
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

50 | Page

www.ijacsa.thesai.org

MapReduce Programs Simplification using a Query

Criteria API

Boulchahoub Hassan, Khalil Namir, Amina Rachiq, Labriji Elhoussin, Benabbou Fouzia

Department of Mathematics and Computer Science

Faculty of Sciences Ben M’SIK

Casablanca, Morocco

Abstract—A Hadoop HDFS is an organized and distributed

collection of files. It is created to store a huge part of data and

then retrieve it and analyze it efficiently in a less amount of time.

To retrieve and analyze data from the Hadoop HDFS,

MapReduce Jobs must be created directly using some

programming languages like Java or indirectly using some high

level languages like HiveQL and PigLatin. Everyone knows that

creating MapReduce programs using programming languages is

a difficult task that requires a remarkable effort for their

creation and also for their maintenance. Writing MapReduce

code by hand needs a lot of time, introduce bugs, harm

readability, and impede optimizations. Profiles working in the

field of big data always try to avoid hard and long programs in

their work. They are always looking for much simpler

alternatives like graphical interfaces or reduced scripts like PIG

Latin or even SQL queries. This article proposes to use a

MapReduce Query API inspired from Hibernate Criteria to

simplify the code of MapReduce programs. This API proposes a

set of predefined methods for making restrictions, projections,

logical conditions and so on. An implementation of the Word

Count example using the Query Criteria API is illustrated in this

paper.

Keywords—Hadoop; HDFS; MapReduce

I. INTRODUCTION

Big data analysis has become a priority for all companies
and organizations that want to maintain a high level of
competition. To accomplish this task, companies use several
frameworks like Hadoop ecosystem which ensures both
storage and processing despite the huge volume of data.
Hadoop [1], [2] contains mainly a distributed File System
HDFS [3] and a distributed computation framework
MapReduce [4].

To analyse data stored in HDFS and according to the
user’s profile and competence, several programming
languages are used such as java to create MapReduce
programs directly [5]. Some high level languages are also used
like PIG Latin scripts or HiveQL queries [6]. In this domain,
several research projects have attempted to simplify the code
of MapReduce programs to make them readable and easily
maintainable.

This article suggests using an API called MapReduce
Criteria inspired from the Hibernate Criteria API to hide the
code of the restrictions and projections made on the data
stored in the HDFS. Thus, the number of lines in MapReduce

programs will be reduced to facilitate readability and
maintenance.

This paper is organized as follows. Section 2 describes
Hadoop ecosystem. Section 3 presents the motivation of using
MapReduce Criteria. As for Section 4, it talks about Pig, Hive
and Sqoop as related work. Section 5 briefly describes the
Query Criteria API. The last section contains final conclusions
and points to further work.

II. HADOOP ECOSYSTEM

Hadoop ecosystem is a set of popular frameworks [7] that
provides distributed processing over a huge amount of data.
Hadoop is designed to solve data storage problems caused by
the large amount of data generated each second. The data
managed by this framework is processed in a parallel way by
exploiting thousands of machines. Fig. 1 shows a simple
architecture of Hadoop ecosystem.

Fig. 1. Simple architecture of Hadoop ecosystem.

Along with the market trends and the diversity of profiles
that intervene on the data, several additional technical
components have been emerged; components for people who

H
IV

E

L
IK

E
 S

Q
L

 Q
U

E
R

Y

R
 C

o
n

n
ec

to
rs

S
T

A
T

IS
T

IC
S

M
A

H
O

U
T

M
A

C
H

IN
E

 L
E

A
R

N
IN

G

P
IG

L
A

T
IN

 S
C

R
IP

T
IN

G

O
O

Z
IE

W
O

R
K

F
L

O
W

MAP REDUCE

HADOOP HDFS

https://paperpile.com/c/Xh19mO/XAoX
https://paperpile.com/c/Xh19mO/uUfRH
https://paperpile.com/c/Xh19mO/9G0j9
https://paperpile.com/c/Xh19mO/lewJi
https://paperpile.com/c/Xh19mO/ZnCLC
https://paperpile.com/c/Xh19mO/buNWT
https://paperpile.com/c/Xh19mO/5dUlS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

51 | Page

www.ijacsa.thesai.org

are used to work in declarative SQL language and other
components that are based on procedural languages.

With the multitude of solutions that currently exist in the
market, each profile must carefully choose the Big Data
solution that aligns with its skills. The analysts will likely find
that they can ramp up on Hadoop faster by using Hadoop data
warehouses such as Hive [8], Impala [9] and HAWQ now
frequently deployed at customer sites. Developers who want
better control of the data flow process and those who come
from a procedural language context will choose to work in
PIG Latin. Despite the diversity of existing solutions, they all
use the same HDFS for cluster storage and the same
MapReduce model for distributed processing (Fig. 2).

Fig. 2. Conceptual overview of HDFS and MapReduce.

A. Hadoop Distributed File System (HDFS)

To meet the ever-changing volumes of data processed
every day, The Hadoop Distributed File System (HDFS) is
designed to be highly fault-tolerant and to be deployed on
low-cost hardware. HDFS is based on a master / slave
architecture. It offers a master server (NameNode) and slaves
(DataNodes) per node of the cluster [3]. The NameNode
manages the namespace of the file system and also
orchestrates access to the files by the clients. The DataNodes
manages the storage associated with the nodes on which they
run. A simple HDFS architecture is given at Fig. 3.

Fig. 3. Architecture of the HDFS.

B. MapReduce

The basis of the MapReduce framework was defined by
Dean and Ghemawat at their paper in 2004 [5]. MapReduce
orchestrates the processing of a large data sets using parallel
computing on a cluster. It manages all issues related to
partitioning the input data, scheduling the program’s execution
and data transfers. Several research papers are focused on the
MapReduce model to apply it to some business domains [10],
[11] to resolve some algorithms issues [12], [13] or to search
for some optimization leads [14], [15]. The user of the
MapReduce library expresses the computation as two
functions: Map and Reduce.

Map function takes an input pair and produces a set of
intermediating key/value pairs. It gathers together all
intermediate values associated with the same intermediate key
and passes them to the Reduce function. Reduce function
written by the user accepts an intermediate key and a set of
values for that key. It merges these values to form a possibly
smaller set of values (Fig. 4).

Fig. 4. Map function showing values to form a possibly smaller set of

values.

III. MOTIVATION

MapReduce programs are positioned in the core of all
BigData systems. Unfortunately MapReduce programs have
been criticized for several disadvantages including the large
number of instructions, the lack of readability and also the
difficulty of maintenance.

In order to simplify the number of instructions, the
readability and the maintenance of the MapReduce programs,
we propose to use the MapReduce Query API which will hide
all the instructions related to:

● Restrictions like equal, not equal, less than, more than,
etc.

https://paperpile.com/c/Xh19mO/ucm1u
https://paperpile.com/c/Xh19mO/JBwA1
https://paperpile.com/c/Xh19mO/9G0j9
https://paperpile.com/c/Xh19mO/ZnCLC
https://paperpile.com/c/Xh19mO/z2l1Y+WcOTM
https://paperpile.com/c/Xh19mO/z2l1Y+WcOTM
https://paperpile.com/c/Xh19mO/nUolm+Kp6eS
https://paperpile.com/c/Xh19mO/WzVzk
https://paperpile.com/c/Xh19mO/drwtS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

52 | Page

www.ijacsa.thesai.org

● Logical expressions like AND, OR, XOR etc.

● Relations between data like “inner_join”, “left_join”

● Projections like group, maximum, minimum, average,
etc.

● Orders ascendant and descendant.

We propose to apply all methods defined in Hibernate
Criteria [16] to MapReduce programs. Among the major
concerns of big data solutions today, we can mention the
optimization of execution times and also the simplification of
creating MapReduce programs. Solutions mentioned at the
next section try to hide the complexity of MapReduce
programs by generating MapReduce plans automatically.

IV. RELATED WORK

Different tools and sub-projects have been created to
simplify the task for users who are not so good at
programming languages. Many frameworks have been
implemented to help users who are struggling with Hadoop,
especially while performing any MapReduce tasks. Among
these solutions, we find Pig, Hive and Sqoop described briefly
in the following paragraphs.

A. Pig

Pig is a procedural language platform used to develop a
script Pig Latin [17]: a sequence of steps, much like in a
programming language, each of which carries out a single
high-level data transformation e.g., filtering, grouping, or
aggregation.

B. Hive

A data warehouse solution that allows users to write SQL
like Query (HiveQL) and translate them into physical plans of
MapReduce jobs using the Thrift Server. Hive proposes many
external interfaces (Command Line, Web UI, JDBC...) to
challenge with its database [18]-[20]. The latest version of
Hive (since version 2.0) allows also procedural SQL on
Hadoop [21].

C. Sqoop

This solution is also adopted by the Apache Foundation in
order to achieve bulk data transfers between Hadoop and
structured databases such as relational databases. Sqoop hides
and simplifies the complexity of MapReduce programs to
users [22], [23].

V. PROPOSED WORK

The MapReduce Query API inspired from Hibernate
Criteria API will represent a query against a particular file
stored at the HDFS. The interface will provide the same
powerful mechanism of hibernate criteria API and will allow a
programmatic creation of queries against the HDFS (Fig. 5).
It’s an alternate way to manipulate objects generated from
data stored at the HDFS. Specifying the structure of the data to
be loaded from the HDFS is required for using MapReduce
Query API. It is the equivalent of Relational Object Mapping
in the Hibernate Framework. Any program based on
MapReduce Query API will be automatically translated to
MapReduce programs according to a previously defined plan.

Fig. 5. MapReduce processing.

VI. IMPLEMENTATION

WordCount is a famous application that counts the number
of occurrences for each word in a given set of files. The input
for this implementation is a file of comments as detailed
below:

A. WordCount Example without MapReduce Criteria

To develop a simple MapReduce example in the current
model, it is necessary to create at least three classes: A class
"Mapper" as shown in Table I, a "Reduce" class as shown in
Table II and a "Main" class as shown in Table III.

TABLE I. WORDCOUNT MAPPER CLASS

package com.hadoop.mapreduce.example;

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reporter;

public class WordCountMapper extends MapReduceBase

implements Mapper<LongWritable, Text, Text,

IntWritable> {

 private final static IntWritable one = new

IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value,

OutputCollector<Text, IntWritable> collector, Reporter

reporter) throws IOException {

String line = value.toString();

StringTokenizer st = new StringTokenizer(line, " ");

while (st.hasMoreTokens()) {

Programs Using

MapReduce Criteria

Programs

Mapreduce Criteria API

 MapReduce Programs

HDFS

MR Query API

https://paperpile.com/c/Xh19mO/oepJJ
https://paperpile.com/c/Xh19mO/mWOHH
https://paperpile.com/c/Xh19mO/sdld3
https://paperpile.com/c/Xh19mO/GN9NA
https://paperpile.com/c/Xh19mO/yuH2H
https://paperpile.com/c/Xh19mO/RW7hR
https://paperpile.com/c/Xh19mO/2sCuo

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

53 | Page

www.ijacsa.thesai.org

 word.set(st.nextToken().trim());

if (!"Apache".equals(word))

{

 collector.collect(word, one);

 }

 }

}

}

TABLE II. WORDCOUNT REDUCER CLASS

package com.hadoop.mapreduce.example;

import java.io.IOException;

import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.Reporter;

public class WordCountReducer extends MapReduceBase

implements Reducer<Text, IntWritable, Text, IntWritable>

{

public void reduce(Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> outputCollector,

Reporter reporter) throws IOException {

 int sum = 0;

 while (values.hasNext()) {

 sum = sum + values.next().get();

 }

outputCollector.collect(key, new IntWritable(sum));

}

}

TABLE III. WORDCOUNT MAIN CLASS

package com.hadoop.mapreduce.example;

import java.net.URI;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapred.JobClient;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapred.RunningJob;

import org.apache.hadoop.mapred.TextOutputFormat;

public class WordCount {

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Path inputPath = new Path(

 "hdfs://127.0.0.1:9000/input/comments.txt");

Path outputPath = new

Path("hdfs://127.0.0.1:9000/output/");

JobConf job = new JobConf(conf, WordCount.class);

job.setJarByClass(WordCount.class);

job.setJobName("WordCounterJob");

FileInputFormat.setInputPaths(job, inputPath);

FileOutputFormat.setOutputPath(job, outputPath);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

job.setOutputFormat(TextOutputFormat.class);

job.setMapperClass(WordCountMapper.class);

job.setReducerClass(WordCountReducer.class);

FileSystem hdfs =

FileSystem.get(URI.create("hdfs://127.0.0.1:9000"),

 conf);

if (hdfs.exists(outputPath))

hdfs.delete(outputPath, true);

RunningJob runningJob = JobClient.runJob(job);

System.out.println("job.isSuccessfull: " +

runningJob.isComplete());

}

}

B. WordCount Example using MapReduce Criteria

The objective of MapReduce Criteria is to reduce the
number of rows and classes for developers using MapReduce;
it will facilitate the creation and also the maintenance of their
programs. Each program based on MapReduce Criteria will be
automatically translated into Mappers and Reducers classes.
The example "WordCount" in MapReduce Criteria is given in
Table IV.

TABLE IV. WORDCOUNT EXAMPLE USING MAPREDUCE CRITERIA

package com.hadoop.mapreduce.example;

public class WordCountMrCriteria extends MrQueryScript

{

public static void main(String[] args) {

String hdfs = "hdfs://127.0.0.1:9000";

DataList dlist1 = load(hdfs + "/input/comments.txt",
new String[] {"line:String"});

DataList dlist2 = null;

for (DataObject dobj : dlist1.getDataObjectList()) {

dlist2 = tokenize(dobj,"line", " ", new String[]

{"word:String"});

}

MapReduceCriteria c1 = dlist2.getMrCriteria()

.add(Restrictions.ne("word", "Apache"))

.add(Projections.groupBy("word"))

.add(Projections.rowCount());

DataList dlist3 = c1.dataList();

dlist3.store(hdfs + "/output/countword.txt");

}

}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 6, 2018

54 | Page

www.ijacsa.thesai.org

VII. CONCLUSION

MapReduce is a programming model created to perform
distributed processing of a large datasets stored in a
distributed file system HDFS. It is well-known that
MapReduce programs are difficult to create, to read and to
maintain. Therefore, it is necessary to simplify them using
some frameworks or APIs.

This paper has suggested using an API called MapReduce
Criteria in order to reduce the number of MapReduce
instructions and also to hide Mappers and Reducers classes for
developers. In our future work we will compare MapReduce
programs that use the Query Criteria API with existing
languages that also simplify the use of MapReduce as Pig
Latin and Hive.

ACKNOWLEDGMENT

We would like to thank Mr Labriji and Mr Rachiq for their
useful comments and their dedicated work.

REFERENCES

[1] D. Keulen, Hadoop: The Definitive Guide. CreateSpace, 2014.

[2] “Welcome to ApacheTM Hadoop®!” [Online]. Available:
http://hadoop.apache.org/.

[3] “HDFS Architecture Guide.” [Online]. Available:
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

[4] “Apache Hadoop 2.9.0 – MapReduce Tutorial.” [Online]. Available:
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-
mapreduce-client-core/MapReduceTutorial.html

[5] J. Dean and S. Ghemawat, “MapReduce,” Commun. ACM, vol. 51, no.
1, 2008, p. 107.

[6] S. Stewart, The Hive. University of Georgia Press, 2008.

[7] “Hadoop Ecosystem: An Introduction,” International Journal of Science
and Research (IJSR), vol. 5, no. 6, 2016, pp. 557–562.

[8] E. Capriolo, D. Wampler, and J. Rutherglen, Programming Hive.
“O’Reilly Media, Inc.,” 2012.

[9] J. Russell, Getting Started with Impala: Interactive SQL for Apache
Hadoop. “O’Reilly Media, Inc.,” 2014.

[10] U. D., D. Umesh, and B. Ramachandra, “Big Data Analytics to Predict
Breast Cancer Recurrence on SEER Dataset using MapReduce
Approach,” Int. J. Comput. Appl. Technol., vol. 150, no. 7, 2016, pp. 7–
11.

[11] Z. Wu, B. Mao, and J. Cao, “MRGIR: Open geographical information
retrieval using MapReduce,” in 2011 19th International Conference on
Geoinformatics, 2011.

[12] Q. Guo, B. Palanisamy, and H. Karimi, “A Distributed Polygon
Retrieval Algorithm using MapReduce,” in Proceedings of the 10th
IEEE International Conference on Collaborative Computing:
Networking, Applications and Worksharing, 2014.

[13] M. A. Alshammari and E.-S. M. El-Alfy, “MapReduce implementation
for minimum reduct using parallel genetic algorithm,” in 2015 6th
International Conference on Information and Communication Systems
(ICICS), 2015.

[14] Q. Liu, W. Cai, B. Wang, Z. Fu, and N. Linge, “An Optimization
Scheme in MapReduce for Reduce Stage,” International Journal of Grid
and Distributed Computing, vol. 9, no. 8, 2016, pp. 197–208.

[15] Y. Tao, Q. Zhang, L. Shi, and P. Chen, “Job Scheduling Optimization
for Multi-user MapReduce Clusters,” in 2011 Fourth International
Symposium on Parallel Architectures, Algorithms and Programming,
2011.

[16] “Chapter 15. Criteria Queries.” [Online]. Available:
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/querycriteria.
html.

[17] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
latin,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data - SIGMOD ’08, 2008.

[18] A. Thusoo et al., “Hive,” Proceedings VLDB Endowment, vol. 2, no. 2,
2009, pp. 1626–1629.

[19] E. Capriolo, D. Wampler, and J. Rutherglen, Programming Hive.
“O’Reilly Media, Inc.,” 2012.

[20] J. Venner, Pro Hadoop. 2009.

[21] “HPL/SQL Reference - HPL/SQL - Procedural SQL on Hadoop,
NoSQL and RDBMS,” 04-Aug-2017. [Online]. Available:
http://www.hplsql.org/doc.

[22] “Sqoop User Guide (v1.4.0-incubating).” [Online]. Available:
https://sqoop.apache.org/docs/1.4.0-incubating/SqoopUserGuide.html.

[23] K. Ting and J. J. Cecho, Apache Sqoop Cookbook: Unlocking Hadoop
for Your Relational Database. “O’Reilly Media, Inc.,” 2013.

http://paperpile.com/b/Xh19mO/XAoX
http://paperpile.com/b/Xh19mO/uUfRH
http://paperpile.com/b/Xh19mO/uUfRH
http://hadoop.apache.org/
http://hadoop.apache.org/
http://paperpile.com/b/Xh19mO/9G0j9
http://paperpile.com/b/Xh19mO/9G0j9
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://paperpile.com/b/Xh19mO/lewJi
http://paperpile.com/b/Xh19mO/lewJi
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://paperpile.com/b/Xh19mO/ZnCLC
http://paperpile.com/b/Xh19mO/ZnCLC
http://paperpile.com/b/Xh19mO/buNWT
http://paperpile.com/b/Xh19mO/5dUlS
http://paperpile.com/b/Xh19mO/5dUlS
http://paperpile.com/b/Xh19mO/ucm1u
http://paperpile.com/b/Xh19mO/ucm1u
http://paperpile.com/b/Xh19mO/JBwA1
http://paperpile.com/b/Xh19mO/JBwA1
http://paperpile.com/b/Xh19mO/z2l1Y
http://paperpile.com/b/Xh19mO/z2l1Y
http://paperpile.com/b/Xh19mO/z2l1Y
http://paperpile.com/b/Xh19mO/z2l1Y
http://paperpile.com/b/Xh19mO/WcOTM
http://paperpile.com/b/Xh19mO/WcOTM
http://paperpile.com/b/Xh19mO/WcOTM
http://paperpile.com/b/Xh19mO/nUolm
http://paperpile.com/b/Xh19mO/nUolm
http://paperpile.com/b/Xh19mO/nUolm
http://paperpile.com/b/Xh19mO/nUolm
http://paperpile.com/b/Xh19mO/Kp6eS
http://paperpile.com/b/Xh19mO/Kp6eS
http://paperpile.com/b/Xh19mO/Kp6eS
http://paperpile.com/b/Xh19mO/Kp6eS
http://paperpile.com/b/Xh19mO/WzVzk
http://paperpile.com/b/Xh19mO/WzVzk
http://paperpile.com/b/Xh19mO/WzVzk
http://paperpile.com/b/Xh19mO/drwtS
http://paperpile.com/b/Xh19mO/drwtS
http://paperpile.com/b/Xh19mO/drwtS
http://paperpile.com/b/Xh19mO/drwtS
http://paperpile.com/b/Xh19mO/oepJJ
http://paperpile.com/b/Xh19mO/oepJJ
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/querycriteria.html
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/querycriteria.html
http://paperpile.com/b/Xh19mO/oepJJ
http://paperpile.com/b/Xh19mO/mWOHH
http://paperpile.com/b/Xh19mO/mWOHH
http://paperpile.com/b/Xh19mO/mWOHH
http://paperpile.com/b/Xh19mO/sdld3
http://paperpile.com/b/Xh19mO/sdld3
http://paperpile.com/b/Xh19mO/nYo5b
http://paperpile.com/b/Xh19mO/nYo5b
http://paperpile.com/b/Xh19mO/GN9NA
http://paperpile.com/b/Xh19mO/yuH2H
http://paperpile.com/b/Xh19mO/yuH2H
http://www.hplsql.org/doc
http://www.hplsql.org/doc
http://paperpile.com/b/Xh19mO/RW7hR
http://paperpile.com/b/Xh19mO/RW7hR
https://sqoop.apache.org/docs/1.4.0-incubating/SqoopUserGuide.html
https://sqoop.apache.org/docs/1.4.0-incubating/SqoopUserGuide.html
http://paperpile.com/b/Xh19mO/2sCuo
http://paperpile.com/b/Xh19mO/2sCuo
http://paperpile.com/b/Xh19mO/2sCuo
http://paperpile.com/b/Xh19mO/2sCuo

