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Abstract—Traditionally, in a VRP the vehicles return to depot 

before the end of the working time. However, in reality several 

constraints can occur and prevent the vehicles from being at the 

depot on time. In the dynamic case, we are supposed to answer 

the requests the same day of their arrival. Nevertheless, it is not 

always easy to find a solution, which ensures the service while 

respecting the normal working time. Therefore, allowing the 

vehicle to use additional time to complete their service may be 

very useful especially if we have a large demand with a limited 

number of vehicles. In this context, this article proposes a 

mathematical modeling with an Ant Colony System (ACS) based 

approach to solve the dynamic vehicle routing problem (DVRP) 

multi-tours with overtime. To test the algorithm, we propose new 

data sets inspired from literature benchmarks. The 

competitiveness of the algorithm is proved on the classical DVRP. 

Keywords—Dynamic vehicle routing problem (DVRP); multi-

tours; mathematical modeling; hybrid; Ant Colony System (ACS); 
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I. INTRODUCTION 

Being defined more than 50 years ago, Vehicle Routing 
Problem (VRP) is one of the most classical combinatorial 
optimization problems. The main objective is to find the 
optimal path that can visit all nodes in question. For example, 
in a capacity VRP, these nodes are a set of customers that need 
to be served from a single depot with limited load capacity 
vehicles. Another example is the VRP with pickup and 
delivery, in which, the nodes can be a set of customers who 
will be served and from which the goods can be collected and a 
set of depots where vehicles get off. For each of these two 
examples we can define several sub-variants by adding some 
specifications to the problem. For example, we can find a 
problem with the constraint of time windows during which 
customers must be visited. Another example is the stochastic 
case where the requested quantity is unknown exactly before 
visiting requesting customer. Accordingly, the VRP become a 
very large class of problems that several studies have devoted 
themselves to review and classify [1], [2]. 

Among VRP variants, the dynamic VRP (DVRP) is 
relatively recent. In this variant, the information available at 
the beginning is incomplete and is subject to random variations 
over time. In other words, the starting solution is adjustable 
according to new data. In Fig. 1, we have a simple example of 
a DVRP where a vehicle has to serve a set of customers. 
Dynamic customers (E and F) are inserted in the new planned 
routes taking into account customers not yet visited (in dotted 
line). 

 
Fig. 1. Example of DVRP. 

This concept, relatively new, has brought several 
advantages that are potentially beneficial for transportation 
companies; it can be helpful for companies to increase their 
competitiveness. As long as it allows companies to serve their 
customers on the same day of their requests and ensure, there is 
a better customer satisfaction. Besides, due to its flexibility and 
adaptability, DVRP is very useful in the emergency context 
where we need an immediate response to requests. 
Furthermore, the DVRP can handle dynamic travel time. This 
case is more present in urban areas where it is more difficult to 
predict network travel time because of the great congestion 
especially during peak hours. 

All these advantages cannot be implemented without 
technological tools allowing real-time communication between 
the dispatcher and the driver. Fortunately, new communication 
and geographical location tools have allowed dispatchers and 
drivers to have a real time idea on the state of the network, and 
provide a real-time response to customers' requests.  

That is why, Intelligent Transportation Systems [3] area set 
of platforms, each one is dedicated to a particular process. 
Among these platforms the Advanced Fleet Management 
Systems (AFMS) which are very useful in the DVRP case. 
They are specifically designed for dynamic or static business 
management of fleet while considering possible variations in 
the travel time on networks links. 

As a result, since its first introduction by Psarftis [4] many 
variants of DVRP have been introduced and studied and 
literature studies have reviewed and classified them [5]-[8]. 

Despite all this number of variants treated, the concept of 
overtime still very little studied in the DVRP literature. This 
concept, which is widely used by transportation companies in 
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general, is more needed in dynamic cases. Dynamically re-
optimizing the current planning to insert new queries usually 
provides a solution that consumes more time by comparing it 
with a solution that considers all customers from the beginning. 
To verify this hypothesis we can just compare the results of the 
total traveled distance of the dynamic case in Kilby et al. [9] 
instances and the static case in those of Taillard et al. [10]. 
Even so, in this model, we must answer the maximum of 
requests the day of their arrival. If we have a limited number of 
vehicles, we will need more overtime especially in case of high 
demand. In this article, we introduce a new variant of DVRP 
with the concept of overtime. To this end, we will consider the 
case of a transportation company that has a homogeneous fleet 
of trucks and which responds dynamically to customers’ 
request. Each truck can perform several tours during the day. A 
limited number of trucks are available to satisfy all customers 
'orders. Consequently, it is not always easy to find a solution 
that ensures the service while respecting the normal working 
time. If necessary, the trucks are allowed to use overtime on 
the condition that it shouldn’t exceed the maximum legal 
overtime. So, we have two objectives in this problem; 
Minimize the maximum overtime performed by trucks and 
minimize the total traveled distance. Thus, we propose a multi-
objective mathematical model. To solve this problem we 
propose a hybrid Ant Colony System (ACS) algorithm 

The rest of this paper is organized as follows: the second 
section presents a brief DVRP literature review. The third 
section presents the mathematical model. The methodology of 
resolution will be presented in the fourth section. Before 
concluding, we will present the numerical results in the fifth 
section. 

II. DVRP: LITERATURE REVIEW 

Going around DVRP literature we find all types of 
optimization methods known up to now, from the exact 
methods up to the metaheuristics. Otherwise, the literature 
addresses the DVRP according to four main perspectives: 
deterministic, stochastic, continuous and periodic. In the 
deterministic case we consider only known requests and 
deterministically respond to the dynamic ones. In other words, 
the current plan, takes into account the data actually known by 
the dispatcher. While in the stochastic case, we can consider 
stochastic data, such demand forecasts while elaborating a 
preliminary routing plan. In continuous optimization, the re-
optimization starts at the arrival of each new request to get a 
new plan. While in the periodic one, the planning period is 
decomposed into time intervals. In this way, during each time 
interval, incoming requests are collected and inserted all at the 
end of the current interval or at the beginning of the next 
interval. 

In order to have a global view of this research field, we will 
list some research works for the four main perspectives, and 
then we will exam those are related to the DVRP with 
overtime. 

Let's start by works that have adopted deterministic 
continuous optimization. It started with Psaraftis [4], who is the 
first to introduce the dynamic DVRP. In this work, he used 
dynamic programming to deal with the dynamic dial-a-ride 
problem. The aim is to find the best route at each new demand. 

In the same perspective, Gendreau et al. [11] applied the Tabu 
search (TS) to solve the DVRP. As soon as a new request 
arrives, the algorithm saves its former results in the adaptive 
memory to insert the locations of the new requests. The TS was 
also applied, in a deterministic continuous way, by Chang et al. 
[12] on the DVRP with pickup, delivery and time windows. 

As for the work done for the DVRP in a deterministic 
periodic manner, the first one we mention is the work of Chen 
and Xu [13] who have proposed an approach based on linear 
programming and dynamic column generation for the DVRP 
with time windows and infinite fleet. On their part, Hanshar et 
al. [14] decompose the working day into time intervals. Then 
they launch the optimization program at the beginning of the 
time interval. They propose a solution based on Genetic 
Algorithm (GA) for capacitated DVRP. The main contribution 
in their work was the way they represent a chromosome in 
dynamic optimizations. In the same perspective and using the 
Neighborhood Search Algorithm (NSA), Hong [15] solves the 
DVRP with hard time windows. It applies the withdrawal 
reinsertion mechanism of this algorithm to insert new queries 
in the already planned routes.  

Another adaptation of the NSA to DVRP was proposed by 
Khouadjia et al. [16]. To conclude with the deterministic 
periodic manner, we will quote a very interesting work with 
ACS. It is the first application of the ACS on DVRP by 
Montemanni et al. [17]. In this masterpiece, the authors 
decomposed the planning period into time intervals. At the 
beginning of each time interval, the optimization program is 
launched to insert the incoming requests during the previous 
period in the planning of the rest of the day. The static problem 
is solved using an ordinary version of ACS. As for the other 
time intervals, the article applies the same algorithm with a 
modification of the initial rate of pheromone on the arcs of the 
network. As each sub-problem is potentially similar to its 
successor, a pheromone conservation mechanism is applied to 
put the weight on the arcs belonging to the previous solutions 
and thus reduces the execution time. 

In a stochastic periodic manner, Hvattum et al. [18] have 
developed a heuristic approach whose principle is to divide the 
planning horizon into time intervals and to assign a set of 
promising queries to the vehicles at the beginning of each 
interval depending on their frequencies of occurrence in the 
possible stochastic scenarios. The algorithm then uses the 
Branch-and-Regret method to merge them in order to have a 
single optimal solution. Another example of the stochastic 
perspective, but this time in a continuous way, is that of 
Hemert and Poutré [19] who have used GA to solve a problem 
of collecting charges from customers and delivering them to a 
single central depot. The authors have introduced the notion of 
fruitful regions, where there are more probable potential 
customers. In the same perspectives, a more recent study of 
Schyns [20], aimed at optimizing the routing of refueling 
trucks in an airport, proposed an adaptation of the ACS to take 
into account the lack of visibility of the planning period and the 
hard time windows. 

Our article will deal with the case of a deterministic 
periodic DVRP with overtime. After checking articles 
published in this area, we have found only one article that is 

https://www.sciencedirect.com/science/article/abs/pii/S0377221715002817#!
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the article of Gendreau et al. [21] which deals with a DVRP 
with pickup, delivery and time window by allowing the use of 
the overtime and without considering the capacity constraint. 
To solve this multi-objectives problem, the authors proposed 
NSA algorithm while adopting a deterministic continuous 
perspective. 

III. MATHEMATICAL MODEL 

The objective of this article is to solve a capacitated DVRP 
multi-tours that tolerate overtime. We have a homogeneous 
fleet of vehicles with limited capacity and a single depot. The 
vehicles leave the depot at the beginning of the day with a full 
capacity and return there to restock and start a new tour or to 
close their working day. In our case, we adopt the 
Montemmani et al. [17] approach, which divides the planning 
period into time intervals. Thereby, we collect all the incoming 
requests during a time interval, to insert them in the planning of 
the following period. In this way, the re-optimization is 
launched at the beginning of each interval and the found 
solution covers all the rest of the planning period. 

We set    time limit to accept customers’ requests. After 
this time, the incoming requests will be reported to be recorded 
in the next planning period. Thus, at the beginning of the 
planning period, we have a CVRP with a homogeneous fleet 
and a single depot. However, at the beginning of other time 
intervals, a vehicle that has already served one or more 
customers will have a less load as it will have a starting point 
other than the central depot. We will call this starting point 
fictitious depot. Therefore, we have a CVRP with 
heterogeneous fleet and several fictitious depots. In both cases, 
trucks are allowed to perform several tours. At the end of a 
time interval, if a truck is serving a customer, this later is 
considered as fictitious depots in the problem of the next time 
interval. Else, it will be on the road to a destination customer. 
In this case, this later is considered as fictitious depots in the 
problem of the next time interval. We present the mathematical 
model of one time interval. Thus, we put:  

 : Set of depots 

 : Set of Customers to be served (fictitious depots are not 
included) 

  : Set of depots without central depot    * +  

  : Set of Customers and central depot    * +  

 : Set of trucks 

f: Index of depot (including fictitious depots and the central 
one) 

i: Index of customers 

k: Index of trucks 

n: Maximum number of tours for a truck 

 : Index of the central depot,     

dij: Cost (distance) of movement between i and j 

tij: Travel time between i and j 

 
k
: Remaining capacity of the truck k 

 : The initial capacity of trucks  

 l: Normal driving time remaining for the period l 

   Length of working period 

  : Maximal legal overtime 

q
i
: Quantity requested by the customer i 

fk {
   if the truck k is initially stationned in fictitious

 depot f   
                                                                               else

 

 

We have a single decision variable: 

xij
r  {

   if the customer j was visited after the customer

i during the tour r

                                                                        else

 

To simplify the problem formulation, we assume that each 
vehicle can carry a maximum of n tours during the remainder 
of the day. Considering that we have K trucks in service, the 
maximum number of tours that can be achieved is   . 
Excluding already served customers, we consider that a tour 
starts from the fictitious depot where the customer exists at the 
beginning of the current time interval. 

 Therefore, for every truck  , we choose to reserve   
indices of tours that will be eventually assigned to it 

k k      k  n-   . Tours r with indices ∑ ∑    
  

   
 
     , 

refers to tours that will not actually be performed by the trucks.  

So we define    the set of   possible tours served by the 
truck  . 

 k {k q   q      n    

   ⋃  k

k  

 

If a truck k actually makes n successive rounds, these 
rounds will have respectively the index k, k + K..., k +(n-1)K. 
The tour with the index k is the first to be performed, then k+K 
and finally the owner of the index k + (n-1)K. In this way, if 
the truck k is initially parked in a fictitious depot different from 
the central depot, the tour of index r = k must imperatively start 
from this fictitious depot. Any other tour starts from the central 
depot. So, if r *      + then, the tour r=k, starts from depot f>0. 
Else, r starts from the central depot. Now, we define the 
available capacity for the tour r as: 

 
r
 {

 
k
  if r *      +

                   else
 

The travel time of a trunk   is the necessary time to serve 
all its tours. However the overtime for each vehicle is the 
additional time over the planning horizon whose vehicle needs 
to ensure its service. If the vehicle respects the constraint of 
time, the overtime is zero. It can be calculated for a trunk k as 
follow: 
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  k max

(

 
 
  ∑∑∑ tijxij

r

j  
j i

i    r  k

  l

)

 
 

 

The solution overtime is the maximum overtime of all 
vehicles   t’s related to the last truck that returns definitively to 
the depot: 

  l max
  k  

  k 

During each period of re-optimization, the mathematical 
model consists of minimizing the maximum overtime and the 
routing cost. If the problem has a solution that respects the 
constraints without needing overtime, then the objective in this 
case is to minimize the total traveled distance. Otherwise the 
objective will be to minimize the total overtime of the solution. 
The objectives of the problem can be formulated as follows: 

min∑ ∑∑ dij

j  i    r   

xij
r  

min(  l) 

Under the following constraints: 

 ∑   ∑ xij
r

j   

j i

i      
r
  r    

 ∑ ∑ ∑ tijxij
r

j   

j i

i    r  k
- l        k   

 ∑ ∑ xij
r

j   

j i

r   
    i      

 ∑ xij
r

i    
i j

 ∑ xji
r

i   

i j

   j     r    (4)

 ∑ ∑ ∑ xij
r

j   

i j

 fk   k  i    r  k
 

 ∑ ∑ xij
r

i    
i j

r   
       j    

 ∑ ∑ xij
r

j  
j i

i   | |-    r            | |  | |-  

 xij
r  *   +   (i j)       r    

The first constraint (1) is made to comply with the 
remaining capacity of trucks in each tour. The second equation 
(2) restricts the overtime to a permitted maximum value. The 
third constraint (3) ensures that each customer is visited once 
and only once. The flow conservation constraint at the 
customer and the central depot level is carried out by (4); each 
truck that visits a customer must leave him after his delivery 
request and every truck that leaves the central depot must come 
back at the end of the working period. While the constraint (5) 
is made to ensure that trucks initially parked in a fictitious 
depot other than the central one must perform at least one tour. 

In this way we will be sure that these trucks return to the 
central depot at the end of the day. The sixth constraint (6) 
expresses that a fictitious depot can't be a destination. The 
constraint (7) prohibits the creation of sub-tours. Finally, the 
integrity constraints associated with decision variables are 
included in (8). 

A study of Hassein and Rubinstein [22] has previously 
proved that an ordinary VRP is considered NP-hard when the 
set of customers contains more than 3 customers, so impossible 
to solve by an exact method. A meta-heuristic can therefore be 
used to solve this problem in order to find a good solution in a 
reduced time. The mathematical model just described is done 
to better describe the specificities of the problem and the 
objective functions. 

IV. RESOLUTION BY THE HYBRID ACS 

A. Static Problem  

To solve the problem that has just been described, we 
propose an approach based on the ACS. Firstly, we solve the 
problem of the beginning of the day. This problem, 
characterized by a single central depot and a homogeneous 
fleet, contains yesterday's requests arriving after the time   . 
The steps of our algorithm are described in Fig. 2. 

First, we try to find a realizable solution that respect the 
normal time by minimizing only the first objective of the 
problem. If such solution isn't found we try to minimize the 
second objective without exceeding the maximal permitted 
overtime. Thus, the first step is affecting a positive value of    
to each arc. Then, we place an ant on each customer. This 
allows for more diversification in the solutions found. The ants 
build, then, their tours. To move from one customer to another, 
the ant must select the clients that can visit without violating 
the constraints of the problem (remaining truck capacity and 
maximum return time). If no client responds to these 
constraints, the ant returns to the depot to begin a new tour. 
Otherwise, the ant chose the next customer to visit according to 
the following rule: 

j  {
argmax

u  i
k[ iu(t)  iu

 
] if q q

 

                                    if q q
 

 

Where 

q: A random variable uniformly distributed on       

q
 
: A parameter in the interval      . It defines the balance 

diversification / intensification;  

 
iu
 

 

diu
: The visibility of the arc  i u . It corresponds to the 

inverse of the distance diu between   and  . 

 iu(t)  The pheromone rate on arc  i u  at the instant t. 

    he relative influence of the visibility. 

 i
k : The set of nodes that can be visited just after the 

position i by the ant. 

   i
k: A randomly selected customer with probability: 
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p
ij
k(t) 

 ij(t)  ij

 

∑  iu(t)  iu

 

u  i
k
 t 

 

 
Fig. 2. Steps of the algorithm. 

After building a solution by an ant k, we allocate its tours to 
the vehicles in order to calculate the total overtime. The 
procedure of vehicle allocation is described in Fig. 4. Then, a 
local update of pheromone is done on arcs it visited according 
to the following formula:  

 ij(t  ) (   ) ij(t)  
    

    k

 

Where 

 : The evaporation factor set to a positive value less than 1. 
This factor is intended to avoid the unlimited accumulation of 
the pheromone traces on the edges of the graph. 

  k: The overtime performed by the ant k. 

Before applying the global update, the best solutions of the 
iteration undergoes a phase of optimization by a local search 
intra and inter tour. The global update is then carried out as 
follow: 

 ij(t  ) (   ) ij(t)      ij t  

where, the arcs (   )belong to the best solution S of the 

iteration.   ij 
 

 s
 and   s: is the total time of S. 

At the end of each iteration, the solution of the best ant 
undergoes an optimization phase by local search algorithm that 
combines an intra and inter tour optimization (Fig. 3). This 
procedure is the same used by Ayadi and Benadada [23]. In 
this phase we look to optimize, only, the total traveled distance. 

 
Fig. 3. Local search algorithm. 

 

Fig. 4. Vehicle allocation procedure (Static problem). 

In a first step, the crossovers are eliminated and the 
possible permutations, that decreases traveled distance within 
each tour, are sought. Then, the optimal permutations carried 
out. Afterward, a reinsertion operator comes to see if there is 
any better location for a customer in its tour. The optimal 
reinsertion is carried out. These three operations (elimination 
of crossovers, permutation and reinsertion of customers) form 
the intra tour local search. Subsequently, we look for the 
possibility of exchanging two customers of two different tours. 
Indeed, the optimal exchange is carried. Next, we try to find 
the possibility of moving a customer from one tour to another 
without violating problem constraints. The optimal 
displacement is chosen to be performed. These last two 
operations form the local search inter tour. Finally, the intra 
tour search is performed once, while the inter tour search is 
performed twice. 

B. Dynamic Problem 

In the dynamic case, we have the same steps described in 
the static case. However, the details are different since 
heterogeneous fleets and many fictitious depots, beside the 
central one, characterize the dynamic problem. The 
initialization of pheromone rate is done according to the 
pheromone rate retention mechanism proposed by Montemanni 
et al. [21]: 

 ij (   r) ij
old  

r
   

where, 

Yes 

Setting permitted 

overtime to 0 

 

Initialization of 

pheromone traces 

 

Setting permitted 

overtime to 

"maximal 

permitted 

overtime" 
 

Assigning an initial state to each ant 

 

Tours construction 

 

Vehicle Allocation  

 

Partial pheromone update 

 

Optimizing the best local solution by local search algorithm 

 

Global pheromone update 

 

Stopping criterion 

 

Best global ant 

 

Final solution 

 

if best global 

solution is not 

realizable 
if best global 

solution is 

realizable  

 

No 

If (ToursNumber=<TrukNumber) 

Assign a truck to each tour 

End if; 

Else 

Rank the tours from the longest to the shortest; 

Assign a truck to the TruckNumber tour; 

While (there is "not assigned tours") 

Rank the trucks according to the total length of the 

assigned tours in an ascending order; 

Assign the first free tour to the first truck 

End while 

End else 

 

intra-tour 

One times 

 

Cross remover 

 

Best permutation  

 
Best insertion 

 

Best exchange 

 
Best move 

 
inter-tour 
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 ij
old: The final value of the pheromone level on the arc (i,j) 

of the previous problem. 

 
r
: A positive factor less than 1, which regulates the 

conservation of pheromone level. 

  : The initial constant of pheromone. It initializes arcs 

corresponding to the new clients. 

Once pheromone traces are initialized, we place an ant on 
each fictitious depot. Each ant creates its tours by visiting 
customers one after one until the capacity or the remaining 
time don't allow to insert a new customer, in this case it returns 
to the central depot.  

The ant starts the new tour from the nearest unvisited 
fictitious depot or from the central depot if all fictitious depots 
are visited and there are still unvisited customers. The move, 
from the central depot to the fictitious depot is done without 
deposing pheromone.  

The transition rule depends on a parameter  q
 
  , which 

defines the balance diversification / intensification. In order to 
choose the next customer j, the ant k located in the customer i 
use the following rule: 

j {
argmax

u  i
k[ iu(t)  iu

 
] if q q

 

                                        if q q
 

 

With 

q
 

: A parameter in [0,1] that determine the balance 

diversification/ intensification 

q: A random variable uniformly distributed on ,   - 

 
iu
 

 

diu
: The visibility of the arc (   ). It corresponds to the 

inverse of the distance     between   and  . 

 iu(t): The pheromone rate on the arc (   ) at the instant t. 

    he relative influence of the visibility. 

 i
k: The set of nodes that can be visited just after the position i 

by the ant k. 

j  i
k: A randomly selected customer with probability: 

p
ij
k(t) 

 ij(t)  ij

 

∑  iu(t)  iu

 

u  i
k
 t 

 

The update of pheromone is divided into two levels: a local 
update and a global one. The first is done after building a 
solution by an ant k. We modify the pheromone of arcs visited 
by this ant according to the following formula: 

 ij(t  ) (   ) ij(t)  
    

    k

 

  k: The overtime performed by the ant k after affecting 
vehicles to its tours. The procedure of vehicle affectation is 
detailed in Fig. 5. 

At the end of each iteration and before applying the global 
update, the best solution found in this iteration undergoes a 
phase of optimization by a local search intra and inter tour. To 
this end, we use the local search algorithm of the static 
problem. 

 

Fig. 5. Vehicle allocation procedure (dynamic problem). 

Finally, we must note that; if in a time interval of the 
problem we cannot find a solution without overtime, we will 
have one goal (minimize overtime) in the following time 
interval. In other words, we always try to minimize the total 
distance but once the algorithm ceases to find feasible 
solutions, the objective becomes the minimization of the 
overtime for all the rest of the planning period. 

V. COMPUTATIONAL RESULTS 

We have parameterized our algorithm according to the 
results found by Gambardella et al. [10] on the classical VRP. 
Thus, we set:q

 
                 Gambardella et al. [24] gave 

   the value of 
 

n  ost    
 where  ost     is the cost of a solution 

found by a greedy heuristic; In our case we fixed it in the static 
case to       . This value was chosen by comparing its results 
with those of other values. In the dynamic case, we set 

   
 

nd  ost    p
 where    is the number of clients of the current 

dynamic problem and  ost    
p

 is the cost of the previous 

problem; In this way, we reduce the execution time consumed 
by the greedy heuristic, especially since the current problem is 
similar to the previous one. 

For the number of time intervals and the  co we adopt the 
same parameter of Montemmanni et al. [17] ( co       and 25 
time intervals). The algorithm stops after 200 iterations for all 
instances. It is coded in Java and executed on a machine with 
Intel Core i5 processor, 2.6 GHz, 8GB of RAM and Windows 
8 as the operating system. 

A. Static Case  

The results of the static algorithm are already detailed in 
[25]. In this paragraph we give a reminder of these results. 

We have tested our static algorithm on extracts data sets 
from Taillard et al. [10]. The problems used in these tests are: 
CMT1, CMT2, CMT3, CMT5, F134. 

Assign the tours starting from fictitious depot to 

corresponding truck 

Rank the remaining tours from the longest to the 

shortest; 

 

While (there is "not assigned tour") 

Rank the trucks according to the total length 

of the assigned tours in an ascending order; 

Assign the Firsttour to the Firsttruck 

Delete Firsttour from "not assigned tours" 

end 
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To avoid a zero in the denominator of  ij, we have grouped 
customers who have the same coordinates in a single customer 
with a demand equal to the sum of the requests. Therefore, in 
F134, we have 132 customers and in CMT5, we have 199 
customers. Table I presented our results referred to as OBM16, 
compared with those of Ayadi and Benadada [23] referred to, 
as AB13. While Table II presented the average of execution 
time of compared works, knowing that the AB13 time is 
normalized to our processor according to Geekbench 
benchmarks. 

To qualify the solutions obtained, we use the Longest Trip 
Rate (LTR). It compares the time of the longest trip, which 
corresponds to the time of the truck that return the last to the 
depot, on the normal time horizon T: 

    max
k *    +

t(k)    

With t(k) the time taken by the vehicle to make his tours. 

TABLE I. NUMERICAL RESULTS OF THE STATIC CASE 

Problem T M AB13 OBM16 

Distance LTR Distance LTR 

CMT1 
  

 z*=524,6  

T1 

1 524,92 0,953 514.981 0.936 
2 536,56 0,998 523.768 0.991 
3 561,01 1,023 550.538 1.032 
4 547,1 1,027 536.329 1.050 

T2 

1 524,94 0,91 521.038 0.903 
2 530,79 1 512.242 0.941 
3 556,61 0,993 535.160 0.992 
4 546,43 0,985 538.937 1.003 

CMT2 
  

z*=835,2 

  
  

  

  

T1 

1 835,77 0,953 842.325 0.960 
2 839,58 0,956 846.619 0.969 
3 836,18 0,964 872.351 1.043 
4 835,77 0,974 886.157 1.038 
5 839,71 0,996 845.569 1 
6 861,88 0,999 857.787 1.065 
7 885,57 1,034 869.800 1.119 

T2 

1 835,26 0,909 832.521 0.905 
2 835,26 0,912 856.500 0.934 
3 835,26 0,916 852.197 1.006 
4 835,77 0,959 875.851 0.963 
5 835,77 0,971 867.698 0.974 
6 842,28 0,997  870.636 1.003 
7 870,19 0,998 909.785 1.069 

CMT3 
  

z*=826,14 

  

  

  

T1 

1 830 0,957 876.870 1.011 
2 828,74 0,97 865.569 1.005 
3 829,91 0,97 906.932 1.087 
4 828,74 0,982 870.609 1.027 
5 833,98 0,996 911.458 1.121 
6 867,72 1,008 986.338 1.198 

T2 

1 828,26 0,911 896.513 0.986 
2 828,26 0,913 891.445 0.991 
3 829,51 0,931 895.420 0.995 
4 829,54 0,969 871.22 0.999 
5 834,42 0,959 924.410 1.053 
6 836,56 0,994 921.07 1.082 

F134 

  

z*=1162,96 

T1 
1 1166,96 0,956 1162.919 0.952 
2 1163,53 0,954 1142.409 0.945 
3 1162,97 0,964 1117.997 0.984 

T2 
1 1166,71 0,912 1137.630 0.889 
2 1163,53 0,911 1156.821 0.912 
3 1165,98 0,962 1143.229 0.950 

CMT5 

  

z*=1291,44 

T1 
1 1313,22 0,968 1417.287 1.045 
2 1312,58 0,969 1479.293 1.092 
3 1313,21 0,969 1465.134 1.129 

T2 
1 1316,48 0,926 1469.505 1.034 
2 1380,38 0,972 1493.719 1.054 
3 1378,68 0,97 1467.871 1.091 

TABLE II. AVERAGE OF EXECUTION TIMEIN SECONDS 

Problem Time AB13 Time OBM16 

CMT1 39 11 

CMT2 334 17 

CMT3 3435 69 

CMT5 5321 257 

F134 6447 1246 

B. Dynamic Casewithout Overtime 

These results are already detailed in [26]. In this paragraph 
we give a reminder of these results. 

In order to compare our algorithm with other works from 
the literature, we test it, first, on the benchmark of Kilby et al. 
[9]. To this end, we fix a single objective for the problem that 
is minimizing the total traveled distance. We consider five runs 
of the algorithm for each instance. Table III presents our results 
and those of Montemanni et al. [17] 

TABLE III. NUMERICAL RESULTS OBTAINED BY OUR HYBRID ACS 

COMPARED TO THE ACS OF MONTEMANNI 2005 

 

Hybrid ACS 

 

ACS Montemanni 2005 

 
Best Averg Time Best Averg Time 

c50 685,81 708,64 0,20 631,3 681,86 4,10 

c75 1077,39 1133,46 0,31 1009,36 1042,39 4,10 

c100 1052,47 1078,13 1,93 973,26 1066,16 4,10 

c100b 948,74 980,12 1,068 944,23 1023,6 4,10 

c120 1279,32 1361,18 6,82 1416,45 1525,15 4,10 

c150 1459,61 1535,27 4,564 1345,73 1455,5 4,10 

c199 1827,81 1888,88 5,642 1771,04 1844,82 4,10 

f71 316,6 321,05 4,336 311,18 358,69 4,10 

f134 15675,0
9 

16228,3
9 

4,186 15135,5
1 

16083,5
6 

4,10 

tai75a 1821,53 1916,60 0,398 1843,08 1945,2 4,10 

tai75b 1555,78 1641,10 0,258 1535,43 1704,06 4,10 

tai75c 1556,16 1632,73 0,662 1574,98 1653,58 4,10 

tai75d 1514,16 1553,36 0,734 1472,35 1529 4,10 

tai100

a 
2225,45 2392,01 0,962 2375,92 2428,38 4,10 

tai100

b 
2384,79 2446,73 0,73 2283,97 2347,9 4,10 

tai100
c 

1662,35 1720,50
8 

1,184 1562,3 1655,91 4,10 

tai100

d 
2008,47 2094,65

8 
2,966 2008,13 2060,72 4,10 

tai150
a 

3368,62 3465,25 4,636 3644,78 3840,18 4,10 

tai150

b 
3082,21 3254,41 5,658 3166,88 3327,47 4,10 

tai150

c 
2842,62 2968,38 5,7 2811,48 3016,14 4,10 

tai150

d 
3253,3 3321,26

8 
3,004 3058,87 3203,75 4,10 

Total 51598,2

8 

53642,2

0 
55,95 50876,2

3 

53794,0

2 
86,24 

The hybrid ACS outperforms the ACS Montemmani 2005 
on 16 instances. The execution time is also lower than that of 
Montemanni 2005 with a percentage of 35% knowing that the 
Montemmani time presented in Table III is normalized to our 
processor according to Geekbench benchmarks. 

C. Dynamic Case with Overtime 

To test our algorithm, we have made some modifications 
on Kliby et al. [9] benchmark data set. Since, they are 
characterized by a big number of available trucks that is 50 for 
each instance, we can't have overtime with these instances.  
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We propose a data set for the DVRP with overtime using 
the twenty one basic Kilby problems; seven problems of 
Christofides et al. [27] (C), two of Fisher (F) [28] and twelve of 
Rochat and Taillard [29] (Thai). We use the same demands and 
truck capacities of the basic problems. Instances are generated 
by proposing several values of m (the number of available 

vehicle) and a restricted values of time horizon        z
    , 

with z  is the value of the best solution found by Rochat and 
Thaillard [29] for the VRP problem. The arrival time of 
customer requests is proportional to the arrival time set by 
Kilby et al. [9]. We set the maximum allowed overtime for 
each instance to one quarter of the normal time horizon. Time 
and distance are considered equivalent. The algorithm stops 
after 200 iterations for all instances. Table IV presents the 
value of T for m=1 and the size of each instance. 

TABLE IV. DVRP INSTANCES 

Problem T Size 

CMT1 577 50 

CMT2 919 75 

CMT3 909 100 

CMT4 1131 150 

CMT5 1421 199 

CMT11 114 120 

CMT12 902 100 

F71 266 71 

F134 12979 134 

Thai75a 1780 75 

Thai75b 1479 75 

Thai75c 1420 75 

Thai75d 1502 75 

Thai100a 2245 100 

Thai100b 2134 100 

Thai100c 1547 100 

Thai100d 1739 100 

Thai150a 3361 150 

Thai150b 3000 150 

Thai150c 2595 150 

Thai150d 2910 150 

For each instance, we tested m between 1 and 5. In Table V 
we write, just, the instances to which we found at least one 
feasible solution (which respects the maximum time plus the 
maximum permitted overtime). For each instance three runs of 
hybrid ACS are considered. 

T is the normal maximum time while m represents the 
number of used vehicles. We consider the average of the total 
distance traveled and the overtime as well as the minimum of 
these two values obtained during the three executions. Time 
represent the average of the execution time in minute. A 
feasible solution is any solution that does not exceed the 
normal time plus the maximum overtime allowed. Instances 
denoted by * are instances in which only one feasible solution 
has been found, while those denoted by ** are instances in 
which two feasible solutions have been found. For both CMT4 
and CMT5, we don't find any feasible solution. Therefore, they 
are not noted on the table. For the other instance, we found 
three feasible solutions.  

TABLE V. NUMERICAL RESULTS OF DYNAMIC CASE WITH OVERTIME 

Problem T m 
Average Best 

Time 
Distance Over Distance Over 

CMT1 

577 1 629,95 52,95 625,38 48,38 0,66 

289 2 673,85 53,87 658,15 40,79 0,42 

192 3 672,24 36,28 652,52 26,37 0,37 

144 4* 674,09 36 674,09 36 0,3 

CMT2 

919 1 1082,73 163,73 992,85 73,85 0,44 

459 2 1079,1 81,5 1064,08 73,69 0,43 

306 3 1092,22 64,306 1069,12 58,87 0,38 

230 4 1060,74 48,81 1046,83 45,17 0,44 

CMT3 

909 1 1015,32 106,32 988,62 79,62 3,97 

454 2 1018,86 66,10 983,59 46,13 4,71 

303 3 1064,43 59,99 1015,42 40,79 3,17 

227 4 1047,00 44,77 1021,17 39,7 2,81 

182 5* 1114,19 44,77 1114,19 44,77 2,36 

CMT11 1146 1** 1429,11 286,07 1426,16 280,16 20,37 

CMT12 

902 1 1015,01 113,01 1007,87 105,87 3,45 

451 2 1054,03 83,32 1049,76 75,67 4,25 

301 3 1038,55 53,44 982,75 29,51 2,45 

225 4 1012,49 49,17 998,63 45,81 2,56 

F71 
266 1** 312,63 46,63 304,84 38,84 4,55 

133 2 322,26 28,61 314,07 24,16 2,16 

F134 
12979 1 15474,94 2682,94 15085,66 2293,66 188,51 

640 2* 15007,73 1428.80 15007,73 1428,8 15,46 

Thai75a 

1780 1 1982,87 202,87 1876,06 96,06 0,49 

890 2 2035,67 134,89 1990,81 108 0,36 

593 3** 2097,32 119,66 2086,23 108 0,4 

Thai75b 

1479 1 1540,21 61,45 1478,29 0 0,92 

740 2 1579,59 52,25 1540,43 32,02 0,46 

493 3 1659,39 66,96 1613,21 53,84 1,015 

370 4** 1679,67 76,07 1658,09 64,73 0,46 

Thai75c 

1420 1 1568,35 148,35 1473,16 53,16 0,40 

710 2 1686,46 141,26 1651,26 118,7 0,32 

473 3* 1617,17 70,33 1617,17 70,33 0,44 

355 4* 1712,65 80,5 1712,65 80,5 0,53 

Thai75d 

1502 1 1761,29 259,29 1619,28 117,28 1,14 

751 2 1610,88 65,91 1572,01 35,31 1,19 

501 3 1738,87 90,37 1665,06 64,2 1,20 

375 4** 1806,92 93,37 1761,58 93,03 1,34 

Thai100a 

2245 1 2513,64 268,64 2487,71 242,71 1,48 

1123 2 2683,37 221,12 2621,6 192,8 1,32 

748 3 2531,46 106,9 2377,98 50,53 2 

561 4 2557,75 106,87 2462,64 75,99 1,85 

449 5** 2653,21 99,13 2626,6 92,09 2,13 

Thai100b 

2134 1 2522,88 388,88 2443,42 309,42 1,85 

1067 2 2633,28 253,25 2584,29 229,49 1,39 

711 3 2462,98 118,73 2388,63 95,14 1,46 

533 4** 2528,62 106,62 2497,6 96,23 2,24 

Thai100c 

1547 1 1633,16 86,16 1567,05 20,05 2,656 

773 2 1692,32 80,75 1505,88 0 3,95 

516 3 1820,90 95,44 1717,18 60,27 2,45 

Thai100d 
1739 1 2102,63 363,63 2017,65 278,65 3,766 

869 2* 2156,86 216,7 2156,86 216,7 3,05 

Thai150a 

3361 1 3881,88 520,88 3772,71 411,71 5,71 

1680 2 4065,08 360,43 3887,27 274,96 4,343 

1120 3 3904,39 206,4 3819,79 164,81 5,92 

840 4 3956,27 173,6 3934,36 172,36 7,64 

Thai150b 

3000 1** 3436,23 436,23 3426,57 426,57 13,34 

1500 2 3405,98 212,1 3281,88 155,48 8,92 

1000 3* 3612,9 230,52 3612,9 230,52 8,4 

Thai150c 
2595 1 3086,49 491,49 3006,83 411,83 12,11 

1297 2* 3190,45 312,39 3190,45 312,39 9,29 

Thai150d 
2910 1 3416,54 506,54 3323,09 413,09 11,17 

1455 2 3459,54 289,57 3431,4 271,49 5,70 
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Fig. 6. Max and min of the LTR value depending on m. 

The graph of Fig. 6 shows the minimum and maximum 
value of the LTR according to m. 

A note to make is that the more the m increases, the more 
the minimal LTR increases. However, the maximum value is 
not significant compared to m. This can be justified by the fact 
that the maximum value of the LTR for m = 1 was obtained for 
the CMT11 instance which has no feasible solution for the 
other value of m. If we exclude this instance, the maximum 
value becomes 1.20 (Thai100d). Adopting this remark we can 
conclude that the LTR increases with m. This is also justifiable 
by the fact that we could not have a feasible solution for the big 
values of m. 

Highlighted results are results where the minimum value of 
the total distance traveled and the minimum value of the 
overtime do not match the same solution. We have five 
instances where there is no such correspondence on 
62instances. This gives a percentage of 3,1%. Thus in 96,9% a 
solution that minimizes the overtime minimizes also the 
distance. This being stated, we can conclude that the two 
objectives of our problem are proportional on 96,9% 

D. Practice Use  

For an industrialist what counts from all what is said is 
having an optimal or near optimal solution in a practical time. 
Our algorithm was able to give a near optimal solution for the 
DVRP with overtime in an execution time that does not exceed 
6.50 (min, second) on average. To take advantage of these 
results, we are working on a software project that runs the 
same algorithm but with adaptable and comfortable interfaces 
for managers and industrialists while allowing to have results 
for a static problem in case of need. 

VI. CONCLUSION 

To conclude, this article introduces a new variant of the 
DVRP that is the multi-tours DVRP with overtime. The article 
gives a mathematical model of the problem with a hybrid ACS 
resolution. The results of the static and dynamic algorithm are 
competitive, comparatively to other works from literature. To 
test our algorithm on the dynamic case with overtime, we have 
proposed new benchmarks inspired from the very famous ones. 
Results have shown that the two objectives of the problem are 
proportional on 96,9%.  

Several avenues exist for future works; a future goal is to 
work with another metaheuristics on the same problem to 
compare its results with those given by the hybrid ACS. 
Another research direction includes introducing new 
constraints such customer time windows, as well as 
considering stochastic data while providing the first planning 
of the day.  
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