
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

146 | P a g e

www.ijacsa.thesai.org

State Transition Testing Approach for Ad hoc

Networks using Ant Colony Optimization

Ahmed Redha Mahlous, Anis Zarrad, Taghreed Alotaibi

Computer Science Department, Prince Sultan University

PSU, Riyadh, Saudi Arabia

Abstract—Nowadays, telecommunication software

organizations are challenged to provide high-quality software to

customers within their estimated time and budget in order to stay

competitive within the market. Because quality is a defining

aspect of the product, it is essential for a project manager to stay

alert throughout the project lifecycle. Quality has a direct

bearing on customer satisfaction, and if a company produces

high-quality products, satisfied customers will rank it highly in

customer satisfaction surveys. Additionally, dissatisfied

customers are more vocal in their criticisms. Therefore, testing is

an important step to produce more reliable systems. In this paper

we address two important aspects of software testing for ad hoc

network protocols. The first one is by integrating a high-level

testing approach based on state transition on top of a network

simulator in order to fill a perceived gap in existing network

simulators. The second one is reducing testing effort by

eliminating redundant test cases, in order to effectively improve

the result accuracy of existing network simulators. In this paper,

we implemented an automated state transition testing approach

for wireless network routing protocols, using an improved Ant

Colony Optimization (ACO) algorithm. The expected result is to

provide maximum coverage in terms of states and transitions.

Keywords—Component; ant colony; simulation; optimization;

state transition; ad hoc routing protocol

I. INTRODUCTION

In the last few decades, competition in the software market
has increased, and software developers are working on high
quality products with limited time and budget. Quality is
essential in every phase of the project lifecycle as it has a direct
bearing on customer satisfaction. Customer dissatisfaction is
harmful to a company‟s reputation, which is why the testing
phase is crucial for developing high-quality, reliable systems.

In the testing phase, developers focus on investigation and
discovery, finding out whether their software works in line
with customer requirements. Using the results from this phase
makes it possible to reduce the number of errors within the
software program because it's not possible to solve all the
failures you might find during the testing phase [1].

Typically, network protocols are modeled using state-
machine diagrams [2] that consist of a finite number of
protocol states with or without connections between them.
Connections between states are called events, and they
facilitate the transition from one state to another. Network
protocols are systems with large input and output parameters.
For this reason it is necessary to find testing solutions that
reduce parameter problems such as duplicates in the path, and

at the same time increase the overall effectiveness of the
testing. Our method of achieving this was by introducing a
state transition testing approach, which is placed on the top of
the network simulator in order to ensure an effective and
optimal number of test cases.

Due to the complexity of networks, simulators play an
important role in overcoming some of challenges that arise
from implementing and testing network protocols. However,
simulators also have their limitations [3], e.g. traffic
generation, documentation, and scalability, especially with the
current growth in the use of wireless devices. Furthermore,
simulators do not provide an accurate portrayal of real life
because they use the queuing theory and discrete events. For
example if network congestion is high, estimation of the
average occupancy becomes challenging due to high variance
[3]. To this end, there is a need to integrate a new software
testing approach in order to overcome potential weaknesses in
the simulation environment.

Testing is an important phase in the software development
lifecycle. The developed software needs to be tested
thoroughly to ensure that it meets the needs and expectations of
its users, and that it is free from errors. Before starting with the
actual validation, testing activities must be planned properly in
order to perform effective testing. Delivering a high quality
product is crucial for maintaining customer satisfaction and
reducing the risk of faults and the cost of repairing them.
Quality contributes to the long-term revenue and profitability
for companies, making it possible for them to charge and
maintain higher prices for their products. Our main focus in
this research was to integrate a high-level testing approach into
a network simulator to guarantee effective testing.
Traditionally, network research communities implement their
proposed solutions in a network simulator and generate
scenarios based on the network scale, node mobility, and traffic
generation models. This approach can limit the scenario size
and traffic model exceptions in the source code. Our focus is
on the functionalities of network protocols at every point of the
simulation.

This research adopts a quantitative methodology. First,
related works from journals and conference proceedings will
be reviewed. Then, data collection and statistical analysis of
Ant Colony Optimization (ACO) will be performed for ad hoc
networks. Finally, the proposed approach will be implemented
and compared with existing approaches. Fig. 1 illustrates the
stages of the methodology.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

147 | P a g e

www.ijacsa.thesai.org

Fig. 1. Methodology.

This paper is organized as follows: Section II provides
background and related works; Section III presents the
proposed approach, Section IV presents the improvements in
ACO and implementation details. Section V describes the
results. Section VI provides a comparison between the original
ACO and the improved one; and finally Section VII concludes
the paper.

II. BACKGROUND AND RELATED WORKS

A. Background

In this section, we present a brief description of the
protocols and algorithm used. Two protocols have been chosen
and considered as a good choice for MANETS [6], DSDV and
AODV.

1) Ad hoc On-Demand Distance Vector (AODV)
AODV is a routing protocol for ad hoc mobile networks

with a large number of mobile nodes. The protocol's algorithm
creates routes between nodes only when the source nodes
request the routes. This protocol allows the network to be more
flexible in order to give nodes the choice to enter and leave the
network. The routes will be active unless there are no data
packets being sent from the source to the destination. Once the
source stops sending packets, the path will be time out and
close. AODV additionally supports both unicast and multicast.

The protocol has different types of messages. It initiates the
request when needed (“on demand”). Then, route discovery
starts with “route request” and “route reply” messages. Finally,
routes are maintained just as long as necessary. There are four
types of messages used for communication among the nodes.
Route Request (RREQ) and Route Reply (RREP) messages are
used for route discovery. RREQ packets are broadcast by the
source node to connect with the destination node, as the source
node has no route entry to the destination node. For the RREP,
it unicasts the message to the source node if the node is the
destination or has a route to the destination. The other two
types are Route Error (RERR) messages and Hello messages,
which are used for route maintenance [7].

2) Destination-Sequenced Distance-Vector Routing

(DSDV)

DSDV is a proactive routing protocol and a table-driven
routing scheme for ad hoc mobile networks requiring each
node to periodically broadcast routing updates. This is a table-
driven algorithm based on modifications made to the Bellman-
Ford routing mechanism. Each node in the network maintains a
routing table that has entries for each of the destinations in the
network and the number of hops required to reach each of
them. Each entry has a sequence number associated with it that
helps in identifying stale entries.

Each node periodically sends updates tagged throughout
the network with a monotonically increasing even sequence
number to advertise its location. New route broadcasts contain
the address of the destination, the number of hops to reach the
destination, the sequence number of the information received
regarding the destination, as well as a new sequence number
unique to the broadcast. The route labeled with the most recent
sequence number is always used. When the neighbors of the
transmitting node receive this update, they recognize that they
are one hop away from the source node and include this
information in their distance vectors. Every node stores the
“next routing hop” for every reachable destination in their
routing table. The route used is the one with the highest
sequence number, i.e. the most recent one. When a neighbor B
of A finds out that A is no longer reachable, it advertises the
route to A with an infinite metric and a sequence number one
greater than the latest sequence number for the route forcing
any nodes with B on the path to A to reset their routing
tables [8].

3) State transition testing (STT)
State Transition testing is a testing technique in which

changes in input conditions causes state changes in the
application under test. It is a process where the tester analyses
the behaviour of an application under test for different input
conditions in a sequence. The tester provides both positive and
negative input test values and records the system‟s behaviour.
It is helpful where testing different system transitions is
needed. The state transition testing model consists of four
parts: states, transitions, events, and actions [9].

Moreover, state transition has state diagram, events and test
cases as its output, and it is commonly used in black box
testing. It uses model of the states for the component to occupy
the transitions between those states, the events which cause
those transitions, and the actions which may result from those
transitions [9].

a) Ant colony optimization (ACO)

Ant Colony Optimization (ACO) is a metaheuristic for
solving computational problems. Biologists noticed that blind
ants can find the shortest path between food sources and their
nests. They also found out that ants spread pheromones on their
way, and so other ants can follow the previous pheromone trail
by while traversing the paths. The higher the amount of
pheromone present, the higher the probability that the ants will
follow the trail. This indirect communication between the ants
via pheromone trails allows them to find the shortest paths
between their nests and food sources [10].

S
ta

te
 T

ra
n

si
ti

o
n

 T
es

ti
n

g
 a

p
p

ro
ac

h

u
si

n
g
 A

C
O

Reviewing Related
Works

Data Collection

The Proposed
approach

Implementation

Evaluation

Conclusion

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

148 | P a g e

www.ijacsa.thesai.org

Metaheuristic algorithms are used to escape from local
optima, control some basic heuristic: by constructing a
heuristic starting from a null solution and adding elements to
build a complete one, or a local search heuristic starting from a
complete solution and iteratively modifying some of its
elements in order to achieve a better one. The metaheuristic
part permits the low-level heuristic to obtain solutions better
than those it could have achieved alone, even if iterated [10].

B. Related Works

In this section, previous works related to the use of ant
colony optimization for testing wireless networks are
presented. We also present some of the most used network
simulators by the network research community.

Authors in [11] proposed a formal model named
“Evolving-Graph-Based Finite State Machine” (EGFSM) to
describe the behaviors of protocols in a mobile ad hoc network
for conformance testing. To enhance the description capacity
for the dynamic behavior, the authors proposed a method to
introduce the evolving graph theory to extend the Finite State
Machine (FSM) model. They assumed that the topology of the
protocol under testing is predictable. The test sequences
generated from the proposed model can be adapted in test
execution for specific network topologies. Finally, they
presented a case study to validate the effectiveness of the
proposed model and its generated test sequences.

The authors of [12] proposed a framework for testing
wireless sensor networks and presented testing strategies for
the same. Their paper addressed some of the characteristics of
WSNs, such as node dependencies, the location of the mote,
the lack of human interaction during runtime, and how these
affect the testing process. The paper mentions two types of
testing which must be applied on such applications. The first
type is unit testing and it is applied on the motes of the
networks. The second one is integration testing and it tests the
network after the integration. This type of testing is not
applicable for routing protocols since it is based on transitions
and searching for paths, and needs intelligent algorithms to
automate the testing process.

Authors in [4] proposed an ant colony optimization
algorithm to generate an automatic state transition test
sequence to offer a strong level of software coverage. The
paper focused on providing full coverage and they mentioned
that there is a previous work [5] that has applied ACO but with
less coverage, while other papers used genetic algorithms to
improve the quality of the testing, and neither of them
considered full software coverage. They also used the visited
status concept to ensure that each vertex is visited at least one.
This concept is based on the value of the visited status
parameter, for example if there is a connection between two
vertices and the second one was not visited by any ants before
then the ant will select this vertex. They used a tool called
STTACO, a genetic algorithm, and their proposed approach,
which based on ACO to apply it on real time case studies
“enrolment system”. The proposed solution can be applied on
wireless networks since it is a state machine, and the most
important thing is that they provided full coverage.

The authors in [1] proposed ACO to generate a set of
optimal paths in the control flow graph (CFG) and prioritize
the paths. They also proposed an approach to generate a test
data sequence within the domain and use it as the input of the
generated paths. Their approach guarantees full software
coverage with minimum redundancy, and their proposed
algorithm prioritizes paths in two ways to decide which paths
are to be tested first. The first way takes a CFG as an input and
generates optimal and prioritized paths. The second way uses
ACO for test data generation and uses it as the input of the
generated paths. In the end, they applied it to a binary search
program to generate paths as well as inputs. The benefits of
their work are: providing full path coverage through the CFG
(node, branch, loop, condition), using ACO to generate paths
as well as test data, prioritizing the paths to ensure effective
testing, and removing redundancy. The authors used a control
flow graph as their input, whereas in this research, a state
transition table is used as input.

Authors in [13] described a state machine testing approach
for cyber-attacks and malicious activities. A map component is
implemented between the system-under-test and the learner
component. The learner operates abstract inputs and outputs
while the mapper transforms the abstract inputs into concrete
ones which are accepted by the system. In the opposite
direction, it transforms the concrete outputs into abstract ones
for the learner. Simulation results show improved outputs from
a security viewpoint.

Authors in [24] presented the method of inference and
analysis of formal models of botnet command and control
(C&C) protocols. Their contribution was to establish a novel
state-machine approach for reducing the number of inputs in a
realistic high-latency network environment. A Mealy machine
modeling approach [2] was used. Optimization of the L*
algorithm was implemented to made the inferring procedure
more effective.

Although simulators have a major role in evaluating routing
protocols, they also have their limitations. Starting with NS2,
which is the first developed simulator, the simulator has some
issues related to interoperability and coupling between models.
There is also a lack of memory management, debugging of
split language objects. NS3 was developed to overcome the
problems with NS2, but there is still a need for improvements
to the animator tool for wireless scenarios, user friendless, ease
of use, as well as good tutorials and wider community support.

There are other simulators such as OPNET [14] and
QuaNet [15], but they are not useful for students and
researchers because they are commercial network simulators
and there are no educational licenses for them. Another
limitation related to OPNET is that because it is proprietary
software, customization options are limited.

Authors in [16] presented a performance comparison
between NS2, NS3, OMNeT++, and GloMoSiM using the
AODV routing protocol. They stated that in order to evaluate
routing protocols using simulators, three variables must be
considered: memory usage, computation time, and CPU
utilization [16]. Table I illustrates their comparison.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

149 | P a g e

www.ijacsa.thesai.org

A similar work was presented in [17] where the authors
compared various network simulators such as OPNET [14],
NS2 [18], NS3 [19] QualNet [16], OMNeT++ [20], J-Sim, and
Backplane, and tested their suitability when used for simulation
of critical infrastructure. Other research works [21] and [22]
have presented comparative study to compare various
simulators. However, they do not give a comparative study,
and instead only provide a description of each simulator
independently. On the other hand, many researches have been
conducted on testing routing protocols using high-order testing
approaches such conformance testing [23] and black box
testing [24]. Authors in [24] proposed a framework for WSN
testing to apply distributed unit testing concepts in the
development process.

To the best of our knowledge, no previous work has been
done to integrate high order testing techniques on top of a
simulator environment for correctness and test case selection.
Random test cases can easily hide protocol defects because
there are no specific procedures to be followed in the testing
stage. Thus, random test cases even though will not cover all
the cases. In practice, network simulator software is commonly
used in testing and protocol assessment. The trustworthiness of
results produced from simulation models must be investigated
because simulators are less accurate compared to real-life
scenarios, as they use queuing theory and discrete events.
Simulator output results are often taken as evidence without
further verification. In this work, a new layout-level
verification tool is added in order to find critical test cases and
test implemented protocols.

TABLE I. PERFORMANCE COMPARISON

 NS2 NS3 OMNeT++ GloMoSiM

Memory usage

Highest

amount of

memory

Lowest

amount of

memory

Average Average

CPU usage Higher Higher Lowest Lowest

Computation

time

Highest
computation

time

Lowest Low Low

III. PROPSOED APPROACH

Fig. 2. The proposed approach.

The proposed approach enables testers to be exposed to the
design of the protocol and reduces the cost investment.

As shown in Fig. 2, the state transition testing approach
was placed on top of the network simulator. The reasons for
such decision are to ensure effective test cases along with an
optimal number of test cases.

The main components are:

a) Simulation environment: refers the simulation

software. The proposed approach can be adapted to any

environment, such as NS2, NS3, OMNeT++, etc. In this work,

NS2 is used. The trace file entity refers to the actual output

generated from NS2. It captures events occurring in the

modelled network. The trace data is in ASCII code and is

organized into 12 fields.

b) Monitor: is in charge of injecting test cases generated

by the state transition testing in the simulation environment. A

trace file is generated and passes through the test evaluator

module.

c) Protocol Formalization: implementing the state

machine formalization model for a specific routing protocol.

Protocol Specification: represents the protocol‟s task with a

comprehensive description of the intended purpose.

d) State Transition Testing (STT): is the main

component for learning about the protocol being tested. This

learning is important to create test cases for the simulation

environment module. The testing action has two roles: (1)

running state transition testing to achieve the highest coverage

with minimum redundancy, and (2) transferring generated test

cases to the simulation environment module. A complex role

is assigned to STT to define test cases based on system

knowledge and communication scheme. This is necessary to

ensure effective testing with reduced cost. An improvement of

the ACO algorithm is implemented in section 4 to enhance the

test case quality section and the system performance.

e) Test Evaluator: is used in deciding whether to pass or

fail a test case based on protocol formalization and

actual/expected results. The expected results are the

conditional criteria that show the output that should be

generated from the test case. In our case, the expected results

when all states and transitions are covered. The test passes if

the actual result matches the expected result based on the

following specifications:

 All states have been reached at least once.

 All transitions have been executed at least once.

 All feasible paths have been executed.

The actual results are retrieved from the trace file that
represents the behaviour observed when a protocol is tested.
All tests with a „pass‟ are stored in the test case repository for
future use in regression testing. Tests with a „fail‟ need
additional investigation.

A. Apply STT for AODV and DSDV

One of the components in our proposed approach is
protocol formalization, which is implementing the state

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

150 | P a g e

www.ijacsa.thesai.org

machine formalization model for a specific routing protocol. In
this work, state transition testing is applied on wireless network
routing protocols AODV and DSDV. Fig. 3 illustrates the
AODV protocol using a state diagram. The protocol messages
are illustrated as states and transitions. AODV first starts by
initiating the request on demand. Then, route discovery is
initiated and once it has found one it will request a route and
get route reply if a valid route found. After route maintenance,
two different types of messages will be sent: Hello and Error.

Fig. 3. AODV using STT.

Table II presents the states and events of AODV, which
happened in order to move from one state to the other. Each
event is described in Table III.

For instance to move from S1 to S2, Event X which
corresponds to Initiate Request as shown in Table III should
happen first. The same thing applies to the transition from one
state to another for all states. Each transition should be done
once the corresponding event has occurred.

TABLE II. STATE TRANSITION TABLE FOR AODV

S

1
S2 S3 S4 S5 S6 S7 S8 S9

S
1

 Even
t X

S

2

 Even

t Y

S

3

 Even

t J

S

4

 Even

t I

S
5

 Even

t K

S
6

 Even
t Z

Even
t F

S

7

 Even

t C

S
8

 Even

t G

S
9

TABLE III. DESCRIPTION OF AODV EVENTS

Event Description

Event X Initiate Request

Event Y Route Discovery

Event J Route Request

Event I Route Reply

Event K Route Maintenance

Event Z Hello

Event F Error

Event C Checked

Event G Null

State transition testing was also applied on DSDV as shown
in Fig. 4. The protocol messages are illustrated as states and
transitions. It first starts by creating a routing table for each
node and monitoring the tables for two types of events. The
first type occurs when the update is triggered and the second
type is a periodic update. For the triggered update, this means
that a new change has been detected. This first type of update
packet is sent for a major change, and contains all the routing
information available at a node. In this case the required action
is applying a full dump. The second type is sent for a minor
change in the routing table, e.g. new nodes added or link
breakage. This type of update packet contains only the
information that has changed since the last full dump was sent
out by the node. So, the action is applying incremental.

Fig. 4. DSDV using STT.

Table IV presents the states and events of DSDV, which
occurred in order to move from one state to the other. Each
event is described in Table V.

Table V presents a description of the DSDV events, which
describes the normal functioning of the protocol. It comprises
the creation of the routing protocol table and its maintenance,
detecting updates and applying full dump.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

151 | P a g e

www.ijacsa.thesai.org

TABLE IV. STATE TRANSITION TABLE FOR DSDV

S
1

S2 S3 S4 S5 S6 S7 S8 S9

S
1

Even
t X

S

2

Even

t Y

S

3

Even

t J

Even

t I

S
4

Even
t H

S

5

Even

t G

S

6

Even

t K

Even

t Z

S
7

Even
t F

S

8

Even

t C

S

9

TABLE V. DESCRIPTION OF DSDV EVENTS

Event Description

Event X Create routing tables for each node

Event Y Maintain routing tables

Event J Triggered update

Event I Periodic update

Event H New change detected

Event K Minor Change

Event Z Major change

Event F Apply Incremental

Event C Apply full dump

Event G Null

IV. PROPOSED APPROACH

In this section the description of the proposed algorithm,
which is an improved version of the ACO algorithm is
presented.

A. The proposed improvement to the ACO Algorithm

In this research work, two improvements to the Ant Colony
Optimisation (ACO) algorithm are introduced in order to cover
critical states with an optimal number of transitions in the state
transition diagram of the protocol under test (PUT), as
demonstrated in the following pseudo-code.

Algorithm: Ant Colony Optimization

Input: 2D State Transition Table represents the State Transition
Diagram.

Output: Number of paths covered, number of visited states,
number of transitions covered.

Algorithm for ant p:

Initialize all parameters

 set evaporation factor to 0.1

 set to 1

 set to 3

 set evaporation factor to 0.1epresentumber of transitions in
the s

 Set count: count= Cyclomatic complexity.

 Set key: key1=end _node, it is a variable which store the
value of end node.

While (count>0)

 Evaluation at vertex „i‟

Initialize: i = start.

 Update the track: Update the visited status for the current
vertex „i‟

 i.e. if (Vs[i] = =0) then Vs[i] =1

Evaluate Feasible Set: This is to determine F (p) for the current
vertex „i‟.

Evaluate the probability from the current vertex „i‟ to all
feasible sets s in the F (p).

The probability is calculated based on the following formula:

(
) (

)

∑ ((
) (

)

for every k belonging to a feasible set F (p).

Move to next vertex: Using the rule below to move to the next
vertex

R1: Select paths (i->j) with maximum probability (Pij).

R2: If two or more paths (from i j and i k) have equal
probability like (Pij = Pik) then select path according to below
rule:

 R2.1. Compare each entry in the feasible set with the end_
node i.e.

If (j== end _node) then select „k‟ as the next node otherwise
follow R2.2

 R2.2. If Vs [j] =Vs [k] then select randomly

 Update track: update the covered transition for Tij, if Tij=0
then Tij=1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

152 | P a g e

www.ijacsa.thesai.org

Start= next_node

Update the parameter Update Pheromone: Pheromone value
updated for transition (i->j) according to the following rule:

If (j= = end_node)

 Go step 2

else

At the end of each transition and once the ant reaches the
destination vertex j the pheromone will be “evaporated”
according to:

 If (start! = end_node)

go to step 2.3.

else count =count-1.

Go to step 2

End //End of algorithm

 The first is the optimization of the ant number in the
start state by introducing the Cyclomatic Complexity
(CC) concept. The Cyclomatic Complexity (CC) is
defined as “CC= Number of closed areas in the diagram
+1”.

The two advantages of using Cyclomatic Complexity are
that it improves the running performance time and optimizes
the minimum number of ants. Simulation results show that the
running time is largely reduced, compared to the traditional
approach where the number of ants is computed based on the
ant factory index.

 The second improvement that this research has
introduced is the selection factor to critical states. The
main idea is to first generate test cases for paths
covering a maximum number of critical states. This
way, the proposed algorithm reduces the testing effort
and guarantees testing of the system‟s main
functionalities.

 The factor P between two states i, and j is computed as
follows:

(
)(

)

∑ ((
)(

)

 (1)

Where:

 τi,j is the pheromone value of the transition between

state i and j.

 i,j is the state priority (high = 3, normal =2, and low
=1). In this case, the proposed idea will not face the
scenario where there is an equal selection factor from a
state which has two feasible paths, because of the
existence of a pheromone value in the expression and
that will vary from one transition to the other, and also
because of the consideration of the evaporation factor

(which is explained later). The priorities are determined
based on the criticality of the transition.

 The summation of all possible transitions from i to all
the neighbouring vertices.

 = 1 and =3 (give more influence on the priority
states)

This means that if there are two feasible transitions with a
high and low priority each, the high priority transition will be
selected as shown in the selection factor formula (1). The low
priority transition will be selected in the next iteration since it
has not been visited. In the case of two transitions, which have
been visited, the transition with the higher priority will be
selected again. Each value will be discussed in more details:

a) Visited status set: Vs shows information about all the

states, which are already traversed by the ant p. For any state

„i‟:

 Vs (i) =0 shows that vertex „i‟ is not visited yet by the
ant p.

 Whereas Vs (i) =1 indicates that state „i‟ is already
visited by the ant p.

b) Feasible set: The procedure evaluates the entire

possible transition from the current vertex i to the all the

neighboring vertices with the help of a state transition

diagram. For example, if there is a vertex i connected to j and

k, this means that there are two possible feasible transitions

from vertex i§. Otherwise, the algorithm will terminate if there

is no feasible path from the current vertex i.

c) Pheromone value: The pheromone value will be

incremented by 1 in each transition using the following

formula: , and by the end of each transition the

pheromone will be evaporated by this rule:

When the ant moves from i to j the pheromone value will
be increased at this moment using this formula: ,
but when the ant reaches to j the pheromone value will be
evaporated using . The pheromone value will
also be evaporated for previous events that the ant passes
through. For example, if there is a transition from S1 to S2 and
from S2 to S3 the evaporation is calculated as:

S1 S2

 at S2 the pheromone will be evaporated

S2 S3

 , the pheromone will be evaporated

τ

The pheromone will also be evaporated for S1 and S2

τ

d) The evaporation factor: The evaporation will be

calculated to avoid conflict in event selection when priorities

are equal.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

153 | P a g e

www.ijacsa.thesai.org

V. RESULTS

As stated in Section III-A, one of the steps in our proposed
approach is protocol formalization, which is implementing the
state machine formalization model to a specific routing
protocol. In this research, state transition testing on the wireless
network routing protocol DSDV is applied.

The state transition diagram for DSDV contains three
paths (3), nine states (9), and ten transitions in total (10).
Table VI shows the number of states, transitions, and paths of
the protocol under test.

TABLE VI. NUMBER OF STATES, TRANSITIONS, AND PATHS IN DSDV

State transition components Values

States 9 states

Transitions 10 transitions

Paths 3 paths

As stated in the test criteria, Fig. 5 shows the output after
implementing the proposed algorithm in Python. The output
shows the number of visited states for each path and the
number of covered transitions. Fig. 6 illustrates how the
automation testing is done and how the pheromone value is
updated.

Fig. 5. The output after applying the proposed algorithm.

Fig. 6. Part of automation process.

Table VIII shows the number of visited states, covered
transitions, and paths.

TABLE VII. THE COVERAGE AFTER APPLYING THE PROPOSED

Variables Coverage

States 19

Transitions 16

Paths 3

Fig. 7 illustrates the coverage on the three levels: states,
transitions, and paths as described in Table VII.

Fig. 7. The coverage of DSDV using the proposed algorithm.

This research also applies the normal ACO algorithm on
the DSVV protocol in order to compare results from both
approaches. Table IX shows the coverage of states, transitions,
and paths.

TABLE VIII. THE COVERAGE AFTER APPLYING THE NORMAL ACO

Variables Coverage

States 19

Transitions 16

Paths 3

The number of visited states, covered transitions, and paths
are the same as in the proposed approach.

This paper presented the protocol under test, DSDV, and
the number of states, transitions, and paths that the protocol
contains. It then demonstrated the results after applying both
the proposed approach and the traditional testing approach in
order to compare the two.

VI. DISCUSSION AND EVALUATION

A. Discussion

This research paper addresses the problems in existing
state-based approaches, such as infeasible paths and the length
of test sequences being too long, making the testing process too
complex. The proposed algorithm based on ACO finds good
paths through the graph. It not only detects feasible paths but
also generates minimal non-redundant test cases by providing
all definition-use paths, compared to existing state based
approaches. This eliminates redundant test cases and saves
time consumption.

As mentioned previously, the test completion criteria have
been chosen to be as follows:

0

5

10

15

20

Visited States Covered

Transitions

Covered Paths

Coverage by Proposed

Agorithm

Coverage by Proposed Agorithm

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

154 | P a g e

www.ijacsa.thesai.org

 All states have been reached at least once

 All transitions have been executed at least once

 All feasible paths have been executed

The number of visited states in each path has been visited.
Note that for some states the value of the visited states is more
than one, meaning that the ants have visited the state more than
one time. For example, {S1, S2, S3, S9} have been visited
three times, and similarly {S4, S6} have been visited twice.
Other states have only been visited once. Thus, all the states
have been ensured to be visited at least once and that all the
transitions and feasible paths have been executed. Fig. 8 shows
how all the mentioned criteria have been met. The line with
“bold dashes” denotes the most critical path, then the “dashes”,
and finally the “dots” cover the least critical path.

Fig. 8. The coverage of the proposed algorithm.

Furthermore, the normal ACO algorithm has been applied
on the protocol in order to compare it with the output from the
proposed approach. As demonstrated, the results of the
proposed approach are the same as the normal ACO approach
in terms of coverage due to the limited number of paths,
transitions, and states that the DSDV protocol contains.

B. Evaluation

This section presents a comparison of the results between
the normal ACO and the proposed approach. Table IX shows
the results of both approaches.

TABLE IX. COMPARISON BETWEEN THE NORMAL ACO AND THE

PROPOSED APPROACH

 The normal

ACO
The proposed approach

States 19 19

Transitions 16 16

Paths 19 3

As illustrated in Table IX there is a remarkable difference
in terms of the number of paths and coverage parameters. The
system‟s performance was enhanced compared to the normal
ACO. Thus, the proposed algorithm ensures that minimal
number of paths is used which enhances the performance of the
algorithm.

VII. CONCLUSION AND FUTURE WORK

The proposed approach is an improvement to the ACO
algorithm. The modification was applied on the selection factor
and included the priorities of each event to be calculated with
the pheromone value, in order to help the ants in making their

decisions. The use of α and β ensures to give the priority

states more influence.

As a result, the approach reduced the number of generated
test cases and provided full state and transition coverage. The
test completion criteria were: all states reached at least once, all
transitions executed at least once, and all feasible paths being
executed.

Moreover, normal ACO testing has been applied on the
protocol in order to perform a comparison between the results.
The results showed that the number of visited states, covered
transitions, and paths are the same as the results from the
proposed algorithm.

As a future work, two ideas are to be proposed: the first is
to apply the proposed algorithm on another complex protocol
to see the differences in results between the automated testing
and the traditional one. The second is to allow users to interact
with the software by developing a graphical user interface,
which adds animations to the output.

REFERENCES

[1] S. Biswas, “Applying Ant Colony Optimization in Software Testing to
Generate Prioritized Optimal Path and Test Data,” 2nd Int‟l Conf.
Electr. Eng. Inf. Commun. Technol. 2015, no. May, pp. 21–23, 2015.

[2] S. Seth and M. A. Venkatesulu, TCP/IP Architecture, Design and
Implementation in Linux, PDF. Wiley-IEEE Press, 2009.

[3] J. Heidemann, K. Mills, and S. Kumar, “Expanding confidence in
network simulations,” IEEE Netw., vol. 15, no. 5, pp. 58–63, 2001.

[4] P. R. Srivastava and K. Baby, “Automated Software Testing Using
Metahurestic Technique Based on an Ant Colony Optimization,”
Electron. Syst. Des. (ISED), 2010 Int. Symp., 2010.

[5] “Software Testing - Quick Guide.” .

[6] A. Arya and J. Singh, “Comparative Study of AODV , DSDV and DSR
Routing Protocols in Wireless Sensor Network Using NS-2 Simulator,”
vol. 5, no. 4, pp. 5053–5056, 2014.

[7] A. Khandakar, “Step by step procedural comparison of DSR, AODV
and DSDV routing protocol,” Int. Proc. Comput. Sci. …, vol. 40, no.
Iccet, pp. 36–40, 2012.

[8] B. Jagdale, “Analysis and Comparison of Distance Vector,DSDV and
AODV Protocol of MANET,” Int. J. Distrib. Parallel Syst., vol. 3, no. 2,
pp. 121–131, 2012.

[9] R. Mavinakere, “State transition testing -,” pp. 1–18.

[10] T. S. Marco Dorigo, Mauro Birattari, “Ant Colony Optimization . A
Computational Intelligence Technique,” IEEE Comput. Intell. Mag., vol.
1, no. 4, pp. 28–39, 2006.

[11] T. Shu, M. Gu, and J. Xia, “An Evolving-Graph-Based Finite State
Machine Model for Protocol Conformance Testing in MANETs,” vol.
10, no. 10, pp. 359–368, 2015.

[12] O. Banias and D. I. Curiac, “Wireless Sensor Network software testing
framework,” Comput. Cybern. Tech. Informatics (ICCC-CONTI), 2010
Int. Jt. Conf., pp. 517–521, 2010.

[13] J. Bieniasz, P. Sapiecha, M. Smolarczyk, and K. Szczypiorski, “Towards
model-based anomaly detection in network communication protocols,”
2016.

[14] OPNET, “OPNET Technologies – Network Simulator | Riverbed.”
[Online]. Available:
https://www.riverbed.com/gb/products/steelcentral/opnet.html?redirect=
opnet. [Accessed: 18-Dec-2016].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

155 | P a g e

www.ijacsa.thesai.org

[15] “Qualnet - Packet Trace | SCALABLE Networks.” [Online]. Available:
http://web.scalable-networks.com/qualnet-network-simulator.
[Accessed: 18-Dec-2016].

[16] A. ur Rehman Khan, S. M. Bilal, and M. Othman, “A Performance
Comparison of Network Simulators for Wireless Networks,” 2012 IEEE
Int. Conf. Control Syst. Comput. Eng., pp. 34–38, 2012.

[17] M. Balouchestani, K. Raahemifar, and S. Krishnan, “Increasing the
reliability of wireless sensor network with a new testing approach based
on compressed sensing theory,” 2011 Eighth Int. Conf. Wirel. Opt.
Commun. Networks, pp. 1–4, 2011.

[18] K. Fall and K. Varadhan, “The network simulator (ns-2),” URL
http//www. isi. edu/nsnam/ns, 2007.

[19] nsnam.org, “Documentation « ns-3,” 2011. [Online]. Available:
https://www.nsnam.org/documentation/. [Accessed: 21-Dec-2016].

[20] J. Heidemann and U. S. C. Isi, “OMNeT++ Discrete Event Simulator,”
Audio, no. March, pp. 1–9, 2002.

[21] E. Weingärtner, H. Vom Lehn, and K. Wehrle, “A performance
comparison of recent network simulators,” in IEEE International
Conference on Communications, 2009.

[22] Lessmann, P. Janacik, L. Lachev, and D. Orfanus, “Comparative Study
of Wireless Network Simulators,” Seventh Int. Conf. Netw. (icn 2008),
pp. 517–523, 2008.

[23] R. Alena, D. Evenson, and M. Rundquistt, “Analysis and Testing of
Mobile Wireless Networks.”

[24] S. Ji, Q. Pei, Y. Zeng, C. Yang, and S. P. Bu, “An automated black-box
testing approach for WSN security protocols,” in Proceedings - 2011 7th
International Conference on Computational Intelligence and Security,
CIS 2011, 2011, pp. 693–697.

