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Abstract—Trillions of posts from Facebook, tweets in Twitter,
photos on Instagram and e-mails on exchange servers are
overwhelming the Internet with big data. This necessitates the
development of such tools that can detect the frequent updates
and select the required information instantly. This research
work aims to implement scraper software that is capable of
collecting the updated information from the target products
hosted in fabulous online e-commerce websites. The software is
implemented using Scrapy and Django frameworks. The software
is configured and evaluated across different e-commerce websites.
Individual website generates a greater amount of data about
the products that need to be scraped. The proposed software
provides the ability to search a target product in a single
consolidated place instead of searching across various websites,
such as amazon.com, alibaba.com and daraz.pk. Furthermore,
the scheduling mechanism enables the scraper to execute at a
required frequency within a specified time frame.
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I. INTRODUCTION

E-commerce is a mechanism of selling/purchasing prod-
ucts/services over the Internet. It is like a virtual product store
where products are available and customers can browse and
add products/services to the shopping carts. The customers are
required to complete the transaction requirements by filling
the transaction form with the required information, such as
complete address, number of products, and the credit card
number. Following the successful completion of the transaction
requirement, an e-mail notification is sent to the customer.

The commercial use of Internet has been increasing expo-
nentially day by day. In the modern era, shopping over Internet
is becoming a common trend [1]–[5]. The pervasiveness of e-
commerce has enabled an increasing number of transactions
over the internet and thus, framing a compelling case for
more and more business to turn online. Behavior by teenagers
and older adults using smart-phone-based online shopping
is becoming significant [1]. Recent work shows that emails,
social media and smart-phone based advertising have been an
established medium between the customers and businesses. In
order to create and maintain efficient communication between
customers and business, e-marketing techniques has been de-
veloped [6].

Data scraping pertains to the process of extracting data
from online files through computer scripts. Such extracted data
exists in the form of tables and lists. The interface between
the script and the Internet for extracting data is basically a

set of commands, i.e., an application programming interface
(API). These APIs can be trained and used to extract data
for search results across a group of websites. Automating web
searches and extracting data from multiple pages for search
results, merely requires users to input search items rather than
navigating and searching websites individually.

The use and impact of web scraping examples are enor-
mous. Tracking of pricing activities between different com-
petitors can be accomplished via web scraping on a sin-
gle or group of websites with minimal human intervention.
Similarly, web scraping has enabled efficient searching of
multiple websites and an increased transparency in research
(scholar.google.com). Web scraping is pretty common in aca-
demic databases, such as Scopus, web of science and Inspec.
Information that is not readily portable, such as author list
and the corresponding author information can be extracted
efficiently using web scraping. Subsequently, automating web
searches is beneficial in other scenarios where web search is
time consuming.

From server’s perspective that is hosting a website can
endure a remarkable strain in case of scraping a bulk of pages
from a single or scraping huge volume of pages across multiple
websites in a short span of time. In spite of that, acquiring few
thousands of search results through scraping can hardly have
deleterious startle on the server’s performance. In nutshell, web
scraping provides a resource-efficient search and transparency
with minimum additional efforts.

Individual buyers or small organization can benefit from
open-source and free web scraper available over the Internet.
Additional developments will make the web scraper even better
and easier to use and a well-trained API will benefit the
prevailing networks.

However, the customers have limited knowledge about the
trends of the target products between different e-commerce
websites, such as daraz.pk, alibaba.com, and olx.com. These
websites often have different rates for the same product.
Finding the best price for a given product thus becomes a
daunting task due to a variety of shopping websites. Customers
have to search different online websites manually in order to
find an optimal price for a target product. Therefore, a specific
tool is required that can show the trends of a particular product
in online markets and e-commerce websites.

We propose a scarping algorithm for detecting marketing
trends in online shopping websites. Specifically our contribu-
tion is the pioneer work on using web scraping for extracting
best price of the target products from multiple websites rather
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than a single website. This work entails the products from the
top online websites. When the user wants to buy a product,
he/she can search the product in one consolidated website
and the search results are pulled up from fabulous marketing
websites in just one consolidated place. Instead of using
datasets from Amazon and Google, etc. our scraping method
can be adapted for a variety of other shopping websites.

Rest of the paper is organized as follows: Section II
entails the related work. Section III captures modeling of
the proposed system. Section IV discusses the results and
Section V concludes the paper.

II. RELATED WORK

Numerous scrapers have been written in various program-
ming languages and frameworks are being used for retrieving
web data, such as beautiful soup, scrapy, Java, and Ruby.
Beautiful soup is used to extract banner ads from different
websites [7]. The problem of keyword suggestion was imple-
mented according to the keywords entered by the user using
clustering bipartite advertiser-keyword graphs [8]. The clus-
tering submarkets were recovered with the help of advertisers,
depicting a usual bidding behavior and the sets of keywords
with an affinity to the same market place.

The data collected from booking commercial and large
apartments does not reflect the latest market activity and
thus, hides the recent knowledge of rental markets in the
US. Scraper has been designed and developed to bridge this
gap [9]. Scraper has been developed to distill most important
news from large amount of news data [10]. Methods have
been developed to quantify and predict the feedback from
customers on a given product. This can further help marketing
and investors to refine their decision making for addressing
customer requirements precisely [11]. Web bots have been used
for modelling traffic patterns generated by different internet
bots [12]. Neural Network has been used to detect buying
or non-buying sessions from user sessions that involves only
human intervention instead of those carried out by internet
bots [13]

To avoid complexity, a simplified version of a scarper
has also been implemented [14]. A framework was developed
for scraping and retrieving the trendiness of YouTube content
and viewers statistics−their watching time and shares [15].
Nonetheless, the YouTube APIs do not allow third parties to
easily scrap such information. A framework naming YOUS-
tatAnalyzer enables researchers to create their own data sets
based on a variety of search criteria [15]. The framework
has also the capability to analyze the created data sets for
extracting useful features and distinguishing statistics.

The scheduling of jobs/tasks on processor is the most
important and challenging task. Time slicing deals with the
switching of context within the processor. However, space
slicing specifies the ways for how to map processes onto the
processor [16]. In order to achieve an optimal scheduling for
processes, a general mathematical framework, resource task
networks, was formulated [17]. In another scheme, scheduling
of batch jobs based on first-come-first-serve was discussed on
large parallel processor [18]. Using gang scheduling, initiated
only by embarrassingly parallel jobs, helps preventing severe
fragmentation. Furthermore, operating system support was

Fig. 1. The proposed system model. The proposed system contains five
basic units, which are scheduler, downloader, scrapy engine, item pipeline,
and spypder.

provided in order to provide robust parallelism in addition to
hardware-level parallelism [19], [20].

Interestingly, a gamut of searching algorithms are more
efficient than straight forward searching techniques such as
Hamming, Needleman Wunsch, Smith Waterman, Knuth Mor-
ris Pratt, Boyer Moore, and RabinKarp. A comparative study
of different types of string matching algorithms, observation on
their time and space complexities, and corresponding efficiency
and performance has been tested with different biological
sequences [21].

The entire samples from a finite number of keywords
in a given string of text were computed by a simple and
efficient algorithm [22]. An algorithm has been designed by
constructing a finite state pattern-matching machine from the
keywords, which was further used to process the text string
into a single pass. The time taken by constructing the pattern
matching machine was proportionate to the total sum of spans
of the keywords. The speed up achieved by the algorithm was
used to accelerate the search in the library bibliography by a
factor of 5 − 10.

III. MODELING OF THE PROPOSED SYSTEM

The proposed system model, given in Fig. 1, has five basic
components and are discussed here. In order to build a rapid
prototype, the system has been implemented in Python. The
implementation modules, details and their relationships are
delineated in Fig. 1. As shown, the system is composed of
the following four modules: 1) downloader; 2) scheduler; 3)
item pipeline; and 4) spyders.

1) Scheduler: This component is responsible for
scheduling all the requests and responses in Scrapy.
This further queues up all the requests that are
received from the engine and passes these to the
downloader.

2) Downloader: The job of this module is to download
all the required pages that are passed by the Scrapy
engine and to send the downloaded pages back to the
Scrapy engine through download middleware.
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3) Scrapy engine: Scrapy engines are used to scrap
large scale data. The heart of the system is the Scrapy
engine. The goal is to control all the processes in
Scrapy and the entire requests and responses passed
through it from one component to another.

4) Item pipeline: The functionality of this module is to
filter the data. It validates the data and checks to see
whether the data is scrapped and also, clean data.

5) Spyder: An abbreviation for Scientific Python De-
velopment Environment. Spyder integrates important
libraries, such as NumPy, Matplotlib, and SciPy and
is an open-source tool for scientific programming. It
is a class of python that defines how to extract the
required data and the target page to be crawled [23].
It generates a request that will be sent to downloader
through Scrapy engine. Items are scraped and stored
whenever the desired response is received to the
spyder.

The subsequent sub sections explains web scraping,
scheduling of scrapers, and the search mechanism used for
target products.

A. Web Scraping

Web scraping is also called web data extraction. It is a
process, which is used to extract large amount of data from
websites and to store the extracted data into the local storage in
different formats. Web scraping is used for different purposes
such as research, analysis of market and comparison of price,
collection of opinion of public in business, jobs advertisements,
and collection of contact detail of required business.

The data of websites are only shown in the web browser.
If we need to check all the data of any website, we cannot
do this without going to every page and cannot copy the data
for the personal use owing to the longer time it takes to be
copied. Web scraping is technique that provides to copy the
data from websites in a reasonable amount of time instead of
copying manually. It automates the manual copying process
using a web crawler and bot.

The web scraping software is connected to the website
through hypertext transfer protocol (HTTP). It fetches the
page and extracts data from that page and swaps among the
multiple pages of websites according the requirement to extract
data. When the data is extracted, it will then be exported into
different format such as CSV and JSON according to the needs.

B. Scheduling of Scrapers

It is a method in which specified, arranged work or
processes are assigned to the resources to complete it. Virtual
elements of the work such as threads and processes are
scheduled to hardware resources like processors and expansion
cards. The goals of the scheduler is to keep the entire resources
busy and share them effectively in order to maximize the CPU
usage and quickly switch processes onto CPU for time sharing
to get a desired output.

Operating system entails a variety of schedulers − long-
, medium-, and short-term schedulers. For the purpose to
schedule running scrapers, a scraper is using Django-celery.
Celery is an asynchronous task queue and supports distributed

Algorithm 1 Hamming Distance Algorithm
1: Input: S1 and S2

2: Output: dist
3: if S1 6= S2 then
4: Raise value error
5: statements...
6: end if
7: dist = sum(S1(x,y != S2(x,y) for S1(x,y) and S2(x,y) in

zip(S1, S2))
8: return dist

Algorithm 2 Levenshtein Distance Algorithm
1: Input: S1 and S2

2: Output: Levenshtein distance (LD)
3: if len(S1) 6= 0 then
4: return len(S2)
5: end if
6: if len(S2) 6= 0 then
7: return len(S1)
8: end if
9: if len(S2)- 1 = 0 then

10: LD = 0
11: else
12: LD = 1
13: end if
14: A1 = LD(S1, len(S2) − 1, S2, len(S1)) + 1
15: A2 = LD(S1, len(S2), S2, len(S1) − 1) + 1
16: A3 = LD(S1, len(S2) − 1, S2, len(S1) − 1) + LD
17: Minimum(A1,A2,A3)

message passing. Task queues are used in order to distribute
the workload among the given processors.

Input to the celery daemon is the task orders and then the
execution of corresponding tasks is performed sequentially in
order to complete the entire job, which ensures that none of
the tasks is lost; even if the system is over burdened. In our
proposed work, celery works as a job replacement tool that
can be controlled by Django admin interface.

C. Search Mechanism for Target Products in Websites

The goal of string matching algorithm is to find one or
more than one patterns within a larger string or text. In this
research work, we have implemented two types of searching
mechanisms − Hamming distance and Levenshtein distance
techniques.

1) Hamming distance: The Hamming distance counts the
difference at positions between any two strings (S1 and S2)
of an identical length. In other words, this means the least
number of interchanges required to convert a string S1 into
S2, as illustrated in Algorithm 1.

2) Levenshtein distance: There are three operations that
are used to transform one string into another in order to find
the similarities between strings [24]–[27]. The Levenshtein
distance between any two strings C and D of length |C| and
|D|, respectively can be formulated by levC,D (|C|,|D|) as given
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Fig. 2. The speed comparison of Django QuerySet (DQS), Levenshtein
distance algorithm (LDA) and Hamming distance algorithm (HDA). DQS takes
lesser time compared to LDA and HDA in string comparison.

in (1).

lev(C,D)(i, j) =


max(i, j) if min(i, j) = 0

min


lev(C,D)(i− 1, j) + 1

lev(C,D)(i, j − 1 + 1) otherwise
lev(C,D)(i− 1, j − 1) + 1(Ci 6=Dj)

(1)

Where (Ci 6= Dj) is the indicator function that string C and
D are entirely different and hence, equal to 0. Furthermore, Ci

= Di means equal to 1, where lev(C,D)(i, j) corresponds to
the span between the initial character of of C and D.

It should be noted that the first element in the minimum
corresponds to the deletion from C to D, while the second
pertains to the insertion and the third is related to either simi-
larity/dissimilarity of the corresponding symbols. Algorithm 2
shows the Levenshtein distance algorithm.

IV. EXPERIMENTAL SETUP AND DISCUSSION ON
RESULTS

A. Experimental setup

The experimental setup entails Toshiba laptop with a main
memory of 8 GB and a processing capability of 2.5 GHz with
a storage capacity of 1 TB. The operating system used was
Microsoft Windows 10. The scrapers were written in Python
using Django framework.

We used Scrapy framework for the web scraping to write
crawler. The crawler is configured and tested to scrap data
from different websites. We scraped 15000 products in ap-
proximately 11 minutes. Finally, we compared three types of
searching algorithms− Django Queryset, Hamming distance,
and Levenshtein distance [28]. We compared these techniques
based on the speed, complexity, and the throughput.

B. Discussion on Performance

The speed comparison of Django QuerySet (DQS), Lev-
enshtein distance algorithm (LDA) and Hamming distance

Fig. 3. Complexity curve of Levenshtein distance, Hamming distance and
Queryset. As clear from the graph that HDA is more complex compared to
LDA while the LDA complexity is much higher compared to DQS.

algorithm (HDA) is shown in Fig. 2. DQS consumes lesser
time than LDA and HDA in string matching process. Each
query is executed ten times and then averaged. The average
time taken to execute a query has a greater value for LDA and
HDA than DQS. The reason for preferring LDA over HDA
and DQS is the large number of comparisons.

The LDA filters out the most accurate results for searching
algorithm. As the string size increases, the time taken to
process also increases in both HDA and LDA. The reason is
that both algorithms perform complex operations of insertion
and deletion during matching process against the database the
database. Increasing string size is proportional to the number
of operations.

The complexity of Levenshtein distance algorithm (LDA),
Django QuerySet (DQS), and Hamming distance algorithm
(HDA) is captured in Fig. 3. It is obvious that HDA is more
complex than LDA, while the LDA complexity is greater than
DQS. The complexities of LDA, HDA and DQS is O(N+M),
O(N2) and O(N), respectively.

It means that the complexity of LDA is higher than that
of the DQS. LDA performs complex operations of insertion,
deletion, and substitution; however, DQS only checks whether
the database values contain the search phrase. HDA measures
the least number of errors required to alter one string into
another.

Fig. 4 shows the throughput achieved by LDA, HDA,
and DQS. The throughput of DQS is greater than both LDA
and HDA; however, LDA is preferred owing to its accuracy
(approximately 70 %) and versatility. Experiments have shown
that the accuracy of HDA is about 81 %, which is better than
LDA; however, LDA is still preferred because the complexity
of O(N2) is higher compared to O(N+M).

Moreover, the major problem with HDA is that the length
of both of the strings must be the same; otherwise, the
algorithm will not work. The LDA performs more operations
on strings than HDA and DQS; it filters most accurate result
for our matching algorithm than DQS. For a query set of size
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Fig. 4. Throughput comparison among Levenshtein distance algorithm
(LDA), Hamming distance algorithm (HDA), and Queryset (DQS). The
throughput of DQS is higher compared to both LDA and HDA; however, LDA
is preferred because of its accuracy (approximately 70 %) and versatility.

Fig. 5. Time taken to serve an increasing number of requests. A large number
of users requests are taken such as 100, 1000, and 5000 against both concurrent
and non-concurrent requests.

200, all of the three algorithms produce higher value due to
the fact that system was busy performing other tasks as well.

The server response against user requests is delineated in
Fig. 5. In our proposed system, two types of user requests
were evaluated: concurrent and non-concurrent requests. The
response of the web server hosted on a local server was
evaluated against user requests.

In order to measure the percentage of the requests served
with a certain time frame, the parameter of interest was concur-
rency. It is observed that the requests having concurrency were
served quickly. Howbeit, significant system resources will be
allocated in case large number of requests is arrived at once.

Fig. 6 shows the results of simulation for a span of one-
minute using the Web Server Stress Tool in order to measure
the data transferred, the system memory used, and the CPU
load. The network traffic is the amount of data transferred over
the network at a given point of time.

Fig. 6. Results of simulation for a span of one-minute using the Web Server
Stress Tool for transferred data, system memory, and CPU load.

Fig. 7. Server and user bandwidth. Whenever the requests are arrived at the
system, there is an increase in bandwidth requirements of both the server and
user, which means the server bandwidth is 460 Kb/s and the user bandwidth
is 370 Kb/s.

The peaks in network traffic was observed at time stamp 5
sec and at 52 sec. That is, the traffic reached up to 456 Kbps,
mainly because of higher number of requests. Comparatively,
the network traffic was lower during time span of 10 sec 45
sec. The reason is lower number of requests generated against
the server.

The benchmark results of server and user bandwidth in
Kbps are shown in Fig. 7. In the beginning as there is zero
number of requests generated against the server, therefore, the
average bandwidth of user and server is 0. However, with
an increasing number of requests received by the system, the
bandwidth of the server as well as user goes higher. The peak
bandwidth achieved by the server and user requests is 400
Kbps and 370 Kbps, respectively.

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a filtering web pricing system
that exploits web scraping techniques in order to extract trends
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and suggest best price of a target product from top of the
line commercial websites such as amazon.com, alibaba.com,
and daraz.pk. The designed framework incorporates Scrapy
framework for web crawling and scraping. Celery is used to
schedule scraper in order to analyze the crucial pages in the
target websites and distill the required information against a
given product.

For the sake of string matching between the users typed
search and the online products, Levenshtein, Hamming, and
QuerySet are used. The results show an improved accuracy
and an accelerated response for retrieving search results while
using Levenshtein distance. Albeit, throughput of QuerySet
is much higher than Levenshtein and Hamming method. To
the best of our knowledge, this is the first attempt to filter
knowledge about best pricing of a product from top of the
line websites.

As of future work, we aim to enable the proposed frame-
work to suggest relevant and non-relevant items based on
a factor k. Furthermore, future research directions include
integration of the proposed work into social media, such as
Google and facebook to suggest best prices about the products
based on the user preferences. Ultimately, the goal is to enable
users to search for the best price from top of the line website,
whether it may be finding best and cheap hotels, or finding
the cheapest airfare while traveling or finding the best deal
for jewelry at wedding ceremonies and the list continues to
increase.
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