
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

18 | P a g e

www.ijacsa.thesai.org

Comparison of Event Choreography and

Orchestration Techniques in Microservice

Architecture

Chaitanya K. Rudrabhatla

Executive Director - Solutions Architect

Media and Entertainment domain

Los Angeles, USA

Abstract—Microservice Architecture (MSA) is an

architectural design pattern which was introduced to solve the

challenges involved in achieving the horizontal scalability, high

availability, modularity and infrastructure agility for the

traditional monolithic applications. Though MSA comes with a

large set of benefits, it is challenging to design isolated services

using independent Database per Service pattern. We observed

that with each micro service having its own database, when

transactions span across multiple services, it becomes challenging

to ensure data consistency across databases, particularly in case

of roll backs. In case of monolithic applications using RDBMS

databases, these distributed transactions and roll backs can be

handled efficiently using 2 phase commit techniques. These

techniques cannot be applied for isolated No-SQL databases in

micro services. This research paper aims to address three things:

1) elucidate the challenges with distributed transactions and

rollbacks in isolated No-SQL databases with dependent

collections in MSA, 2) examine the application of event

choreography and orchestration techniques for the Saga pattern

implementation, and 3) present the fact-based recommendations

on the saga pattern implementations for the use cases.

Keywords—Microservice architecture; database per service

pattern; Saga pattern; orchestration; event choreography; No-SQL

database; 2 phase commit

I. INTRODUCTION

According to Martin Flower, the microservice architectural
style [2], [3] is an approach to developing a single application
as a suite of small services, each running in its own process
and communicating with lightweight mechanisms, often an
HTTP resource API. MSA defines each service to be totally
independent [4] with its own database. When MSA is defined
with completely isolated No-SQL databases [6], and when the
business transactions span across multiple services, the state
changes in one database entity are not visible to state changes
in the other. The application cannot use the local ACID
transactions as the entities are now spread into multiple
databases. Also, if the transaction gets rolled back because of
a failure in one of the micro services, state recovery cannot be
attained using the standard 2PC [8] as these are distributed
entities. The scenario becomes even more challenging when
there are dependent entities with one to many relationships.

To handle this scenario, saga pattern can be used [5]. The
services which alter the state can be written in the form of a
Saga. In a saga, each service which changes the state of the
database in a distributed transaction [1], [11], can generate an
event which can trigger the next micro service. In case of a
failure, the saga triggers a sequence of compensating roll back
events from one service to the other in the reverse direction.
These sagas can be designed using two techniques: (1) Event
choreography, in which each service can trigger other
service’s event without a central coordinator.
(2) Orchestration, in which a central coordinator makes the
decision of triggering the relevant events in the saga. Both
these techniques have pros and cons based on the use case
which is being implemented. In the past some researchers
have suggested the use cases for which these approaches are
suitable, but a quantitative analysis has not been performed. In
this research, we tried to come up with the recommendations
on which saga technique to pick up in which scenario by
examining the performance and complexity using the factual
data generated by simulating a variety of use cases using a
custom project developed on spring boot based micro services
and Mongo DB and ActiveMQ based java messaging service
queue, which is explained in the later sections.

The rest of the paper is organized as follows. In Section II,
we explain the challenges involved in the distributed
transactions in the MSA with no-SQL databases by bringing
up the use cases in an e-commerce application. In Section III,
we explain how the event choreography and orchestration can
be implemented for these use cases. In Section IV, we go
through the relevant work conducted in the research project
and outline the results. In Section V, the conclusions are
presented.

II. DISTRIBUTED TRANSACTIONS IN MSA

In a traditional monolith application based on relational
databases, the transactions originate and progress within the
scope of the container hosting the application. So, it becomes
easy to handle the roll backs. But it is different in case of
micro services running with database per service pattern [7].
Since the entities and the databases are isolated, the traditional
rollback approaches cannot be applied. We have taken an
example of a standard e-commerce application flow (Fig. 1) to
explain the complexity of distributed transactions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

19 | P a g e

www.ijacsa.thesai.org

Fig. 1. Micro services in an e-commerce application.

As it can be seen, the order placement, credit card billing,
address validation, fulfillment and inventory update, shipping
are the various micro services which have their own databases
and entities. It is not possible to capture all the steps in a
single ACID transaction. To ensure the data consistency [13],
we need to implement distributed transaction. Since there is no
direct linking of the entities or databases, when the distributed
transaction progresses few steps and encounters an issue, it
becomes challenging to handle the consistency in the entity
states by performing the roll backs. For example, when an
order is placed successfully, and the customer’s credit card is
charged, but if the address validation fails, the transaction
must be rolled back correctly so that the customer is not
charged for the unfulfilled item. That means the transaction
must be rolled back in the proper reverse order. To handle this
flow of events in forward and reserve directions by triggering
the relevant events, Saga pattern can be used. Saga pattern can
be implemented using Event choreography and orchestration
techniques as mentioned below.

III. EVENT CHOREOGRAPHY VS. ORCHESTRATION

Some researchers already explored how event
choreography and Orchestration [12] techniques for
implementing sagas in micro service architecture. We are
going to explain it in detail with the use case of e-commerce
application mentioned above. In Event choreography
approach, when a micro service executes a local transaction, it
publishes an event which can be subscribed by one or other
micro services to trigger their local transactions. This process
proceeds till the last service which doesn’t publish any more
events, there by marking the end of transaction. It can be
visualized in Fig. 2 given below.

Fig. 2. Event choreography flow.

Fig. 3. Orchestration flow.

In this approach there is no central coordinator which
listens to the events and triggers the relevant micro service
local transaction.

The other technique to implement sagas is called
orchestration. In this, there is a central coordinator which
listens to all the events emitted by any of the micro service
local transaction. Based on the incoming event, it triggers the
next local transaction in a different micro service or services.
This pattern is depicted in Fig. 3 below.

The scenarios mentioned above are depicted using a single
entity at each local transaction level. It can be complex if there
are dependent collections in each of those data sources. When
a transaction needs to rolled back, the dependent collections
state needs to be reverted as well. Both the techniques
mentioned above have pros and cons based on the scenario
that needs to be implemented. In the next section, we are
going to simulate various scenarios and understand the
suitability of these techniques.

IV. RELATED WORK: RESEARCH PROJECT

To determine which saga implementation technique is
more suitable under which scenario, we have implemented a
research project and simulated various circumstances. We
have implemented micro services in spring boot technology. A
service discovery component called Eureka [9], [14] is used to
register and discover the micro services running. This is
similar to the other API gateways like Kong or Apigee which
are available in the market. The entities are represented as
collections in an open source no-SQL database called Mongo.
Each micro service -MS1, Ms2.MSn has an isolated instance
of Mongo DB- DB1, DB2.DBn, respectively with a collection
–C1, C2 Cn, respectively running on each of those database
instances. These micro services and database instances run on
Linux based virtual machines. First the event choreography
technique is executed with 2 micro services, MS1 and MS2
having DB1 and DB2 as databases for each micro service with
C1 and C2 as collections in each database respectively as
depicted in Fig. 4. Each collection has an attribute called state
which describes the state of the entity with the possible values
of S1 and S2 and an attribute called timestamp which records
the time stamp when the state change occurred.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

20 | P a g e

www.ijacsa.thesai.org

Fig. 4. Event choreography with 2 micro services.

A. Performance Analysis

Here is the sequence of steps which are executed as a part
of the project to compare the performances:

 Micro service MS1 method is called which changes the
value of state attribute of collection C1 from ‘S1’ to
‘S2’. This method saves the time stamp T1 of the
update action in the timestamp attribute of C1.

 Once the update is complete, MS1 triggers an event
called ‘MS1_state_change_success’ which calls the
method ‘changeStateToS2’ on micro service MS2.

 MS2 executes a logic to update state of C2 from ‘S1’ to
‘S2’. But we simulate the transaction failure with
which the state change of C2 fails.

 Now due to transaction failure, MS2 creates an event
called ‘MS2_state_change_failure’ which rolls back
the transaction in MS2 and calls the method
‘changeStateToS1’ on micro service MS1.

 MS1 then rolls back the state of C1 from ‘S2’ and ‘S1’
and updates the time stamp to new value T2.

 The difference between T2 and T1 tells us the time
taken to execute the Saga with Event choreography of
2 micro services. These values are noted down as time
taken for 2 micro service event choreography.

 Similarly, this exercise is repeated 3 more times by
taking 4 micro services, 6 micro services and 8 micro
services in each attempt. The exercise is executed in
the same fashion as described in the steps above where
the transaction progresses in a series of events from
MS1 to MSn-1. At MSn-1 it triggers the event ‘MSn-
1_state_change_success’ and calls the
‘changeStateToS2’ method on MSn. MSn fails the
transaction and rolls back the transaction by calling the
‘changeStateToS1’ on MSn-1. This rolls back the state
of Cn-1 to S1 and triggers the method
‘changeStateToS1’ on MSn-2. This happens till it
reaches ‘changeStateToS1’ on MS1 which rolls back
the state to S1 and calculates the time difference.

Fig. 5. Correlation of time taken vs. Micro services in event choreography.

We have executed 5 test runs and noted down the time
taken in each instance and calculated the average. The graph
in Fig. 5 shows the time taken vs number of microservices in
the event choreography.

A similar exercise is performed using orchestration
technique. In this, a central orchestration service is added
which listens to various events and takes the necessary action.
We have used an Apache ActiveMQ [10] as the JMS broker.
Here is the sequence of steps which take place.

 MS1, Ms2 MSn are the microservices, each having a
mongo DB instance DB1, DB2 DBn. Each of the
databases has collections C1, C2 Cn. Like the setup
described in event choreography.

 For Orchestration technique we hosted a new micro
service MSn+1.

 We have n different queues running on Active MQ
broker Q2, Q3…Qn+1 with MS2, MS3…MSn+1
subscribing to each of them, respectively.

 When state change happens from S1 to S2 on MS1, it
triggers an event ‘MS1_state_change_success’ on the
orchestrator MSn+1.

 Orchestrator posts a message on Q2, which MS2 listens
and executes ‘changeStateToS2’ method and changes
state to S2. Upon state change, MS2 posts a message
‘MS2_state_change_success’ on the Qn+1 which is
subscribed orchestrator MSn+1.

 This forward transaction continues till it reaches the
last micro service MSn. At MSn we fail the
transaction, roll back the state to S1 on Cn and post the
message ‘MSn_state_change_failure’ on the Qn+1
which is subscribed orchestrator MSn+1.

 Orchestrator listens to this roll back event from MSn
and posts a rollback message on Qn-1. MSn-1 listens to
this message and rolls back the state to S1 on MSn-1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

21 | P a g e

www.ijacsa.thesai.org

 This rollback continues till it reaches MS1 which rolls
backs the state to S1, notes the time difference and
posts no more messages.

 This exercise is also performed 4 times, with 2,4,6,8
micro services and orchestrator and the timestamps are
noted.

In Fig. 6 given below, the graph shows the time taken vs
number of microservices in the orchestration technique.

Fig. 6. Correlation of time taken vs. Micro services in orchestration.

Now it can be clearly seen that event choreography takes
much faster in performance when compared to Orchestration.
Event choreography can be well suited in the scenarios where
the number of micro service calls are limited, and the response
time is critical.

B. Complexity

The same experiment is repeated with a scenario which is
more complex. When a state change is occurred in one micro
service, we want to test both the techniques by triggering
multiple events in more than one micro service. To do this, we
implemented the following pattern.

 When state changes from S1 to S2 in C1, MS1 triggers
2 events which changes the state of C2 in MS2 from S1
to S2 and state of C3 in MS3 from S1 to S3.

 Upon successful change of state from S1 to S2 in C2,
MS2 triggers 2 events which changes the state of C3 in
MS3 from S3 to S2 and state of C4 in MS4 from S1 to
S3.

 When a transaction fails at MS4, it rolls back the state
of C4 to S1 and triggers 2 events which changes the
state of C3 in MS3 from S2 to S1 and state of C2 in
MS2 from S2 to S3.

 Upon successful rollback of state from S2 to S1 in C3,
MS3 triggers 2 events which changes the state of C2 in
MS2 from S3 to S1 and state of C1 in MS1 from S2 to
S3.

 Finally, upon successful rollback of state from S3 to S1
in C2, MS2 triggers an event which changes the state
of C1 in MS1 from S3 to S1.

This pattern is performed for 4 micro services and 6 micro
services in both event choreography and orchestration for 5
test runs. It was observed that the time taken for orchestration
technique is approximately 40 times more than the event
choreography. But it was noted that as the number of events
increased, it became more and more complex to handle the
code in individual micro services. Whereas orchestrator
proved to be more elegant in handling multiple events with
less confusion as the event handlers are orchestrator at a single
location.

C. Load based Test

The same setup is repeated one more time with a scenario
where the frequency of events which are triggered are
increased by 5-fold and 10-fold. This is obtained by writing a
test client which fires parallel requests. We calculated the ratio
of response times with the frequency of 1 vs 5 vs 10. We
observed that the event model began to respond slowly as the
frequency increased, whereas the orchestrator was able to
handle the load better. The response times varied as 1:3.6:8.2
for event, whereas the ratios for orchestration came out as
1:3.9:6.4. These results might have been different if we ran
multiple instances of each micro service rather than a single
instance by horizontally scaling them using auto scaling
techniques available in the cloud. This can be an element of
future research.

V. CONCLUSION

In this paper, we performed a quantitative analysis of
performance of both event choreography and orchestration
techniques used for implementing the saga design pattern to
handle the distributed transactions in isolated no-SQL
databases in micro service architecture. We were able to
clearly determine that event choreography is much faster in
performance when compared to orchestration. However, event
choreography becomes very complex to code and handle if
there are multiple events triggered from each micro service. It
is also evident that handling multiple actions for the triggers
without a central orchestrator is tough as one developer or
team working on a micro service may not be aware of the
other. This shows that event choreography is a suggested
approach when there are less number of micro services
participating in the distributed transaction, or the number of
event triggers are not too many or when the trigger actions are
not too complex. Orchestration is slow, but it is useful when
the transaction scenarios are complex.

Future work includes working on scenarios involving
transaction rollbacks involving dependent collections where
the states are distributed in multiple collections and recording
the performance metrics in various saga patterns. We also plan
to do research around the areas where the triggered actions are
bi-directional or cyclic rather than unidirectional and record
the metrics around them. Author is thankful to anonymous
reviewers for their valuable feedback.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 8, 2018

22 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] R.K. Batra, M. Rusinkiewicz & D. Georgakopoulos, A decentralised
deadlock-free concurrency control method for multidatabase
transactions,Proc. 12th Int. Conf. on Distributed Computing Systems,
1992.

[2] N. Alshuqayran - A Systematic Mapping Study in Microservice
Architecture. In Proc. of the 9th International Conference on Service-
Oriented Computing and Applications. IEEE, IEEE, 2016.

[3] Paolo Di Francesco- Architecting Microservices. 2017 IEEE
International Conference on Software Architecture Workshops.

[4] H. Kang, M . Le, and S. Tao, "Container and microservice driven
design for cloud infrastructure DevOps," in 2 0 1 6 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 2 0 1 6 , pp. 202-2 1 1.

[5] Hector Garcia-Molina, Kenneth Salem - Proceedings of the 1987 ACM
SIGMOD international conference on Management of data, pages 249-
259. https://dl.acm.org/citation.cfm?id=38742

[6] A.K. Elmagarmid & W. Du, A paradigm for concurrency control in
heterogeneous distributed database systems, Proc. 6th Int. Conf. on Data
Engineering, 1990.

[7] Messina, Antonio & Rizzo, Riccardo & Storniolo, Pietro & Tripiciano,
Mario & Urso, Alfonso. (2016). The Database-is-the-Service Pattern for

Microservice Architectures. 9832. 223-233. 10.1007/978-3-319-43949-
5_18.

[8] 2 phase commit - https://en.wikipedia.org/wiki/Two-
phase_commit_protocol.

[9] P. Bak, R . Melamed, D . Moshkovich, Y . Nardi, H. Ship, and A .
Yaeli, "Location and context-based microservices for mobile and
internet of things workloads," in 2 0 1 5 IEEE International Conference
on Mobile Services, 2 0 1 5 , pp. 1-8.

[10] Apache Active MQ JMS - http://activemq.apache.org/

[11] P.A. Bernstein & N. Goodman, Concurrency control in distributed
database systems, AGM Computing Surveys 13(2) pp. 185-222, 1981.

[12] J. P. Macker and I. Taylor. Orchestration and analysis of decentralized
workflows within heterogeneous networking infrastructures. Future
Generation Computer Systems, 2017.

[13] J. Tang, Using dummy reads to maintain consistency in heterogeneous
database systems, Proc. Third Workshop on Future Trends of
Distributed Computing Systems, 1992.

[14] Tasneem Salah, M. Jamal Zemerly, Chan Yeob Yeun, Mahmoud AI-
Qutayri, Yousof AI-Hammadi.The Evolution of Distributed Systems
Towards Microservices Architecture.The 11th International Conference
for Internet Technology and Secured Transactions (ICITST-2016)

https://dl.acm.org/citation.cfm?id=38742
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://activemq.apache.org/

