
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

101 | P a g e

www.ijacsa.thesai.org

Thinging Machine applied to Information Leakage

Sabah S. Al-Fedaghi

Computer Engineering Department

Kuwait University

Kuwait

Mahmoud BehBehani

Information Technology Department

Boubyan Bank

Kuwait

Abstract—This paper introduces a case study that involves

data leakage in a bank applying the so-called Thinging Machine

(TM) model. The aim is twofold: (1) Presenting a systematic

conceptual framework for the leakage problem that provides a

foundation for the description and design of a data leakage

system. (2) The aim in (1) is developed in the context of

experimentation with the TM as a new methodology in modeling.

The TM model is based on slicing the domain of interest (a part

of the world) to reveal data leakage. The bank case study

concentrates on leakage during internal operations of the bank.

The leakage spots are exposed through surveying data territory

throughout the bank. All streams of information flow are

identified, thus points of possible leakage can be traced with

appropriate evidence. The modeling of flow may uncover

possible hidden points of leakage and provide a base for a

comprehensive information flow policy. We conclude that a TM

based on the Heideggerian notion of thinging can serve as a

foundation for early stages of software development and as an

alternative approach to the dominant object-orientation

paradigm.

Keywords—Thinging; bank system; abstract machine;

software development cycle; heidegger

I. INTRODUCTION

In software engineering, models have a central role in
achieving a high level of reliability in the design, development,
and deployment of systems. Specifically, in this context, we
are interested in utilizing a conceptual model, the Thinging
Machine (TM); reviewed in the next section), for the
specification of the early phase of the life cycle of development
in software systems. Without loss of generality, we focus on
the problem of leakage of data. Accordingly, our aim is
twofold:

1) Presenting a systematic conceptual framework for the

leakage problem that provides a foundation for the description

and design of a data leakage system. The framework is applied

to an actual bank system.

2) The aim in (1) is developed in the context of

experimentation with TM as a new methodology in modeling

side by side with other methodologies such as object

orientation. We will discuss the justification for pursuing such

a venture later in this section.

A. Background about Information Leakage

Information or data (the terms are used interchangeably)
leakage has a major impact on the business of many
organizations today because valuable data are at risk of loss
and possible exposure. The risks include loss of revenue and

loss of credibility with customers, shareholders, or society.
―Data leakage poses serious threats to organizations, including
significant reputational damage and financial losses‖ [1]. The
volume of data leakage has surpassed all expectations, mostly
due to processing approaches where enterprises now centrally
collect data, instead of keeping data details in various branches,
thus maximizing big data benefits. [2].

According to [3], information leakage represents one of
―the most common, but misunderstood, security risks faced by
business and government alike.‖ Firewalls, intrusion detection
tools, and intrusion prevention mechanisms are deployed—
―yet, the perception of the secure perimeter may be at odds
with reality‖ [3]. ―Despite a plethora of research efforts on
safeguarding sensitive information from being leaked, it
remains an active research problem‖ [1]. According to
Lachniet [4], it is difficult to identify the requirements for data
loss prevention, as well as ―to whom and how they apply, and
how to address them in a cost effective manner.‖

The 2017 Global Data Leakage Report [5], which is based
on public information, includes the following data:

 The number of leaks increased by 37%.

 60.5% of intruders were internal.

 50.3% of violators were employees.

Information leakage is also a major concern to asset
managers. In a recent survey, 35% of respondents claimed that
information leakage represents the majority of their transaction
costs. ―Unfortunately, information leakage is hard to measure
and harder to attribute to specific venues and behaviors‖ [6]. It
is reported that 63% of the grayware (potentially unwanted
programs that are not malicious and not viruses) applications in
2017 leaked phone numbers and 37% revealed the physical
locations of phones [7].

Information leakage is a type of system vulnerability where
sensitive data is released and such data can be useful for
attackers to breach system security. A sample case of the
problem is shown in the following scenario.

In many cases, the broker receiving the order is not the
same broker who goes on to execute it on the chosen venue(s).
As the originating broker, you give up control as soon as you
pass an order on to another broker for execution. You do not
necessarily know the route your client’s order is taking, or how
many other parties might get sight of that order—and how
much information about that order leaks out—before it
eventually hits the market. [8]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

102 | P a g e

www.ijacsa.thesai.org

Another sample of information leakage involves printing
devices. It was found that when a new printer was installed
with large internal hard drives, accessible via IP, it retained
information after printing jobs were completed, but it was not
at all secure [3]. Leakage of information may not necessarily
involve ―loss‖ in the sense of depriving a victim from such a
resource.

A third example is a 2009 case reported in the newspapers
as follows. A member of parliament in Kuwait claimed he was
in possession of hard evidence of financial irregularities by the
prime minister. The lawmaker produced a $700,000 check
signed by the prime minister favoring a former MP. The MP
demanded to know the reason for handing the check to the
lawmaker, insinuating possibilities of corruption. The prime
minister’s lawyer said he would file lawsuits against the MP
for breaching bank confidentiality laws. The bank has also said
it would file lawsuits against the MP and any employee who
was involved in giving him a copy of the check.

Data leakage can happen because of internal and external
breaches, either intentionally or inadvertently. It is reported
that internal employees account for 43% of corporate data
leakage, and half of these leaks are accidental [9]. ―Accidental
leaks mainly result from unintentional activities due to poor
business process such as failure to apply appropriate
preventative technologies and security policies, or employee
oversight‖ [1].

Data leak prevention is the process of monitoring sensitive
information, enforcing data handling policies, and assessing
incidents of leakage. It is a strategy to ensure that such
information does not reach the wrong hands during internal
operations of an enterprise, either during communication
outside it. The case study in this paper focuses on the former
type of leakage.

Data leak prevention also refers to the use of technology
products that assist in controlling the transferred data.
According to Lachniet [4], ―we must be concerned about
controlling our sensitive data throughout its entire life-cycle
(from creation to destruction).‖ Current approaches to data leak
prevention systems are designed as risk reduction tools for
specific hardware/software systems. Hardware/software
platforms are installed on network links to analyze traffic for
unauthorized transmissions, and they run on end-user servers
that monitor data flow between users.

Many technical methods are used for leakage in enterprises
[10]. For example, in relational databases, access behaviors are
modelled in order to identify intrusions and detect data
breaches [11]. Security data policies and traffic inspection can
be utilized to protect sensitive information in communication
and storage [12]. A typical tool used to handle data leakage is
watermarking, where a unique code is implanted in the
information container. Watermarks may require some
alteration of the data and can sometimes destroy data.
Moreover, the distributer (original owner) may have partners or
may outsource where the data requires being shared [13].

B. Aim and Approach with Regard to Information Leakage

We study the prospect that data has leaked along several
points of the flow path, and we propose a flow-based model

that facilitates the identification of leakages. The aim is to
identify and monitor unintentional or deliberate disclosure of
information in order to take appropriate steps to prevent any
leak in enterprise environment.

In our proposed system, all streams of information flow are
identified, thus pointing to potential leakages that can be traced
with appropriate evidence. This modeling of flow may uncover
possible hidden points of leakage and provide a base for a
comprehensive information flow policy. For example, it can be
used to draw the specification of the privileges of
administrators and employees and the internal information flow
among them.

C. Aim with Regard to Exploring a New Modeling

Methodology

As mentioned previously, presenting a systematic
conceptual framework for the data leakage problem is
developed in the context of experimentation with a TM as a
new methodology in modeling, alongside other methodologies
such as object orientation. Many researchers have extended the
use of object-oriented software design languages such as UML
in order to apply them at the conceptual level (e.g., [14]).
Although the huge development efforts and time that have been
invested in UML and object-orientation-based studies, tools
and mechanisms are marvelous achievements, this ought not be
considered as the final word and should not discourage new
research such as TM that points in other directions or may
enrich the object-oriented paradigm itself.

The TM model is a diagrammatic language that is founded
on slicing the domain of interest (a part of the world) to ―bring
out‖ things so that we can perceive them (nearness [15])
through thinging (presencing [15]) and describes how these
things behave. According to Malafouris [16], humans evolve
by creating new things, which in turn transform the ways we
sense the world. ―This applies to the modern forager of digital
information as it applies to the Paleolithic hunter-gatherer and
tool-maker‖ [16].

The notion of a thing and thinging in general plays an
important role in modeling, contending with the salience of the
widely acclaimed significance of the word object, the term
currently in vogue among most software engineers. Heidegger
[15] analyzed what makes a thing different from an object; a
thing is self-sustained, self-supporting, or independent—
something that stands on its own. The condition of being self-
supporting transpires by means of producing the thing. On the
other hand, objects are things locked into their final forms,
closed in upon themselves: ―It is as though they had turned
their backs on us‖ [17]. Ingold [17] described the difference:

Using a square of paper, matchstick bamboo, ribbon, tape,
glue and twine, it is easy to make a kite. Indoors, we were
assembling an object. [In] a field outside, they suddenly leaped
into action, twirling, spinning, nose-diving, and—just
occasionally—flying. The kite that had lain lifeless on the table
indoors had become a kite-in-the-air. It was no longer an
object, if indeed it ever was, but a thing. As the thing exists in
its thinging, so the kite-in-the-air exists in its flying. [17]

TM takes thinging as a basic conceptualization notion. TM
modeling consists of an arrangement of machines, wherein

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

103 | P a g e

www.ijacsa.thesai.org

each thing has its unique stream of flow. TM modeling puts
together all of the things/machines required to assemble a
system (a grand machine). Accordingly, an additional aim of
this paper is to explore the TM model capabilities in
developing the notion of information leakage.

In the next section, we present a review of the TM model
(also called the Flow thing model) as it is introduced in several
publications [18-24]. The example in the section is a new
contribution. Section 3 focuses on our case study of a bank as a
thing. Applying TM to data leakage is the topic of section 4.

II. THINGING MACHINE

According to Richard [25], diagramming is a thinking tool
that transforms abstract issues into intelligible and actionable
forms. TM modelling utilizes an abstract thinging machine
(hereafter, machine) with five stages of thinging as shown
diagrammatically in Fig. 1. A thing things; that is, a thing
creates, processes, receives, releases, and transfers things. A
machine that handles things is itself a thing that is handled by
other machines, as illustrated in Fig. 2 (left). Fig. 2 (right)
shows the snake as a machine that processes a frog and
simultaneously as a thing that flows to an owl. The TM model
is a grand thing/machine that forms the thinging of a system.
Thinging here refers to the creation, processing, receiving,
releasing, and/or transferring of the system (grand machine) or
any of its submachines.

Fig. 1. Thinging Machine

Accordingly, a thing is a machine that manifests itself in
the stages of creation, processing, receiving, releasing, and/or
transferring, as shown in Fig. 1. The stages in the machine can
be briefly described as follows.

Arrive: A thing flows to a new machine (e.g., packets
arrive at a buffer in a router).

Accept: A thing enters a flow machine; for simplification
purposes, we assume that all arriving things are accepted;
hence, we can combine arrive and accept as the receiving
stage.

Release: A thing is marked as ready to be transferred
outside the machine (e.g., in an airport, passengers wait to
board after passport clearance).

Process (change): A thing changes its form, but not its
―identity‖ (e.g., a number changes from binary to
hexadecimal).

Create: A new thing is born in a machine (e.g., a logic
deduction system deduces a conclusion).

Transfer: A thing is input or output in/out of a machine.

TM includes one additional notation—triggering (denoted
by dashed arrow)—that initiates a flow from one machine to
another.

Fig. 2. Illustration of things that are machines and vice versa

Example: In contrast to object modeling, a state in TM is a
thing with its own machine. Consider the classical object-
oriented modeling of a coffee mug [26]. In object-oriented
modeling, a coffee mug is an object with two states: empty and
filled. TM takes a less abstracted view and considers a state as
a submachine of a machine, as shown in Fig. 3. A mug (circle
1 in the figure) is a machine that involves the flow of coffee (2)
that triggers the creation of the two states (3 and 4).

In such a scenario, we can identify four mutually exclusive
events, as shown in Fig. 4. An event is a machine that is
defined in terms of a time submachine and a region
submachine (in addition to other machines). This notion of
time as a thing/machine is not far from the Platonic view of
time as a moveable image of eternity. Accordingly, the relevant
events in the example are as follows:

Event a (Ea): Coffee is poured into the mug.
Event b (Eb): The mug is filled.
Event c (Ec): Coffee is poured out of the mug.
Event d (Ed): The mug is empty.

Accordingly, the behavior of the coffee/mug system is
described as shown in Fig. 4. Any of the four events can be
taken as the initial event. In the figure, time flow (transfer →
receive → process [takes its course] → release → transfer) is
not shown.

Fig. 3. The diagram of the system that involves filled and empty mug

Fig. 4. Events

Create

Receive

Transfer

Release

Process
Accept Arrive

Output Input

Thing

Thing

Machine

Machine

Machine

Machine

Thing

Thing

Process: eat

Frog

Release

Owl

Snake machine

Transfer

Receive

Transfer

Coffee
Receive

Create
Mug

State Filled
 Create Empty

Release Transfer Transfer

1

2

3 4

Event a Event c

Coffee

Transfer Receive Release Transfer

 State Filled Create Create Empty

Event b Event d

Mug

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

104 | P a g e

www.ijacsa.thesai.org

III. BANK AS A THING

In this section, our study focuses on a bank as a thing. The
bank banks through customers, other financial institutions,
government agencies, and so forth. As these bank things
encounter one another, the involved flows of different
things/machines are interwoven and bundled together in a
meshwork. The bank, in this picture, is a certain gathering
together of the threads of the business world. It is modeled as a
machine with many streams of flows that gather together the
threads of banking.

In such a view, the bank switches from the usual perception
of being an object to a ―liveable‖ [17] thing that creates,
processes, receives, releases, and/or transfers things.
Remember, to objectify is to break a thing down into
increasingly smaller parts instead of taking it holistically as it
is. It is the ―lifeless‖ kite object, as mentioned previously, that
is viewed as a square of paper, matchstick bamboo, ribbon,
tape, glue, and twine. Indoors, we were assembling an object.
Additionally, the bank thing components do the same as
exemplified by data leakage, the focus of this paper. In reality,
any current bank as an object is a ―livable‖ system to a certain
degree, but this, by necessity, is an implicit result of its
functions, and it is a partial ―livability‖.

For example, leakage in the bank thing is a gathering of
(sub)things and is viewed as one of the inhabitants of the bank,
analogous to an octopus in an ecosystem with long arms that
extend everywhere: employees, computers, desks, and
cabinets, and so forth. This octopus is hiding until it is
―brought out‖ by the bank’s thinging. It can cause harm if not
dealt with holistically. The main result of our case study in the
next section is exposure of this leakage thing through mapping
its territories (octopus arms) throughout the bank.

Such a perspective uncovers many hidden things as bank’s
dwellers. Our task is identifying these hidden occupiers of the
bank in its model (diagram), as will be demonstrated by
recognizing the information leakage thing. This is analogous to
Wittgenstein’s [27] work about the differences between
―seeing‖ and ―interpreting‖ (e.g., Wittgenstein’s duck-rabbit
figure), where in our study, assuming that our focus is on
information leakage, we develop the bank’s TM model, then
we cut off the leakage machines inside it. This exposition of
internally hidden machines is used for such purposes as
constructing preventive measures and conducting forensics.

The bank as a thing in a modern society encounters ever-
present vulnerability to threats. As a real thing, it is ―a
complicated machine in which every day something breaks
down‖ [28]. A real bank is a gathering place that continuously
calls for an unremitting effort to shore it up in the face of the
comings and goings of its human inhabitants and nonhuman
residents, not to mention the focus on security matters [17].
Much has been tried through developing a bank system that
matches the expectations of well-ordered things within its outer
boundaries; nevertheless, its function depends on the continual
flow of things across these boundaries. The thingness of a bank
becomes visible when an interruption or malfunctioning related
to these flows appears.

In this paper, we focus on specific control efforts to counter
the act of making information available without authorization.
According to Lachniet [4], ―Many controls are best done
internally, such as creating a formal IT security management
framework, or identifying the type of data you need to protect.‖

As used in this paper, leakage includes spilling, which
refers to the unintended disclosure of information to
unauthorized environments, organizations, or people [29]. In
our study, we will exclude the situation of misconfigured
systems that permit access to unprotected resources or are
made available by hackers.

From the TM perspective, a leakage thing (e.g., information
leakage) is a flow that spills out of the grand TM machine. This
implies that a submachine has malfunctioned in the bank. Fig.
5 shows four possible types of submachine that leak flow from
(1) received, (2) processed, (3) created, and (4) released
information.

In the next section, we will identify all possible
malfunctioned submachines in the bank used in our case study
after developing a TM description of certain operations (e.g.,
consumer e-purchases) in the bank.

Fig. 5. Leak flows to leakage machines

IV. BANK AS A CASE STUDY: CONSUMER E-PURCHASES

In the existing system of the bank in our case study (and in
all banks, to the best of our knowledge), no explicit focus is
given to the issue of information leakage. Such an issue is
discreetly handled by the security team that deals with matters
such as detecting hacking, collecting evidence, and the use of
security tools such as encryption. In such a context, in specific
leakage cases a possibility exists that the inability to progress
legally due to a lack of a predesigned amount of evidence
means the chances of escape for leakers are great.

To demonstrate the application of FM modeling in the area
of a leakage of data, we took the following steps:

 First, we developed complete static and dynamic
descriptions of the bank TM by focusing on the sample

 Receive

Transfer

Release

Output Input

Create Receive

Transfer

Release

Process

Output
Input

Leakage Machine

Information Machine

Bank

 Receive

Transfer

Release

Output Input

Leakage Machine

 Receive

Transfer

Release

Output Input

Leakage Machine

 Receive

Transfer

Release

Output
Input

Leakage Machine

1
2

3 4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

105 | P a g e

www.ijacsa.thesai.org

application of e-purchases because of the paper size
limitation.

 Then, we exposed leakage machines inside the bank
TM description.

A. Consumer E-purchase

As shown in Fig. 6, a customer (upper left corner) clicks on
an icon on the screen that creates a signal (1) that flows to the
electronic device software system to be processed (2) and
triggers the processing (e.g., filling with relevant data) of a
purchase request (3). Note that the request data is provided by

the customer selection (click), and the (blank) purchase request
is already stored in the device.

The request flows to the merchant server to be validated
(4), and this triggers the generation of a formatted message (5)
that flows to the payment gateway server (6). There, it is
processed (7) to trigger the release of a processed payment
page (8) according to the given data of the request. The
payment page flows to the merchant server (9), then flows to
the customer’s electronic device where it is displayed (10). The
customer inputs the payment details to trigger the creation of a
transaction (11), which includes the card data, PIN number,
and bank ID.

Fig. 6. The static description of a consumer e-purchase

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

106 | P a g e

www.ijacsa.thesai.org

To give a further description of how to create the transaction
machine, Fig. 7 shows a sample of constructing it from clicks
on the screen, a physical bank card, and a stored value in the
inputting device. This thing-oriented depiction contrasts with
the typical object-oriented specification (e.g., in UML), which
has the mere structure of a class and its attributes.

Fig. 7. Sample description of input

Continuing with Fig. 6, the transaction (11) is validated
(processed) in the device browser such that

 If the input data is invalid (12), then the transaction is
constructed again, or

 If the data is valid, then the transaction is encrypted (13)
and flows to the payment gateway server (14).

In the payment gateway server, the encrypted transaction is
received and decrypted (14). Then, the original transaction is
processed to generate encrypted data without encrypting the
bank ID (15). The encrypted data is stored into a database, and
then released to the acquirer bank (16).

In the acquirer bank, the transaction data is processed into
decrypted data (17). Then, the transaction flows to the payment
processing network (18) where it is processed (19) and the
following can happen:

 If the transaction is risky or possibly fraudulent, then a
rejection response is generated (20) and sent to the
acquirer bank (21) and then to the payment gateway
server to be processed (22) to release a pre-stored portal
page response from the database (23). The portal page
response is transferred to the customer’s device browser
to be displayed.

 Returning back to the processing at (19), if the
transaction in the electronic payment network is not
considered a risk or possible fraud, then the transaction
flows to the issuer bank (24) to be processed (25). This
processing triggers a release of the customer’s current
balance from the centralized banking database (26) to
be compared with the transaction amount that is
received by the acquirer bank (27).

 If the balance is not sufficient, then a rejection response
is created (28) and transferred to the electronic payment
processing network (29), and then it flows to the
acquirer bank (30), to the payment gateway server (31),
and to the payment gateway server (32) to trigger a
release of a pre-stored portal page response that is
transferred to the customer’s device browser.

 Going back to the comparison of the balance with the
transaction cost, if the balance is sufficient, then a new
balance is calculated (33) and stored in the core banking

database (34). Additionally, an approval response is
created (35) and flows across servers to create a success
page response (36) as described before.

Fig. 6 gives a static description of a consumer e-purchase.
To describe its dynamic behavior, we give the following
events, as illustrated in Fig. 8, which is a copy of Fig. 6 marked
with regions of events.

Event 1 (E1): The customer clicks on his/her electronic device
browser, which is processed by the device.
Event 2 (E2): A purchase request is sent to the merchant where
it is validated.
Event 3 (E3): The merchant sends a formatted message to the
payment gateway server to be processed.
Event 4 (E4): The payment gateway server processes a stored
page and sends it to the customer’s browser through the
merchant server.
Event 5 (E5): The portal payment page instructs the customer
to insert his/her payment details.
Event 6 (E6): The payment details are inputted and validated in
the electronic device browser.
Event 7 (E7): In case it is invalid, the browser requests that the
customer re-input the correct payment information.
Event 8 (E8): The electronic device browser encrypts the
transaction.
Event 9 (E9): The electronic device browser sends the
transaction to the payment gateway server where it is
decrypted.
Event 10 (E10): The payment gateway server processes the
decrypted transaction by separating the bank ID.
Event 11 (E11): The payment gateway server encrypts the
transaction, except for the bank ID, then stores it into the
database.
Event 12 (E12): The encrypted data, with the exception of the
bank ID, is transferred from the payment gateway server to the
acquirer bank system, where it is decrypted.
Event 13 (E13): The decrypted transaction is generated in the
acquirer bank and transferred to the electronic payment
processing network, where is processed for possible fraud.
Event 14 (E14): If the transaction is fraudulent, then a rejection
response is sent to the acquirer bank.
Event 15 (E15): The payment gateway server received the
message from the acquirer bank and processes it.
Event 16 (E16): The electronic device browser displays the
rejection message.
Event 17 (E17): The electronic payment processing network
sends the transaction to the issuer bank to be processed.
Event 18 (E18): The issuer bank gets the customer’s current
balance and processes it against the transaction received.
Event 19 (E19): If the current balance is not sufficient, then the
issuer bank generates a rejection response that flows to the
electronic payment processing network then to the acquirer
bank.
Event 20 (E20): If the current balance is sufficient, then the
issuer bank deducts the requested amount from the customer
balance.
Event 21 (E21): The issuer bank generates an approval message
that flows to the electronic payment processing network then to
the acquirer bank.
Event 22 (E22): The electronic device browser displays the
portal payment success page.

Create

Transaction

 PIN

Number
Card Data

 Bank ID Receive Receive Receive

Stored
value

Card

Transfer

Release

Transfer

Receive

Transfer

Create

Transfer

Release

Transfer

Transfer

Release

Transfer

Receive

Transfer

Click on

numbers

on the

screen

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

107 | P a g e

www.ijacsa.thesai.org

Fig. 8. The events of the consumer e-purchase

V. LEAKAGE SUBMACHINES

In this section, we will identify all possible leakage
submachines in the bank. As an example of such identification,
we focus on the issuer bank, keeping the numbered circles of
Fig. 6. Fig. 9 shows the selected area for analyzing a data
leakage. The aim is to model the entire issuing bank as a
physical environment of the information system that handles
the transaction data during its life cycle. The analysis can be

generalized to different areas of consumer e-purchases.

Accordingly, Fig. 10 shows this expanded representation of
the issuing bank. The top part of Fig. 10 shows the switch
server where the transaction data flows from the electronic
payment network to the issuer bank (24) to be processed (25).
This processing triggers a release of a customer’s current
balance from the core database (26) to be compared with the
transaction amount that is received by the acquirer bank (27).

Portal

Payment

Page
Acquirer Bank System

Process:

Risky or fraud

Merchant Server

Transaction

Yes

No

Rejection

Create

Issuer Bank System

Electronic Payment

Processing Network

Release

Create

Process:
Decrypt

Formatted

 Rejection

Approval

Successful

Response Page

 Portal Response

Page

P
ro

cess

R
eceiv

e

T
ran

sfer

Purchase

P
ro

cess

Electronic Device Browser

CUSTOMER

Release

Transfer

Encrypted data

except Bank ID

Create

Transfer

Receive

Transfer

Release

T
ran

sfer

Click signal

Process

Receive

Transfer

Release

Transfer

Receive

Transfer

Process:

Validates

Receive

Transfer

Process:

Display

Transfer

Receive

 Release

Transfer

Transfer Transfer

Process:

Display

Receive

Transfer

Receive

Transfer

PIN

Transaction

Create

Create

Create

Process: if not valid

Card Data

Bank ID

Create

Create

Transfer

Receive

Transfer

If Valid

Process: Payment details

Receive

Transfer

Release

T
ran

sfer

Receive

Transfer

Release

Process:

Display

Transfer

Receive

Transfer

 Current

Balance

Release

Transfer

 If Sufficient
 If Not Sufficient

Release

Create

Release

 Transfer

Process:

Compariso

n

New

Balance

Release

Release

Create

Transfer

P
ro

cess

Transfer

Receive

Release

Transfer

Create

Process Transfer Transfer Receive

Receive

Transfer

Release

Transfer

Release

T
ran

sfer

R
eceiv

e

T
ran

sfer

E1

E2

E4 E5

E9

E11

E12

E13

E14

E19

E15

E17 E3

E20

Receive

Release

E21

E22

R
elease

Process

Process

Release

Transfer

 Create

Create

Transfer

Release

E6

E7

Release

Process: Encryption

E8 Process

Process: Decrypt

E10

Release

Transfer

Receive

Transfer

Release

Transfer

E16

Receive

 Payment Gateway Server

E18

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

108 | P a g e

www.ijacsa.thesai.org

Fig. 9. The selected area for analyzing leakage

In addition to this main flow that involves the switch server
and the core database, the server room includes the console, the
core server, and the local e-mail server.

In Fig. 10, circles A and B in the server room point to
possible leakage because the console screen can be captured by
an employee (e.g., cleaning staff member).

The IT employee (C) monitors the system activity through
his/her PC. He/she can access data on the switch server by
creating an access request that flows to the core server. The
currently processed transaction is copied and sent as an
attachment (F) of an e-mail to the IT employee.

In the employee’s PC (G), it is displayed, flows to the email
server (F) and then printed (I). Here, there is an opportunity for
leakage (e.g., by taking a picture or using flash drive). The hard
copy is sent via a messenger employee to an employee who
files it. Accordingly, we can describe all possible leakage
machines, identifying their locations and who activates them.
An employee can walk out of the bank carrying the data on a
flash drive or as a hard copy. He/she can use the regular bank
mail to send it out. These examples illustrate the method of
identifying all possible leakage machines.

 To summarize, Fig. 11 shows a general picture of different
flows. The blue arrows in the figure show legitimate flows of
the data whereas the red ones indicate leakage. The red flows
originate from a leakage machines as follows.

Leakage machine 1 (circle 1): Capturing the console screen
by an employee who has access to the server room.

Leakage machine 2 (circle 2): Capturing data from a PC by
an IT employee using a camera, flash drive, etc.

Leakage machine 3 (circle 3): Copying data (hard copy) by
an IT employee.

Leakage machine 4 (circle 4): Capturing data from a PC by
a non-IT employee using a camera, flash drive, etc.

Leakage machine 5 (circle 5): Copying data by a record-
keeping employee.

Leakage machine 6 (circle 6): Copying data by a
messenger.

Leakage machine 7 (circle 7): An employee obtains a hard
copy in an unauthorized way.

This thinging approach means that the leakage machine
stands apart from its bank grand machine and is treated as a
unified whole. A machine of interest (e.g. leakage) is exposed
out of the bank thing with further thinging. It would appear as a
subdiagram, in the forefront, clearly contrasted against the
ground. This thinging of leakage is an act of "creation" of a
machine which is already "exits" in reality even though we
only perceive it when it becomes alive.

Such a comprehensive picture of data leakage provides the
basis for planners and security personnel to focus on aspects
that are suitable for the required prevention level. Additionally,
it furnishes a foundation for any forensic investigation.

VI. CONCLUSION

This paper sought to accomplish two aims: present a
systematic conceptual framework for the leakage and to
develop that in the context of experimentation with TM as a
new methodology in modeling. The TM model of the bank
demonstrates the viability of the TM model.

Acquirer Bank System Payment Gateway Server

Issuer Bank

Electronic

Payment

Processing

Network

 Rejection

 Approval

Electronic

Device

System

Customer

 PIN

Number

Transaction

Create

Create

Create

Card Data

 Bank ID

Create

 Current

Balance

Release

Transfer

 If Sufficient

 If Not Sufficient

Create

Release

 Transfer

Process:

Comparison

New

Balance

Create

Transfer

Release

24

28

33

34 35

27

Transfer

 Create

26

Process
25

Receive Transfer

Release

Core DB

Information System

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

109 | P a g e

www.ijacsa.thesai.org

The TM diagrams may look complex; however, they can be
simplified by lumping the details together or omitting stages
according to requirements. Many issues remain to be clarified;

however, this paper demonstrates the potential feasibility of
this approach.

Fig. 10. Description of the flow of data and its physical environment

Issuer Bank

Information

System

Request Access PC

Email

Another

Employee

 Flash

Capture, e.g.

Camera

 Shredder

 Bin

Current Balance 26

Switch Server

 Approval

 If

Sufficient

If Not Sufficient

Create

Release

Transfer

Process: Comparison

 New Balance

28

3
35

Transfer

Release

Create

 Data

Core

Server

Process

Email Server

Email with

Attachment Release

Create

Release

Transfer

Transfer

Receive

Process

Work Place

Servers Room

Create

Router

 R
elease

R
eceiv

e

Transfer

T
ran

sfer

R
eceiv

e

T
ran

sfer

R
eleas

e

Transfer

Release

Receive

Transfer

Release

Transfe
r

 Create

Create

 Release

Process

Receive

Transfer

 Messenger

MAIL

 Employee, e.g., Cleaning Man

24

Rejection

27

Console

Employe

e him/her

self

34

Core

DB

Create

Release

Transfer

Receive

 Transfer

Receive Release Transfer Process Transfer

Receive

Person

Receive
 Transfer

25

 Capture Create

Process:

Display

Entrance
Receive

Release

Transfer

Transfer

 Create

Release

Transfer

 Himself

Receive

Transfe

r

Transfe

r

Transfe
r

Create

Release

Transfer

Process:
Display

Receive

Transfe
r

Physica

l Copy

Receive

Transfe
r

Transfe

r

Transfe

r

Receive

Release

Transfe

r

Transfe

r

Receive

Release

Transfe

r

Transfe
r

Receive

Release

Exit

 Employee

him/her

self

R
elease

 T
ran

sfer

C
reate

T
ran

sfer

R

elease

T

ran
sfer

T

ran
sfer

Physical Copy

Data

Printe

r Transfer
 Receive

 Process

Transfe

r

Releas

Create

Transfe

r
Transfer

Release

Receive

IT employee

A

B

C

D

E
F

G

F

I

J

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

110 | P a g e

www.ijacsa.thesai.org

Fig. 11. A general picture of possible leakage in the example

REFERENCE

[1] L. Cheng, F. Liu, and D. Yao, ―Enterprise data breach: causes,
challenges, prevention, and future directions,‖ WIREs Data Mining
Knowl. Discov., Vol. 7, pp. 1211, September/October 2017.
doi:10.1002/widm.1211.

[2] Security: Middle East & Africa, ―Data leakage has gone up by four
times,‖ April 25, 2018. http://www.securitymea.com/2018/04/25/data-
leakage-has-gone-up-by-four-times/

[3] J. Walker, ―Information leakage: The most misunderstood security risk,‖
ISACA Now Blog, 30 July 2018 (accessed).

[4] M. Lachniet, ―Data Loss – Prevention and controls, slides,‖ July 15th,
2008. https://slideplayer.com/slide/8683051/

[5] InfoWatch, ―The 2017 global data leakage report.‖
https://infowatch.com/report2017

[6] B. Polidore, F. Li, and Z. Chen, ―Put a lid on it: Controlled measurement
of information leakage in dark pools,‖ Investment Technology Group,
Inc., August 2017.
https://www.itg.com/assets/ITG_PutALidOnIt_20170808.pdf

[7] Symantec Corporation, ―Internet security threat report,‖ vol. 23, April
2018.

[8] Itarle, ―Preventing information leakage in broker order flow,‖ (Blog)
October 2016. https://itarle.com/blog/preventing-information-leakage-
broker-order-flow.html

[9] McAfee, ―Data exfiltration study: Actors, tactics, and detection,‖ 2017.
https://www.mcafee.com/us/resources/reports/rp-data-exfiltration.pdf
(accessed March 2017).

[10] S. Alneyadi, E. Sithirasenan, and V. Muthukkumarasamy, ―A survey on
data leakage prevention systems,‖ J. Netw. Comput. Appl., vol. 62(C),
pp. 137–152, 2016.

[11] A. Kamra, E. Terzi, and E. Bertino, ―Detecting anomalous access patterns
in relational databases,‖ VLDB Journal, vol. 17: pp. 1063–1077, 2008.

[12] X. Shu, D. Yao, and E. Bertino, ―Privacy-preserving detection of
sensitive data exposure,‖ IEEE Trans. Inform. Forensic Secur, vol. 10, pp.
1092–1103, 2015.

[13] P. Papadimitriou and H. Garcia-Molina, ―Data leakage detection,‖ IEEE
Trans. Knowl. Data Eng., vol. 23, no. 1, pp. 51-63, January 2011.

[14] [14] J. Evermann, ―Thinking ontologically: Conceptual versus design
models in UML,‖ in Ontologies and business analysis, M. Rosemann and
P. Green, Eds., Idea Group Publishing, 2005.

[15] M. Heidegger, ―The thing,‖ in Poetry, Language, Thought, A. Hofstadter,
Trans. New York: Harper & Row, 1975, pp. 161–184.

[16] L. Malafouris, ―The feeling of and for clay,‖ Pragmatics & Cognition,
vol. 22, no. 1, pp. 140–158, January 2014. doi:10.1075/pc.22.1.08mal

[17] T. Ingold, ―Bringing things to life: Creative entanglements in a world of
materials,‖ Realities working papers #15: Bringing things to life,
Department of Anthropology, University of Aberdeen, Scotland, UK,
July 2010.

[18] S. Al-Fedaghi, ―Privacy things: Systematic approach to privacy and
personal identifiable information,‖ Int. J. Comp. Sci. and Inf. Sec., vol.
16, no. 2, February 2018.

[19] S. Al-Fedaghi and H. Aljenfawi, ―A small company as a thinging
machine,‖ 10th International Conference on Information Management
and Engineering (ICIME 2018), University of Salford, Manchester,
United Kingdom, September 22-24, 2018.

[20] S. Al-Fedaghi and M. Alsharah, ―Security processes as machines: A case
study,‖ Eighth International Conference on Innovative Computing
Technology (INTECH 2018), August 15-17, 2018, London, UK.

[21] S. Al-Fedaghi and R. Al-Azmi, ―Control of Waste Water Treatment as a
Flow Machine: A Case Study,‖ 24th IEEE International Conference on
Automation and Computing (ICAC 2018), 6-7 September 2018,
Newcastle University, Newcastle upon Tyne, UK.

[22] S. Al-Fedaghi and M. BehBehani, ―Modeling banking processes,‖ 2018
International Conference on Information and Computer Technologies
(ICICT 2018), DeKalb, IL, USA, March 23-25, 2018.

[23] S. Al-Fedaghi and M. Alsulaimi, ―Re-conceptualization of IT services in
banking industry architecture network,‖ Seventh IEEE International
Conference on Industrial Technology and Management (ICITM 2018),
Oxford University, Oxford, United Kingdom, March 7-9, 2018.

[24] S. Al-Fedaghi, ―Thinging for software engineers,‖ Int. J. Comp. Sci. Inf.
Sec., vol. 16, no. 7, July 2018.

[25] A. Richard, Diagrammatic: Beyond Inscription? (Conference), Centre for
Research in the Arts, Social Sciences and Humanities, 2 December 2016–
3 December 2016.

[26] L.A. Maciaszek, Requirements Analysis and Systems Design (2nd ed.),
Harlow: Pearson Education Limited, 2004.

[27] L. Wittgenstein, Remarks on the philosophy of psychology (vol. I).
University of Chicago Press, 1980.

[28] A. Siza, Architecture writings, A. Angelillo, Ed. Milan: Skira Editore,
1997

[29] U. M. Wilder, ―Why spy now? The psychology of espionage and leaking
in the digital age,‖ Studies in Intel., vol. 61, no. 2, June 2017.

Switch Server

 Core Server Email Server

Servers Room

Console

Core DB

 Person

Router

PC Email

 Records

Employe

e

 Shredder

 Messenger Regular

Mail

 Employee, e.g.,

Cleaning Man

Exit

Printe

r

IT

employee

 Other

Employee

1

2

4

5

3

6

7

