
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

284 | P a g e

www.ijacsa.thesai.org

Empirical Evaluation of Modified Agile Models

Shabib Aftab, Zahid Nawaz, Faiza Anwer, Muhammad Salman Bashir, Munir Ahmad, Madiha Anwar

Department of Computer Science

Virtual University of Pakistan

Lahore, Pakistan

Abstract—Empirical evaluation is one of the widely accepted

validation method in the domain of software engineering which

investigates the proposed technique via practical experience and

reflects its benefits and limitations. Due to various advantages,

agile models have been taking over the conventional software

development methodologies since last two decades. However

besides the benefits, various limitations have been noticed as well

by the researchers and software industry in agile family. To

achieve the maximum benefits it is vital to fix the limitations by

customizing the development structure of agile models. This

paper deals with the empirical analysis of modified agile models

called Simplified Extreme Programing (SXP) and Simplified

Feature Driven Development (SFDD), which are the modified

forms of Extreme Programing (XP) and Feature Driven

Development (FDD). SXP was presented to eliminate the issues of

conventional XP such as, lack of documentation, poor

architectural structure and less focus on design. SFDD was

proposed to take care of reported issues in FDD such as explicit

dependency on experienced staff, little or no guidance for

requirement gathering, rigid nature to accommodate

requirement changes and heavy development structure. This

study evaluates SXP and SFDD through implementing client

oriented projects and discusses the results with empirical

analysis.

Keywords—Agile models; SXP; SFDD; Modified XP; modified

FDD; empirical evaluation; comparative analysis

I. INTRODUCTION

Conventional software process models are replaced by
lightweight agile development methodologies. The reason
behind the widely acceptance of agile family by the software
industry is the features these models provide such as: light
weight approach for development, early delivery of partially
working software (module), welcome changes at any stage of
development and quick response. Agile models shifted the
focus from process to people and valued those factors which
were neglected by traditional models [7], [25], [26]. Some of
the famous agile models are: Extreme Programming (XP),
Scrum, Test Driven Development (TDD), Dynamic System
Development Model (DSDM), Crystal methods and Feature
Driven Development (FDD), etc. [7], [8]. These models
follow the values, principles and practices given by agile
manifesto which is considered a parent document of all agile
models and contains twelve foundation principles of software
development. XP and FDD, both are the widely used agile
models in software industry [12], [40]. XP was developed by
Kent Beck and mainly focuses to overcome the limitations of
traditional software process models. The working of XP
consists of certain principles, values and practices, which
work together rigorously to develop high quality software [9],

[29], [34], [35], [39]. XP provides a flexible and adaptive
development approach which can handle the changing
business needs in an effective way due to its well-known
requirements gathering technique, "story cards". Its 12
practices provide the guidelines to govern the whole
development process in an effective and efficient way.
Besides the advantages, XP reflects some limitations as well.
Drawbacks of XP include poor architecture, weak system
design and lack of documentation [29], [32], [36], [37].
Moreover its practices: „pair programming‟ and „on-site
customer‟ are controversial and cannot be applicable in every
situation [38], [39]. Due to these drawbacks, XP is suitable
only for small scale and low risk projects. On the other hand
FDD follows the process oriented approach [9]-[11]. It is
highly adaptive and mainly focuses on design and building
aspects of development. As its name reflects, features are the
basic building blocks of this model. Feature is considered as a
functionality which user wants in the software. Benefits
provided by FDD model includes the iterative and incremental
approach along with ETVX pattern which ensures the
development of high quality software according to client
valued features. However along with advantages, some
limitations of FDD were also reported such as: little or no
guidance for requirement gathering, explicit dependency on
experience staff, rigid nature to handle changing requirements
and heavy development structure including various activities
and team roles. All these issues make it only suitable for
medium or large scale projects. SXP [40] and SFDD [12] were
proposed to overcome the limitations of XP and FDD
respectively. This study empirically valuates the proposed
models through empirical case studies conducted in software
industry.

II. RELATED WORK

Drawbacks of agile models have to be eliminated in order
to achieve the maximum benefits, for this purpose many
researchers have proposed the modifications in agile models.
XP and FDD were discussed and optimized in many studies
from which some of are discussed here. In [13], researchers
presented the Tailored Extreme Programming (TXP) model
which was specifically designed for small scale projects where
requirements have fewer or no tendencies to change. In [14],
researchers proposed the feature of reusability in XP model.
They introduced a framework to add the ability of component
based architecture refinement reusability in traditional XP.
The used framework provided a way to develop simple and
loosely coupled design which can be modified easily in future.
Researchers in [15] customized the XP by introducing parallel
refinement iteration to the development activities in order to
enhance the quality; however the proposed model is not

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

285 | P a g e

www.ijacsa.thesai.org

suitable for software projects having a lot of inter
dependencies among modules. In [16], authors customized the
software maintenance model by using many XP practices such
as: on-site customer, planning game, small releases, pair
programming, metaphor, test driven development and
refactoring. In [18], researchers integrated Personal Software
Process (PSP) with XP. The proposed model introduced
“Personal Planning Phase” in which developer can plan the
activities by using PSP practices. Six important practices
from each model (XP and PSP) are integrated in proposed
model. In [19], XP was customized to develop medium scale
projects with large team by eliminating its drawbacks such as
weak design and lack of documentation. Moreover a phase
named “Analysis and Risk Management” was introduced to
handle the failure risks. In [30], Analytical Hierarchy Process
(AHP) was used with CRC cards during designing phase of
XP. AHP was used to design a systematic approach of CRC
cards prioritization. AHP is a hierarchal model consists of five
steps which reflect the human thinking process. By using AHP
the developers can select, design and implement the most
important classes first. In [31], XP was customized for
medium to large scale projects. The research highlighted the
drawbacks of classical XP such as weak design, poor
architecture, lack of risk management and lack of
documentation. These issues of XP make it suitable only for
small scale projects. To eliminate these issues, new phases
were introduced in modified proposed model. Author in [1]
proposed Feature Driven Reuse Development (FDRD), an
enhanced version of FDD which considered re-useable
feature-sets for development along with the new requirements.
Author in [2] presented Competitor Driven Development
(CDD), a hybrid process model which integrated the practices
of Extreme Programming (XP) and Feature Driven
Requirement Reuse Development (FDRD). The proposed
model is a self-realizing requirement generation model which
keeps track of market trends as well as competitor‟s next
product launch to extract requirements. Moreover CDD
considers the market orientation of product to guess the
product‟s success rate. In [3], authors proposed a hybrid

model SCR-FDD, an integration of Scrum and FDD. The
proposed model covered the imitations of both models by
taking the schedule related aspects from Scrum and quality
related aspects from FDD. In [4], researchers presented
Feature-Driven Methodology Development (FDMD), a
modified version of FDD which integrated the features of
object oriented approach with Situational Method Engineering
(SME). In the proposed model requirements are represented as
features, which are based on object oriented principles. The
feature is defined by using action, result and object. Authors in
[5] proposed Secure Feature Driven Development (SFDD), an
enhanced version of FDD which introduced some changes in
classical FDD to cover security related issues. The proposed
model introduced two phases in classical FDD named “Build
security by feature” and “Test security by feature” along with
the “In-phase Security” element in each phase. Moreover, a
new role is also added called security master to ensure the
secure software development. Authors in [6] proposed an
ontology based approach in FDD for semantic web
application. The proposed model used the concepts of domain
ontology from domain knowledge modeling. Ambiguity and
inconsistency regarding Language is handled by RDF and
OWL however the agility of FDD can be compromised by
adding the concepts of domain ontology in each phase.

III. MODIFIED AGILE MODELS

The proposed Simplified Extreme Programming (SXP) is
focused to overcome the limitations of classical XP. It
provides more flexible and simple approach for small to
medium scale projects. The issues of pair programming and
on-site customer are handled in an effective way. On the other
hand, SFDD [12] was proposed to overcome the limitations of
FDD such as explicit dependency on experienced staff, little
or no guidance for requirement gathering, rigid nature to
accommodate changes in requirements, heavy development
structure. SFDD focused on small to medium scale projects
along with an effective requirement elicitation technique of
story cards which simplified the requirement change process.
Both the proposed models are briefly explained below.

Fig. 1. SXP.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

286 | P a g e

www.ijacsa.thesai.org

A. SXP

Simplified Extreme Programing (SXP) consists of five
phases; Initialization, Analysis, Design, Development &
Testing and Release as shown in Fig. 1. In the proposed
model, customer involvement is restricted to initialization and
release phase only and all other phases are executed by
development team with the complete coordination. Necessary
documentation is produced during each phase that helps to
resolve change management issues. "Initialization" is the first
phase of SXP and is responsible to extract and manage the
requirement as well as to create an overall plan for project.
Requirements are extracted and managed through story cards,
a story card consists of following features: functionality name,
type, priority and the short description without any technical
detail. Type defines whether the functionality is functional and
nonfunctional and priority is assigned with number so that
higher priority features can be developed in early iterations.
Project planning includes the decisions regarding project
scope, cost and tools to be used for the development.
"Analysis" is the second phase and deals with budget and
schedule related activities which are performed by
development team only. In this phase required budget is
estimated and documented. An iteration plan is also formed
which includes the detail about number of iterations, number
of stories implemented in each iteration and the time of each
iteration. A training session is also conducted to make the
development team familiar with the tools and technology (if

the team members are not already familiar). "Design Phase" is
third phase of SXP which deals with two activities:
“Designing UML Diagrams” and “Test Planning”.
Conventional XP does not include any documentation which
makes requirement change management very difficult. This
issue is effectively solved by SXP by focusing on system
design with use case diagrams and sequence diagrams. Test
cases are also developed in this phase. Writing tests prior to
code help the development team to understand different design
opportunities. "Development and Testing" is the fourth phase
and works in an iteratively. Activities of this phase include
coding, functional testing, integration and integration testing.
Developer writes the code for selected stories by keeping in
view the design document which was developed during design
phase. Functional testing is performed by using test cases,
developed during test planning activity. Coding activity is
repeated if any issue is reported in functional testing. These
tests are performed by programmers and results are noted to
keep the track of defects. Code is integrated with previous
developed module in case of successful functional testing
followed by another testing known as integration testing.
"Release" is the last phase in which customer performed
acceptance testing. The developed workable product is
released after the customer‟s approval along with the User
manual. If the customer is not satisfied with the developed
product then whole development process can be repeated
again with changed or modified set of requirements.

Fig. 2. SFDD.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

287 | P a g e

www.ijacsa.thesai.org

B. SFDD

Simplified Feature Driven Development (SFDD) consists
of six phases and various activities as shown in Fig. 2.
"Develop an Overall Model" is the first phase which deals
with the identification of requirements and scope of project.
Domain expert and chief programmer are the main roles of
this phase. Domain expert provides the project requirements
through story cards and chief programmer finalizes the project
scope by keeping in view the provided requirements moreover
use case diagrams and class diagrams are also developed in
this phase. "Build Feature List" is the second phase of SFDD
and deals with the extractions of features from the documents
developed in first phase. Features are basically the functions
which a customer wants in the software. Related features are
collected in a list called feature list. Chief programmer
converts the requirements in to feature lists in this phase.
"Plan by Feature" is the third phase which deals with the
project planning activities and starts with a meeting where
domain expert and chief programmer finalize the budget and
time frame of the project. Chief programmer further finalizes
the number of iterations and assigns features to iterations by
keeping in view the priorities. This phase also includes the
estimation of effort (resource persons) and hardware/software
resources which are needed for the project. At the end of the
phase classes are assigned to class owners (developers).
"Design by Feature" is the fourth phase and deals with the
process of refining the class diagrams developed in the first
phase. Object model is finalized in this phase and class owner
completes the pseudo code for the assigned classes. To ensure
the quality, a role of QA manager is introduced in this phase.
"Build by Feature" is the fifth phase of model and first phase
of iteration. Development actually starts in this phase
according to the pseudo code, written in previous phase. QA
manager makes sure that the developing module is according
to the features. Test by feature is the last phase of model and
second phase of iteration which deals with the testing
activities and starts with unit testing to make sure that the
developed module is bug free and working properly, if passed
then integrated with already developed module.

Integration testing is then performed to check the
integrated working of modules. Finally domain expert
performs the acceptance testing. Proposed model simplified
the structure of FDD through effective customization.

IV. EMPIRICAL EVALUATION

This research aims to perform the empirical evaluation of
proposed modified agile models. For this purpose two case
studies are conducted in which both models, SXP and SFDD
were used to develop small scale web based projects. The
selected case studies were part of an empirical research project
in which multiple agile models were used to develop various
client oriented applications in a software house, situated in
Islamabad, capital of Pakistan. The software house consists
of experienced staff with dominating knowledge of software
development along with higher degrees in computer
science disciplines. The developers were using agile methods
for most of the projects. Both case studies were implemented
in same working environment but with different teams. Most
of the characteristics of applications are same such as size of

project, no of iterations, no of team members, and the tools
used in development. The detail regarding the characteristics
of developed projects is given in Table I. The case study of
SXP is implemented by the team which had significance
experience of agile development. On the other hand, to
implement the SFDD, the chosen team had less or no
experience of agile development however training session of
10 days was organized.

For SFDD, less experienced team was selected as the
authors of proposed model (SFDD) claimed that the issue in
classical FDD regarding the dependency on experienced staff
has been eliminated. The detailed empirical results collected
during the development are shown in Table II. Partial and
aggregated results of selected case studies are discussed in
[39], [33]. However this paper demonstrates the complete
results of empirical experiment including all the iterations by
keeping in view the guidelines extracted from [17], [27], [28],
[19]. Both case studies are implemented with four iterations.
After each iteration, partial working software (module) was
released for the client.

TABLE I. CASE STUDIES DETAIL

Characteristics SXP SFDD

Product Type
Human Resource

Management

Human Resource

Management

Size Small Small

Iterations 4 4

Programming

Approach
Object Oriented Object Oriented

Language C#, ASP.NET C#, ASP.NET

Documentation MS Office MS Office

Testing Browser Stack Browser Stack

Web Server IIS IIS

Project Type Average Average

Team Size 5 Member 5 Member

Feedback Weekly Weekly

Development

Environment
Visual Studio 2012 Visual Studio 2012

Other Tools MS Visio MS Visio

Reports Crystal Report Crystal Report

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

288 | P a g e

www.ijacsa.thesai.org

TABLE II. EMPIRICAL RESULTS

Sr.

No
Software Metric

Release 1 Release 2 Release 3 Release 4 Total

SXP SFDD SXP SFDD SXP SFDD SXP SFDD SXP SFDD

1
Completion Time

(weeks)
1 0.9 0.9 0.8 0.9 0.8 1 0.7 3.8 3.2

2 Number of Modules 2 1 1 1 1 1 2 1 6 4

3 No of User Stories 8 21 4 20 3 15 6 9 21 65

4
Budgeted Work

Effort (h)
200 180 180 160 180 160 200 140 760 640

5
Actual Work Effort

(h)
180 180 165 147 175 140 175 125 695 592

6
Number of User

Interfaces
6 3 3 3 3 2 2 2 14 10

7 No of Classes 4 7 3 5 2 4 2 4 11 20

8 Lines of Code 820 4300 734 3450 860 2760 646 2600 3060 13110

9 KLOC 0.820 4.3 0.734 3.4 0.860 2.7 0.646 2.6 3.060 13.1

11
No of Code

Integrations
10 7 8 5 12 3 7 3 37 18

12 Post Release Defects 2 2 4 1 6 1 3 1 15 5

13
Post Release defects /

KLOC
2.4 0.465 5.45 0.294 6.97 0.37 4.64 0.38 4.902 0.381

14

Productivity
(= line of code/ actual

time spent in hours)

4.56 23.88 4.44 23.46 4.91 19.71 3.69 20.80 4.4 22.14

16
No of Pre-release
Change Requests

2 6 3 3 4 1 1 2 10 12

17
Total Change

requests/KLOC
2.44 1.395 4.09 0.882 4.65 0.370 1.55 0.769 3.27 0.916

18
Time to Implement

Changes (h)
3 4 2 3 4 3 2 1 11 11

The second column of Table II represents the
attributes/metrics which are measured in each release for both
the models and the last column contains the
cumulative/average values of metrics from all four releases.
The remaining columns (release 1 to release 4) present the
values of metrics (column 2) in each release for SXP and
SFDD. Metrics are used to measure the software in terms of
development, cost, working, productivity, quality,
effectiveness and efficiency from various aspects [20]-[24].

V. CRITICAL ANALYSIS

From the detailed empirical results (Table II), significant
differences can be seen among the performances of both the
models. Even though the working environment as well as the
size and nature of both the applications were same, but SFDD
performed much better than SXP. KLOC of the application
developed using SXP are 3.069 with the implementation of 21
user stories however on the other hand SFDD implemented 65
user stories with 13.1 KLOC (Fig. 3 and 4).

Fig. 3. KLOC.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

289 | P a g e

www.ijacsa.thesai.org

Fig. 4. Implemented user stories.

Fig. 5. Post release defects.

No. of post release defects is an important software metric
which reflects the quality of developed application as well as
the satisfaction of customer. After the release 15 defects were
reported in the application developed using SXP however only
5 defects were reported in the application developed using
SFDD (Fig. 5).

Time to implement pre-release change requests is also
considered as one of the important quality metric which
reflects the change management feature of software process
model. 10 pre-release changes were proposed during SXP case
study which took 11 hours to implement however no. of pre-
release change requests in SFDD case study were 12 which
took the same time for the implementation (Fig. 6) as in SXP
(11 hours).

Software productivity reflects the team effort during the
application development. Productivity of the application
developed by SXP was far lower than the application of SFDD
(Fig. 7). During SXP case study, 3060 lines of code were
written in 695 hours (Actual Work Effort) with the
productivity of 4.4 however during the implementation of
SFDD, 13110 lines were written in 592 hours and reflected
productivity of 22.14. As compared to SFDD, SXP showed
very poor performance by keeping in view the empirical

results. SFDD performed very well according to all software
parameters (Table II) even with the team having less
experience with agile methodologies. There might be various
reasons of poor performance in SXP case study. Complexity
level of the developed application in SXP case study may be
higher than the application of SFDD however according to
best of our knowledge the nature and complexity level of both
the application were same. As the performance of SXP is
lower in every release so, there might be issues in code
integrations as there were total of 37 integrations in SXP and
only 18 in SFDD. Moreover the issue of communication
among the team members can also be a reason of lower
performance. The issue of awareness with agile development
cannot be considered as the team of SXP was experienced
with agile and team of SFDD had less or no experience with
agile development.

Fig. 6. Time to implement pre-release change requests.

Fig. 7. Productivity.

VI. CONCLUSION AND FUTURE WORK

This paper evaluated the proposed modified agile models,
SXP and SFDD through empirical case studies. SXP focused
to reduce the reported issues of conventional XP such as: Lack
of documentation, poor architectural structure and less focus
on design. Due to these issues, XP is only suitable for small
scale and low risk projects. SFDD has taken care of the issues
reported in FDD, such as explicit dependency on experienced
staff, no guidance for requirement gathering, rigid nature to
accommodate requirement changes and heavy development
structure. Empirical analysis was performed via development

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

290 | P a g e

www.ijacsa.thesai.org

of client oriented projects by using SXP and SFDD. Both
projects were related to Human Resource Management
(HRM) and also were same in nature as well as in size and
complexity level. The development team for SXP case study
was experienced in agile development however for SFDD case
study the chosen team had less experience of agile as the
proposed SFDD eliminated the dependency on experienced
staff. According to empirical results, SFDD performed much
better than SXP even with the less experienced team. In
comparison of SFDD, SXP performance was very poor in
each metric such as lines of code, implemented user stories,
post release defects, productivity and time required to
implement pre-release change requests. There might be
various reasons of poor performance of SXP model such as
complexity level, integration issues and communication
problems within the development team. It is suggested that
both the models should be further tested with large and
complex projects.

REFERENCES

[1] S. Thakur and H. Singh, “FDRD: Feature driven reuse development
process model,” in Proceedings of 2014 IEEE International Conference
on Advanced Communication, Control and Computing Technologies,
ICACCCT 2014, 2015, pp. 1593–1598.

[2] V. P. Doshi and V. Patil, “Competitor driven development: Hybrid of
extreme programming and feature driven reuse development,” 1st Int.
Conf. Emerg. Trends Eng. Technol. Sci. ICETETS 2016 - Proc., no.
Cdd, p. 7602985, 2016.

[3] S. Ali, S. S. Tirumala, and A. Babu G, “A Hybrid Agile model using
SCRUM and Feature Driven Development,” Int. J. Comput. Appl., vol.
156, no. 5, pp. 1–5, 2016.

[4] R. Mahdavi-Hezave and R. Ramsin, “FDMD: Feature-Driven
Methodology Development,” Proc. 10th Int. Conf. Eval. Nov.
Approaches to Softw. Eng., pp. 229–237, 2015.

[5] A. Firdaus, I. Ghani, and S. R. Jeong, “Secure Feature Driven
Development (SFDD) Model for Secure Software Development,”
Procedia - Soc. Behav. Sci., vol. 129, pp. 546–553, 2014.

[6] F. Siddiqui and Alam, M. Afshar, “Ontology Based Feature Driven
Development Life Cycle,” Int. J. Comput. Sci. Issues, vol. 9, no. 1,
2010.

[7] F. Anwer, S. Aftab, S. S. M. Shah, and U. Waheed, “Comparative
Analysis of Two Popular Agile Process Models: Extreme Programming
and Scrum,” Int. J. Comput. Sci. Telecommun., vol. 8, no. 2, 2017.

[8] G. Rasool, S. Aftab, S. Hussain, and D. Streitferdt, “eXRUP: A Hybrid
Software Development Model for Small to Medium Scale Projects,” J.
Softw. Eng. Appl., vol. 6, no. 9, pp. 446–457, 2013.

[9] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile Software
Development Methods: Review and Analysis,” 2017.

[10] S. R. Palmer and M. Felsing, A Practical Guide to Feature Driven
Development. 2002.

[11] D. Ph, “Major Seminar On Feature Driven Development Agile
Techniques for Project Management Software Engineering By Sadhna
Goyal Guide : Jennifer Schiller Chair of Applied Software Engineering,”
p. 4, 2007.

[12] Z. Nawaz, S. Aftab, and F. Anwer, “Simplified FDD Process Model,”
Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 9, pp. 53–59, 2017.

[13] F. Anwer, S. Aftab, and I. Ali, “Proposal of Tailored Extreme
Programming Model for Small Projects,” Int. J. Comput. Appl., vol.
171, no. 7, pp. 23–27, 2017.

[14] N. Swamy, L. M. Rao, and K. S. Praveen, “Component Based Software
Architecture Refinement and Refactoring Method into Extreme
Programming,” vol. 5, no. 12, pp. 398–401, 2016.

[15] M. R. Jameel Qureshi and J. S. Ikram, “Proposal of Enhanced Extreme
Programming Model,” Int. J. Inf. Eng. Electron. Bus., vol. 7, no. 1, pp.
37–42, 2015.

[16] J. Choudhari and U. Suman, “Extended iterative maintenance life cycle
using eXtreme programming,” ACM SIGSOFT Softw. Eng. Notes, vol.
39, no. 1, pp. 1–12, 2014.

[17] S. Ashraf and S. Aftab, “Pragmatic Evaluation of IScrum & Scrum,” Int.
J. Mod. Educ. Comput. Sci., vol. 10, no. 1, pp. 24–35, 2018.

[18] N. Iqbal, M. ul Hassan, A. Rehman Osman, and M. Ahmad, “A
framework for partial implementation of PSP in Extreme programming,”
Int. J. Eng. Res. Appl. www.ijera.com, vol. 3, no. 2, pp. 604–607, 2013.

[19] M. R. J. Qureshi, “Estimation of the New Agile XP Process Model for
Medium-Scale Projects Using Industrial Case Studies,” Int. J. Mach.
Learn. Comput., vol. 3, no. 5, pp. 393–395, 2013.

[20] N. E. Fenton, and S. L. Pfleeger, "Software Metrics: A Rigorous and
Practical Approach: Brooks," 1998.

[21] S. H. Kan, Metrics and models in software quality engineering.
Addison-Wesley Longman Publishing Co., Inc. 2002.

[22] C. Jones, "Applied Software Measurement", McGraw Hill, 1991.

[23] N. Fenton and J. Bieman, “Software Metrics: Roadmap,” It Prof., vol. 2,
pp. 38–42, 2014.

[24] S. Ashraf and S. Aftab, “Scrum with the Spices of Agile Family: A
Systematic Mapping,” Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 11,
pp. 58–72, 2017.

[25] S. Ashraf and S. Aftab, “Latest Transformations in Scrum: A State of
the Art Review,” Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 7, pp. 12–
22, 2017.

[26] S. Ashraf and S. Aftab, “IScrum: An Improved Scrum Process Model,”
Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 8, pp. 16–24, 2017.

[27] S. U. Nisa and M. R. J. Qureshi, “Empirical Estimation of Hybrid
Model: A Controlled Case Study,” Int. J. Inf. Technol. Comput. Sci.,
vol. 1, no. July, p. 8, 2012.

[28] M. Qureshi, “Empirical Evaluation of the Proposed eXSCRUM Model:
Results of a Case Study,” Int. J. Comput. Sci. Issues., vol. 8, no. 3, pp.
150–157, 2012.

[29] F. Anwer, S. Aftab, U. Waheed, and S. S. Muhammad, “ Agile Software
Development Models TDD, FDD, DSDM, and Crystal Methods : A
Survey,” Int. J. Multidiscip. Sci. Eng., vol. 8, no. April, pp. 1–10, 2017.

[30] S. Alshehri and L. Benedicenti, “Prioritizing CRC cards as a simple
design tool in extreme programming,” Can. Conf. Electr. Comput. Eng.,
pp. 13–16, 2013.

[31] M. R. J. Qureshi, “Agile software development methodology for
medium and large projects,” IET Softw., vol. 6, no. 4, p. 358, 2012.

[32] F. Anwer and S. Aftab, “Latest Customizations of XP: A Systematic
Literature Review,” Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 12, pp.
26–37, 2017.

[33] S. Aftab, Z. Nawaz, M. Anwar, F. Anwer, M. S. Bashir, and M. Ahmad,
“Comparative Analysis of FDD and SFDD,” Int. J. Comput. Sci. Netw.
Secur (IJCSNS)., vol. 18, no. 1, pp. 63–70, 2018.

[34] E. Mnkandla and B. Dwolatzky, “A Survey of Agile Development
Methodologies,” no. December 2004, pp. 209–227, 2007.

[35] I. Journal et al., “Extreme Programming : Newly Acclaimed Agile
System,” vol. 3, no. 2, pp. 699–705, 2010.

[36] R. Crocker, “The 5 reasons XP can‟t scale and what to do about them,”
Proc. 2nd Int‟l. Conf. Extrem. Program. Agil. Process. Softw. Eng., pp.
62–65, 2001.

[37] A. Dalalah, “Extreme Programming: Strengths and Weaknesses,” î
Comput. Technol. Appl., vol. 5, no. 1, 2014.

[38] S. Beecham, H. Sharp, N. Baddoo, T. Hall, and H. Robinson, “Does the
XP environment meet the motivational needs of the software developer?
An empirical study,” Proc. - Agil. 2007, pp. 37–48, 2007.

[39] F. Anwer, S. Aftab, M. S. Bashir, Z. Nawaz, M. Anwar, and M. Ahmad,
“Empirical Comparison of XP & SXP,” Int. J. Comput. Sci. Netw. Secur
(IJCSNS)., vol. 18, no. 3, pp. 161–167, 2018.

[40] F. Anwer and S. Aftab, “SXP: Simplified Extreme Programing Process
Model,” Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 6, pp. 25–31, 2017.

