are collection which needs to be together and
the others which allow or might be need to be distributed
across some machines. So, no all collections need to be
sharded, but only some collections that need data to be
distributed over some shards to improve read and/or write
performance. All un – sharded collections will be held in only
one shard that is called primary shard (e.g., Shard A in the
Fig. 1). The primary shard can also contain sharded collections.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

117 | P a g e

www.ijacsa.thesai.org

Fig. 1. Example of sharding a collection across multiple shards.

In case of more complex application, we should shard only
the collections that would benefit from the added capacity of
sharding while leaving the smaller collections unsharded for
simplicity. Because sharded and unsharded collections are
possible to be accommodated into a same system, all of this
will work together, completely transparently to the application.
In fact, if later we find that one of the collections that is not
sharded, becomes larger and larger, we can shard it, so, it is
allowed, at any time, to enable the shard and make a sharding
[15].

Manual sharding can be done with almost any database
software. Manual sharding is when an application maintains
connections to several different database servers, each of which
are completely independent. The application manages storing
different data on different servers and querying the appropriate
servers how to get data back. This approach works well, but
there are difficulties when adding or removing nodes to/from
the cluster is needed or in face of changing data distributions or
load patterns.

MongoDB supports autosharding, and by use of this tries to
avoid the abstract architecture from the application and
simplify the administration of such a system. MongoDB allows
to application to ignore the fact that it isn’t talking to a
standalone MongoDB server, to some extent. On the operations
side, MongoDB automates the data balancing across shards and
makes it easier to add and remove capacity.

A sharded cluster consists of shards, mongos routers, and
config servers, as shown in Fig. 2.

B. Shared Key

To shard a collection, we have to choose at least one field
which will be used to split up the data. This field(s) is called a
shard key. In case, when there are a few shards, it’s almost
impossible to change the shard key, so, it is important to
choose a correct one. To choose a good shard key, a good
knowledge of the workload and how the shard key is going to
distribute the application’s requests are needed. And it is often
difficult to imagine.

Fig. 2. Components in a Mongodb sharded cluster.

There are three most common distributions ways of
splitting the data, which are: ascending key, random, and
location – based. Also there are other types (with other key
types) but most of those fall into one of the mentioned
categories:

Ascending key distribution: The shard key field is usually
the data type of Date, Timestamp or ObjectId. With this
pattern, all writes are routed to one shard. MongoDB keeps
distribution and spends a lots of time migrating data between
shards to keep data distribution relatively balanced across the
shards. This pattern shows weaknesses in the write scaling.

Random distribution: This pattern is more appropriate in
case of when the fields (taken for shard key) do not have an
identifiable pattern within dataset. For example, if shard key
includes any of the following field username, UUID, email
address, or any field which value has a high level of
randomness. This is a preferable pattern for write scaling, since
it enables balanced distribution of write operations and data
across the shards. However, this pattern shows weak
performances in case of query isolation, if the critical queries
must retrieve large amount of “close” data based on range
criteria in which case the query will be spread across the most
of the shards of the cluster.

Location – based distribution: The idea around the
location-based data distribution pattern is that the documents
with some location – related similarity will fall into the same
range. The location related field could be postal address, IP,
postal code, latitude and longitude, etc.

MongoDB supports three types of sharding strategies:

Range – based sharding: MongoDB divides dataset into
ranges determined by the shard key values.

Hash – based sharding: MongoDB creates chunks via
hash values it computed from the field’s values of the shard
key. In general, range – based sharding provides better support
for range queries that need query isolation while the hash –
based sharding supports more efficiently write operations.

Tag – aware sharding users associate shard key values
with specific shards. This type of sharding is usually used to
optimize physical locations of documents for location – based
applications.

On the below table (Table I) is shown the guidance how to
select the shard key.

Sh
ar

d
 A

Shard A

Collection 1
(un-sharded)

Collection 2
(sharded)

Shard CShard B Router
(mongos)

Config Server

Shard 1
(mongod)

Shard N
(mongod)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

118 | P a g e

www.ijacsa.thesai.org

TABLE I. KEY CONSIDERATIONS FOR A SHARD KEY SELECTION

REGARDING THE QUERY ISOLATION AND WRITE SCALING REQUIREMENTS

Query

isolation

importance

Write

scaling

importance

Shard Key Selection

High Low

 Range shard key.

 If the selected key does not provide

relatively uniformly distribution of data,

we can either use a compound shard key
or add a special purpose field to our data

model that will be used as a shard key. Or

for location – based applications we can
manually associate specific ranges of a

shard key with a specific shard or subset

of shards.

Low High

 Hashed shard key with high cardinality.

 If a selected key does not provide
relatively uniformly distribution of data,

we can add a special purpose field to our

data model that will be used as a shard
key.

High High

 A shard key enabling mid – high

randomness and relatively uniformly
distribution of data.

 Determine which shard key has the less
performance effect on the most critical

use cases.

 Special purpose field to our data model
that will be used as a shard key.

C. MapReduce

MapReduce is a programming model which is capable to
process a huge amount of data with a parallel and distributed
algorithm on a cluster. It is a programming paradigm that allow
for massive scalability across hundreds or thousands of servers
in a Hadoop cluster. MapReduce also is a powerful and flexible
tool for aggregating data, solves some problems that are too
complex to express by use the aggregation framework’s query
language. In our case we use MapReduce with JavaScript as its
“query language” to express arbitrarily complex logic.

MapReduce processes different problems across large
datasets using a large number of computers (or computing
nodes) in parallel. Basically, it takes a set of input key/value
pairs and produces a set of output key/value pairs [15] and this
operations is executed in three steps: Map is the first step, takes
the input pairs and to each node applies the “map” function and
finally writes the temporary output. To prevent same data
being processed a master node ensures that only one copy of
redundant input data is processed. Shuffle is the second step,
where the shards redistribute that data based on the output keys
and reaches a stage that all data with the same key value
belonging to the same shard. And finally, reduce is the final
step which takes the shuffled data and processes each group of
data per key.

MapReduce uses a finalize function to clean the temporary
results and to manipulate with the MapReduce output, which
are given from the last reduce phase. The finalize function is
called before the MapReduce output is saved to a temporary
collection. Returning large result sets is less critical with
MapReduce, so the call of the finalize function is a good
chance to take averages or remove the temporary or

unnecessary information in general [16]. MongoDB allows the
user to define which shards will execute the map function, the
shuffle and reduce and also we can use the same shards for
map function execute and as well as reducer function or define
other shards that will do that job.

By default, MongoDB creates a temporary collection while
MapReduce processes with the data and the temporary
collection name is unlikely chosen from a collection name, but,
it is a dot – separated string containing MapReduce, the name
of the collection which is in MapReduce process, a timestamp,
and the database job’s ID. It looks something like
mr.geonames.1525765769.2. MongoDB automatically destroy
this temporary collection when the job is finished and /or
MapReduce connection is closed. To keep the temporary
collection after the job finishing and connection closed we
have to set keeptemp in true as an option parameter. In case
that the temporary collection is used, MongoDB allows naming
the output collection with the out part option, which is a
combined name and out string. To address the last issue
MongodB contains an optional parameter called as out and
which needs to be set to true, if out parameter is set to true,
then there is no need to specify keeptemp, since it is implied.
Even if a name for the temporary collection is specified,
MongoDB again uses the autogenerated collection name for
MapReduce further intermediate steps. When the computations
have finished, the temporary collection automatically and
atomically will be renamed from the autogenerated name to our
set or chosen name. This means that if MapReduce is run
multiple times with the same target collection, it will never use
an incomplete collection in performing operations. The output
collection created by MapReduce is a normal collection, which
means that there is no problem with doing a MapReduce on it
or a MapReduce on the results from that MapReduce.

IV. MAPREDUCE PERFORMANCE ANALYSIS

To analyze the MapReduce performances, used in
MangoDB circumstances, we have created a mini cluster of
few virtual servers on which is run MongoDB and the
geonames database. Geonames database is an open source
database and is taken as an example. Geonames database
contains detailed information to world countries such are
population, size, geolocation, rivers, villages, capital, etc. [17].
It contains around 11 Million records, rendered on tab
separated text file. To manipulate on a better way, we
converted those data to a csv format, that could easily be
exported to mongo. We scaled down the database only to
documents with population larger than zero and the number of
those documents was 469660. From the csv file we took into
consideration and imported only geonameid as id, asciiname,
country and population.

Next, we built a sharded cluster to which was run
MongoDB 3.2 under Ubuntu 16.04, based on Fig. 2, through
three Virtual Machines, named as mongo-c1, mongo-c2, and
mogno-c3, one VM for the configuration server and one query
server VM. We indexed the id with “hash” that allows us to
create a shard key with the hashed id which makes sure the
equally distribution of our geoname collection documents. The
hostnames and ip addresses of each VM was set as follow:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

119 | P a g e

www.ijacsa.thesai.org

 mongo-config: 192.168.157.132

 mongo-router: 192.168.157.130

 mongo-c1: 192.168.157.129

 mongo-c2: 192.168.157.128

 mongo-c3: 192.168.157.131

In our tests a simple map function was set, which finds the
country code and returns a value of 1, and reducer function
which iterate through the values to count the number of
documents in the collection which belongs to each country.
The number of documents included in our tests was 469660
and the id was used as a shard key to shard the documents to
the different shards.

On the above-mentioned architecture, we executed three
tests. In our first test we used only one shard (mongo-c1 was
used). The number of documents was 469660 and the total
import time was 11.28. In the second test, we used the same
number of documents but sharded into two shards (in this case
was added the second shard mongo-c2). The total import time
in this case was 08.25. The collection was sharded successfully
and after sharding the achieved distribution was as follow: into
first shard (mongo-c1) 234349 documents and into second
shard (mongo-c2) 235311 documents. And in our third test we
included another shard (mongo-c3), the same number of
documents was included but distributed into three shards. For
this case the total import time was 8.47 and the collection was
successfully sharded as follow 156646 documents into first
shard (mongo-c1), 156693 documents into second shard
(mongo-c2) and 156321 documents into third shard (mongo-
c3). We executed the same MapReduce job (with the same
map and reduce functions) three times to each test and the
results are shown on Table II.

TABLE II. MAPREDUCE JOB EXECUTION TIME EXECUTED ON ONE, TWO

AND THREE SHARDS USED. NUMBER OF DOCUMENTS USED IS 469660

Execution

1 2 3
Average
time Num. Of

Shards

Import

time

1 11.280 9.470 9.238 9.878 9.529

2 8.250 5.773 5.771 5.800 5.781

3 8.470 4.848 4.874 4.922 4.881

To better express the dependence between MapReduce job
execution time and the number of nodes used, so the
dependence on the number of shards to which the documents
are distributed, on Fig. 3, the curve which clearly expresses the
decrease of the time with increasing the number of shards is
shown.

Next, we again performed the last test, but this time with a
little complex shard key. We chose the pair (id, population) as
a shard key. Total import time was 8:08. Since the shard key
cannot be changed afterwards, so, we drop the before
collection shards and recreate a new shard by use of the new
shard key. By use of the new shard key the sharding was
349699 documents to the first shard, 119947 documents to the
second shard and only 14 documents to the third shard. So, it is

produced ununiform distribution. We executed the same
MapReduce job as in previous tests and the results are shown
on the following table (Table III).

Fig. 3. Average time of mapreduce job execution per number of shards.

executed on 469660 documents..

TABLE III. MAPREDUCE JOB EXECUTION TIME EXECUTED ON THREE

SHARDS USED. NUMBER OF DOCUMENTS USED IS 469660, SHRD KEY (ID,
POPULATION)

Execution

1 2 3
Average
time Num. Of

Shards

Import

time

3 8.470 6.685 6.841 6.638 6.721

Regarding to the above tests, clearly we can conclude that
when the number of shards increases MongoDB MapReduce
performs better and faster. The only trouble as shown in last
test is that we should be very precautious in chose of the shard
key, so, we need to choose an appropriate (a good shard key
which provides as far as possible uniform documents
distribution) that will not slow down MapReduce.

V. CONCLUSIONS

Big data has indeed reshaped the way we deal with data.
The problems that arise when trying to manipulate huge
amounts of data are growing every day and solutions are found
from both scientists and companies alike. MongoDB and other
NoSQL databases alike has seen growth by providing an
alternative to SQL databases. Their design, high availability
and fault tolerance have attracted usage in projects where SQL
databases cannot be used such as handling unstructured raw
huge amount of data.

MapReduce as a framework is designed to solve many
problems with huge amount of data, so, MapReduce has a little
significance when dealing with small data, but it has an impact
when the collections grow. Also it is clear and our tests show
that as the number of shards scales up, MapReduce jobs are
executed faster especially if we take precautions and use a
good shard key. However, the Mongo 3.2 documentation [18]
recommends the avoid of the MapReduce use and instead of
MapReduce the Aggregation Pipelining is preferred for better
performance.

4.5

5.5

6.5

7.5

8.5

9.5

1 2 3

Average time of execution as a function of the
number of shards

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

120 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 51, 1 (January 2008), pp.
107-113

[2] Smita Agrawal, Jai Prakash Verma, Brijesh Mahidhariya, Nimesh Patel
and Atul Patel. Survey on Mongodb: An Open-Source Document
Database. International Journal of Advanced Research in Engineering
and Technology, 6(12), 2015, pp. 01-11.

[3] Zeba Khanam and Shafali Agarwal, MapReduce Implementations:
Survey and Performance Comparison, International Journal of Computer
Science & Information Technology (IJCSIT) Vol 7, No 4, August 2015,
pp. 119 - 126

[4] A. Elsayed, O. Ismail, and M. E. El-Sharkawi, MapReduce: State-of-the-
Art and Research Directions, International Journal of Computer and
Electrical Engineering, Vol. 6, No. 1, February 2014.

[5] Beaver, I. and Dumoulin, J., Applying mapreduce to learning user
preferences in near realtime. In: Case-Based Reasoning Research and
Development, ICCBR 2014, Berlin, Springer (2014) pp. 15–28.

[6] M. T. Goodrich, N. Sitchinava, and Q. Zhang. Sorting, searching, and
simulation in the MapReduce framework. Proceedings of the 22nd
international conference on Algorithms and Computation (ISAAC'11),
2011, Takao Asano, Shin-ichi Nakano, Yoshio Okamoto, and Osamu
Watanabe (Eds.). Springer-Verlag, Berlin, Heidelberg, pp. 374-383.

[7] W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri and A. Doan,
Muppet: MapReduce-style processing of fast data, Proceedings of the
VLDB Endowment, Volume 5 Issue 12, August 2012, pp. 1814-1825

[8] Freire, S., Teodoro, D., Wei-Kleiner, F., Sundvall, E., Karlsson, D. and
Lambrix, P. (2016). Comparing the Performance of NoSQL Approaches
for Managing Archetype-Based Electronic Health Record Data. PLoS
ONE 11(3): e0150069. https://doi.org/10.1371/journal.pone.0150069.

[9] Marwa, E. and Jemili, F., Using MongoDB Databases for Training and
Combining Intrusion Detection Datasets. International Conference on

Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, SNPD 2017. pp. 17-29, Studies in
Computational Intelligence, vol 721. Springer, Cham.

[10] Parker, Z., Poe, S. and Vrbsky, S., Comparing NoSQL MongoDB to an
SQL DB. In Proceedings of the 51st ACM Southeast Conference
(ACMSE '13). ACM, New York, NY, USA, Article 5, 6 pages. 2013,
DOI: https://doi.org/10.1145/2498328.2500047.

[11] Shuai Z., Bolei Z., Zhenjie C., Sanglu L, "Point collection partitioning in
MongoDB Cluster", Research Foundation of Graduate School of
Nanjing University (2013CL09),
http://www.geog.leeds.ac.uk/groups/geocomp/2013/papers/97.pdf

[12] B. Rama Mohan, A Govardhan, Online Aggregation Using MapReduce
in MongoDB, International Journal of Advanced Research in Computer
Science and Software Engineering, Volume 3, Issue 9, September 2013,
pp. 1157-1165

[13] B. Rama Mohan, A Govardhan, Sharded Parallel Mapreduce in
Mongodb for Online Aggregation, International Journal of Engineering
and Innovative Technology (IJEIT), Volume 3, Issue 4, October 2013,
pp. 119-127

[14] Elif Dede, Madhusudhan Govindaraju, Daniel Gunter, Richard Shane
Canon, and Lavanya Ramakrishnan. 2013. Performance evaluation of a
MongoDB and hadoop platform for scientific data analysis. In
Proceedings of the 4th ACM workshop on Scientific cloud computing
(Science Cloud '13). ACM, New York, NY, USA, pp. 13-20.

[15] Li, Feng & Chin Ooi, Beng & Özsu, M. Tamer & Wu, Sai. (2013).
Distributed Data Management Using MapReduce. Journal of ACM
Computing Surveys (CSUR) Volume 46 Issue 3, January 2014, Article
No. 31.

[16] Kyle Banker, MongoDB in Action, 2nd ed., Manning Publications Co.
2016, pp. 333-375.

[17] http://www.geonames.org/, Retrieved 2018-01-31

[18] MongoDB. https://docs.mongodb.com/manual/ ，Retrieved 2017-12-16

