
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

352 | P a g e

www.ijacsa.thesai.org

Enhancing the Secured Software Framework using

Vulnerability Patterns and Flow Diagrams

Nor Hafeizah Hassan
1
, Nazrulazhar Bahaman

2
, Burairah Hussin

3
, Shahrin Sahib

4

Faculty of Information Communication and Technology

University Teknikal Malaysia Melaka

Malaysia

Abstract—This article describes the process of simplifying the

software security classification. The inputs of this process include

a reference model from previous researcher and existing

Common Vulnerabilities and Exposure (CVE) database. An

interesting aim is to find out how we can make the secured

software framework implementable in practice. In order to

answer this question, some inquiries were set out regarding

reference model and meta-process for classification to be a

workable measurement system. The outputs of the process are

the results discussion of experimental result and expert’s

validation. The experimental result use the existing CVE

database which serves as an analysis when a) the framework is

applied on three mix datasets, and b) when the framework is

applied on two focus datasets. The first explains the result when

the framework is applied on the CVE data randomly which

consist mix of vendors and the latter is applied on the CVE data

randomly but on selective vendors. The metric used in this

assessment are precision and recall rate. The result shows there

is a strong indicator that the framework can produce acceptable

output accuracy. Apart from that, several experts’ views were

discussed to show the correctness and eliminate the ambiguity of

classification rules and to prove the whole framework process.

Keywords—Software secured framework; security

classification; software security; common vulnerabilities and

exposures

I. INTRODUCTION

In software application, it is observed that there are
negative consequences when security is compromised. Security
can be compromised when there is lack of understanding of the
in hand situation. Various terms used for security and it's
family, huge numbers of models and framework to refer to, had
created confusions to the software practitioner to classify
vulnerability that is accurate, consistence and correct.

It is observed that there is a challenge in forming a
vulnerability classification scheme due to type of data used.
For example, some vulnerability database like Common
Vulnerabilities Exposures or CVE is very much using natural
language structure but without proper English grammar as
given in its web page of Common Vulnerabilities and
Exposures: The Standard for Information Security
Vulnerability Names. One way to extract the information is by
using semantic analysis [1]. However, in security domain,
some terms are used differently. For instance, the meaning of
buffer overflow is to overwrite the adjacent memory by
overrun buffer and is not simply means that buffer is more than
full.

Therefore, it is learned that the terms must be specified
with related to predefined rules of information security.
Another challenge was to formally translate the domain terms
into a schema that can be translated to a workable engine to
extract the vulnerability given a historical database as debated
in [2]. Therefore, this study is to focus on this scenario.

The current vulnerability classifications suffered from
multiple dimensions of classifiers. They are either too specific
or too complex [3] and [4]. Or they were only for dedicated
cases. This leads to disability in performing a detection or
protection from newer attack of vulnerability. The
understanding of the taxonomy which are also various, requires
a formal classification that can be used for generic cases
regardless of applications, mobiles, networks or other devices
[5]. This study focuses on the research and development of the
design, formalization and translation of the vulnerability
classification pattern through a framework using common
vulnerabilities and exposures data pattern. It is achieved
through the usage of syntax and semantic formal representation
that not only accurate to produce a simplified set of
vulnerabilities patterns but also consistently can be use within
other incident cases. The final aim of this study is to measure
the accuracy and correctness of the vulnerability classification
procedures of algorithm, which already indicates the focal view
and depth in security domain.

II. RELATED WORK

The early work on vulnerability classification focused on
the knowledge of fault identification. It tried to solve the
difficulty of identifying the origin of faults within a software
[6],[7].

A. The Origin of Fault

The initial works claimed there is a specific place a fault
exist or known as origin. However, the newer research claimed
that the place alone cannot be considered as the origin of fault
but shall encompass the time it occurred, as debated in [8],[9].
The later work eventually pointed out that the development
phase is frequently used as the time the faults are introduced.

B. Fault, Failures, Attacks and Vulnerbailities

The knowledge of this fault identification leads to the
terminology emergent of faults, failures, errors and attacks.
Shortly, a differentiation of the definition is given in [8] as
following. An error is a human action that produces an
incorrect result, a fault is an incorrect step, process or data
definition in a computer program and a failure is the inability

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

353 | P a g e

www.ijacsa.thesai.org

of a system to perform its required functions within specified
performance requirements. As system becomes complex, [10]
defined fault as an imperfection that able to result as failure in
software.

However, their study focuses on the taxonomy of security
terms and did not critically informing enough how the terms
can be used to reduce numbers of vulnerabilities. Eventually,
another finding is the study of relationship between the terms
which perhaps gave new meanings to reduce vulnerability.
Few researchers addressed fault as a concrete manifestation of
an error within the software. One error may cause several
faults, and various errors may cause identical faults which if
encountered can cause system failure as deduced by [11] and
[12]. However, [9] uniquely elaborates the relationship
between vulnerability and error. They defined that
vulnerability is an instance of an error, and error can be in
specification or development or software configuration. We
also learned that [13] in their work introduced the vulnerability
term as a characterization of vulnerable states which is
distinguish from any non-vulnerable states as in Fig. 1.

Fig.1 shows the relationship of the terms error, fault,
failures and vulnerabilities. Perhaps, because of this consensus,
later, in Common Vulnerabilities and Exposures: The Standard
for Information Security Vulnerability Names, another
definition of vulnerability is given as a state in a computing
system that either:

 Allows an attacker to execute commands as another
user

 Allows an attacker to access data that is contrary to the
specified access restrictions for that data

 Allows an attacker to pose another entity

 Allows an attacker to conduct a denial of service

Fig. 1. Relationship of the terms-Error, Fault, Failures and Vulnerabilities

This definition shows, when connecting with definition
from Fig. 1, that vulnerabilities are the negative consequences

of faults that bring about from one or more errors. And they are
always related to external user or attacker who manipulates the
vulnerabilities to get access. As a result, a compromised
vulnerability can cause a (or various) system failures.

C. Vulnerbailities Classification: The issues

Consequently, the term vulnerability in vulnerability
classification reflects an inclusive meaning in related to the
reason of any software failures. But, still is the issue of how to
classify these vulnerabilities given the fact that vulnerability,
so that a developer could know which failure they are related
to.

Very often, the common style of classification pro-motes
the vulnerabilities to be placed in more than one class, due to
the hierarchical style of classification. This technique is called
data multiplication. Multiplication of data is the major
drawback. For example, if vulnerability x is located into class
A and class B, it will return a confusion for later analysis
especially for treatment. This will cause an incorrect result.
The method were later improved by [14] as discussed in [15,
but still not much difference. On top of that, [13] argued the
classification of flaws in PA project, RISOS project and in [9]
which they meet neither the uniqueness nor the well-defined
decision procedure requirement. They suggested that one can
view a vulnerability as a containing class and attacks as
elements of that class.

In 2005, two researchers from CMU/SEI published their
work of new way of classification through technical report in
[16]. In order to avoid multiplication issues in mentioned
earlier, which using hierarchical style of classification, they
suggested the attribute-pair values through object-roles
definition of vulnerability. However, the method suffered the
level of abstraction and viewpoint. Another researcher, [17]
classified the vulnerabilities through characteristic trees, still is
a hierarchical style of classification which suffer the tradeoff
between different operating system used. In the nutshell, the
gap is the vulnerability classification is still an issue where, it
could be either too specific to certain system or too complex
which, in addition, introduce the ambiguity.

All classification involves the goals and the perspectives.
The goals and perspectives demonstrate of how the
classification is being seen and carried out. A study on
classifications goals and perspectives were done and showed
that a trend of classification from as basic as error to as
complex as data mining had been carried out. However, the
diversity of classification patterns still can be refined as some
of them had produced complex patterns with huge number of
classes.

D. Vulnerability Classification: The generic Process

The analysis during these study also reveal that each
classification scheme by the researchers consist of few generic
processes namely as identification, analysis, confirmation and
elimination of flaw. The summary of the processes completed
by the researchers are as in Fig. 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

354 | P a g e

www.ijacsa.thesai.org

Fig. 2. Vulnerability classification based on process

Fig. 2 shows four generic processes in determining and
classifying vulnerabilities: identification, analysis,
confirmation and elimination of flaw. The identification
process covers from non-unique identification of system
resource to specific identification. The analysis process
involves the labeling, add-on features and dissemination of
identified flaws. The confirmation process is putting the flaw
into the appropriate class. And the elimination process informs
the reader that the respective perspective also able to assist in
reducing the identified flaws. The reasons of having these four
generic processes, according to [4], [18] and [19] are to:
establish, act upon and maintain relationship about the threat in
related with their life cycle.

The development team can gain better awareness of the
larger threat viewpoint when this information is shared in
advance of an incident, hence reducing the occurrence of next
possible bugs and vulnerabilities. And from the analysis, not all
past works contained every process. But, here, from the table
showed that at least three initial processes must exist in any
vulnerability classification scheme - identification, analysis and
confirmation. Using these generic processes, many researchers
develop their own models or frameworks to reduce the
numbers of bugs and vulnerabilities as in [4], [20] and [21].
However, the definition of what kind of framework that should
work with vulnerability classification is remained a dispute.

E. Secured Software Framework

A framework is defined as the conceptual structure that
dependent to each other to complete specific purposes. The
structure could be an artifact of input, output, process, function,
or boundaries [22] and [23]. Following the analysis in [13], the
definition of framework is given as a sequence of decision
procedure which when apply, will classify a state to exactly as
one tuple. A decision procedure refers to the application of the
function to a specific vulnerable state. Discriminating

properties, as embodied in the decision functions, determine
classification.

The specific purposes of such a framework are to provide a
historical record of the vulnerabilities in a form that software
developers can use: a) to anticipate flaws in their systems; b) to
describe the vulnerabilities in a form useful for detection; c) to
show common characteristics in related flaws for prevention
and elimination; and d) to enable a security monitor to detect
exploitation (or attempted exploitation) of the flaws.

According to [8], a framework is not simply a neutral
structure for categorizing elements. Taking from here, a
vulnerability classification is an element in a absolute
framework, in which, this framework shall serve as the
blueprint working process to do the vulnerability classification
despite any aim it is meant for to be delivered. But still, in a
context to have secured software.

Hence, the framework to describe the vulnerability
classification working process is named as a secured software
framework.

A comparison of security framework had been made by
[24] which analyzed eleven frameworks from year range 1996
to 2004. The comparison significantly shows the needs for a
systematic approach to embed security concerns into software
process as early stage. Another work was conducted by [25] to
summarize the security dimensions, such as cause, impact, and
location, encountered in security frameworks.

However, there is still lack of research done of how to
integrate secured process operation in software development
process [26]. A comparison work on this secured software
framework was done in [27]. The summary is given as in Table
1.

The researchers review had revealed that those frameworks
start their security consideration as early as requirement stage
as depicted in Table 1.

TABLE I. THE STAGES FOCUSED IN SOFTWARE SECURITY PROCESS

FRAMEWORK

Software security

testing framework

Stage

Requirement Design

KAOS (Security

Extension)

MDS (Model Driven

Security)

Not stated

i* framework Not stated

ST (Secure Tropos) Not stated

SQUARE

SREP

SRE

TM (Threat Modeling)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

355 | P a g e

www.ijacsa.thesai.org

The summary demonstrates that in the mentioned security
frameworks, security is a concern as early as during the
requirement stage as in [28] and [29]. They highlighted the
needs for a standardized methodological approach that taking
into account security elements from the earliest stages of
development till the completion.

F. Measurement

Even though [30] highlight the quality attributes of CIA-
triad (confidentiality, integrity and availability) in security
studies, this research also emphasized measurement for the
algorithm used. The successfulness of the framework is
dependent how good the algorithm can extract the required
patterns. The extraction-based procedures are measured using:

 precision rate

 recall rate

The precision measures the accuracy of the algorithm and
the recall measures the effectiveness of it. However, the
correctness of incident case-pattern matching process is
measures using expert opinion approach.

III. METHOD

This study focuses on two parts. The first part is to uncover
current process of vulnerability classification by identifying the
meta-process model and indicate its framework. The second
part is to enhance the framework by analyzing the vulnerability
classification patterns and confirming ways in accepting
affirmation

In identifying meta-process model, task of this phase is to
investigate the existing meta-process models of vulnerability
by analyzing and synthesizing the core elements with the help
of parsing technique in the existing common vulnerability and
exposures database to determine whether or not the model
satisfies with the objectives.

In analyzing the vulnerability classification patterns, the
possible patterns exist in the database by using key aspects in a
threat model and the metaprocess model. The list of patterns in
threat model are synthesize with the current categorized of
threat in the database. A formal classification method through
an algorithm is proposed and used to deduce the patterns which
will sustain the vulnerability classification framework to accept
the subsequent process of affirmation.

And in accepting affirmation is to execute the formal
algorithm by applying it within the classification framework
and get effectually valid through experimental and expert
views.

IV. THE FRAMEWORK

A successful meta-process model highly depends on proper
apprehension of their functionalities, contexts and
architectures. To achieve this purpose, a reference model
technique is used.

A. Identifying Meta-Process Reference Model.

This is an input to the process of generalizing the meta-
process model. In this activity, a qualitative study was used to
collect, categorize and select the related reference model. The

output from this procedure is the formulation of vulnerability
classification meta-process. This meta-process is used as the
blue-print for the framework. This study is inspired from the
work of Linde [31]. In the work, a four steps of classification
meta-process was introduced which consist four stages:
knowledge of system control structure, the generation of an
inventory of suspected flaw, confirmation of the hypothesis
and making generalizations of specific flaw instance. The
former study was aimed to focus on software attack through
generic operating system or OS flaws [6], [7] and [13]. As the
study of classification matured, the needs to enhance the
methodology arise, for example to support the purpose of
doing the classification varies among researches [31].
Therefore, in existing secured software framework, there are at
least three stages involved in vulnerability cycle, however four
is preferred as the fourth support the mechanism for
elimination. The four steps are adapted as the meta-process for
vulnerability classification which consists of i) identification,
ii) analysis, iii) the confirmation and iv) elimination. On top of
that, instead of using class name or perspectives for the
countenance, we assign the label of characterization to
represent the class showing the significant of a characterization
embed in respective class. The label of characterization shall be
named after considering the attributes that carry specific value
describing the label as discussed in [4]. By answering the
attributes with relevant value will help the researcher to present
the characterization into a single tier or more. The following
subsection elaborates the steps in detail.

B. Analyzing the Process, Activities And Output

The identification process involved identifying the
objective of the classification. Then, the researcher refers the
previous taxonomy of classification to understand the
subsequent philosophy. Within this process, the context
(scenario) of each security flaw or attack is analyzed and any
available repository is examined to find any match. As it is
almost impossible to analyzed the information system flaws as
a whole as pointed out by [32], a researcher will sub-task the
system by addressing the flaws or attack from the encapsulate
platform which either come as an operating system or
application based security flaw (or attack). In addition, the
nature of the platform (operating system or program) which
also referred as target system (or victim), is explored and
essential elements are captured.

The output of this process is to confirm any sensitive data
that activate an interest to an attack (security objects) and to
distinguish the protection mechanism that protects the
respective data (control objects) [31].

The analysis process involves labeling and dissemination.
These security flaw or attack contexts are further given certain
labeling, often to map them with the captured elements of the
target system as well as to meet the aim of the research
perspective. These labeling contained common shared traits
also known as classifiers or attributes of the flaws, which in
many cases are very difficult to be precise. To initiate a
labeling, a set of questions for the content shall be imposed.
[6],[13] and [32]. In the dissemination process, the identified
classifiers or attributes that gathered from defined scenario in
the activation process are examined, and assigned a formal
value. Using this value, the description of the security flaw is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

356 | P a g e

www.ijacsa.thesai.org

transfer into hierarchical form such as list (flat or non-flat list)
and tree (commonly in directed acrylic graph). Very often the
hierarchy is going top-bottom or generic (inclusive) to specific
[6],[32],[9],[13] and [10]. The selected hierarchical orientation
must consider the complexity of security flaw or attack which
may act as an amalgamation (the blended form of flaw/attack)
and decelerate the process. As the process iteratively matured,
the countenances shall update the classifier to suit with the
analysis which also referred as categories refinement. The
whole process of defining the countenance is also known as
specific taxonomy (class syntax) and a good start for a (high-
level) class syntax for OS flaws was introduced by [6].

The confirmation of instances process is the placement of
any noticeable flaw or attack into the hierarchical form and
expected to form a directory of security flaws or attack to assist
in next production. A proper directory will indicate the flaw
labeling; thus, facilitate the protection and testing process
effectively. In common, the dissemination is done in bottom up
approach or from a specific flaw towards achieving its generic
class.

The elimination process is the detection, elimination and
forecasting of faults in the next system development. It covers
at least five aspects namely as fault detection, fault prevention,
fault tolerance, fault removal and fault forecasting. The process
is detailed out in terms of activity and output as simplified as in
Table 2.

TABLE II. THE PROCESS, ACTIVITY AND OUTPUT OF A VULNERABILITY

CLASSIFICATION FROM CRITICAL REVIEW

Process Activity Output

Identification

Define objective,

target system and

identify data

Classification

objectives, target system

specification and a

selection of data

Analysis

Select method,

construct hierarchy

using syntax or

semantic and analyze

impact

Method selected,

hierarchy (list,tree or

graph), list of impact

Confirmation
Refinement of the

hierarchy
Refined hierarchy

Elimination

Detecting and

eliminating the

new flaw found

a. Fault detection,

b. Fault prevention,

c. Fault tolerance,

d. Fault removal

e. Fault forecasting

C. Conceptualization of Vulnerability Classification Meta-

process

Next, we analyze the current approach on vulnerability
classification. Each work is determined for their unique
processes in conducting the classification; implicitly or explic
itly stated in the research work. As a result, it is obviously seen

that in every works, the researchers begin with identifying their
purposes to align with the results (as identification process).
Next, based on the purpose, they analyze the data or any
vulnerability sources to determine the appropriate classes (as
analysis process). Following to that, the data is assigned into
the respective classes, iteratively (as dissemination process) In
order to ensure that the assignment is correct, a benchmarking
with secondary data such as technical reports or literature
review is conducted (as confirmation process). Some
classification proposed the solution to the vulnerability while
others don't. In elimination process, the mechanism to solve the
problem is identified. For example, a fault can be detected and
remove. Or a frequent occurrence of fault may lead to fault
forecasting and thus precede to fault preventing. The
formulation can be presented as in Fig 3.

Fig. 3. The Formulation of Vulnerability Classification Meta-process

Fig 3 shows four generic processes involves as a
vulnerability classification meta-process - identification,
analysis, confirmation and elimination. Next, the details in
each of it are explained in the next subsection.

D. The Vulnerability Classification Framework (VulClaF)

This section summarized the study from Table 2: The
process, activity and output of a vulnerability classification
with Fig 3: The Formulation of Vulnerability Classification
Meta-process. We discovered the high-level overall framework
for secured software as in Fig 3. In order to detail out each
processes, each process can be re-iterate for respective stages-
analysis and deployment as in Fig 4.

For example in identification process, involves the
activities of defining objective, target user, system and data.
And for deployment or output stage, the detail of them is
describes as in Fig 4.

However, this framework which was used unconsciously
used during classification was suffered from issue of data
multiplication that eliminate the uniqueness of a class. Hence,
slow down the remedy process.

This issue is mainly due (as in Fig 4) in the Analysis
process at activity Produce vulnerability tree. A vulnerability
tree has high potential to create redundancy if the classification
rules were not formally defined in activity Produce syntax-
semantic schema. An enhancement to overcome this is
proposed.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

357 | P a g e

www.ijacsa.thesai.org

Fig. 4. The Vulnerability Classification Framework (VulClaF)

V. THE ENHANCED VULNERBAILITY CLASSIFCATION

FRAMEWORK

The proposed enhanced framework is based on these
phases: a) attaining the vulnerability classification patterns and
b) accepting affirmation.

A. Attaining Vulnerability Classifcation Pattern

The classification pattern is attained from preprocessed raw
data, with the help of the context-free grammar as input.
Through this procedure, vulnerability classification patterns are
identified after matching process with the domain specific
wordlist. However, this procedure involves understanding of
existing vulnerability classification trends. Analyzing Existing
Vulnerability Classification Trend. This is another input to the
process that involved identifying current trend in vulnerability
classification.

The output from this procedure is to determine the label of
characterization and establish their relationship.

 The Label of Characterization. A numbers of existing
vulnerability classification were studied, scoped and
analyzed for their similarities elements. It is found out
that many terms were used to characterize the attributes
or state of threats such as origin, time, OS etc. With
that, in this study a generic term to address them is used
as: label of characterization and served as partial
classifiers because when on their own, they are not
sufficient yet to do a good classification. The
connection between them must be discovered. The
output is to get a set of container with different motives

of their existence.

 Discovering Relationship. The sequence of the labels
with their cause and effect were later realized as a
relationship notation. They were pre-analyzed on a
sample of data and tested. The output is to define the
cause-effect of each container from label of
characterizations. Next, a set of context- free grammar
then was established for the purpose to avoid ambiguity
in experimental results.

 Context-free Grammar. This is an input to the process
of generating the vulnerability classification algorithm.
The output consist domain specific schema and domain
specific marker.

B. Label of Characterizations

The purposes of classification from past works clearly
stated their aims are to do the classification for the purpose of
assisting in testing and maintenance as in [4], [33] and [34]. It
means that the purposes shall represent the level of abstraction.
Level of abstraction implies the attempt how extensive the
classification is [34]. The user perspective reflects the aimed
users that the classification is made for, like for the usage of
software developer or software designer.

The label of characterization depicts the elements or
features considered that results as a class in the classification.
In [34], the outcomes of classification consist of software
development issues, location of flaws in the system and impact
of flaws on the system. Each class comprises of second tier of
subclasses. In [33], it is classified into seven groups: input
validation and representation, API abuse, security features,
time and state errors, code quality, encapsulation, and
environment.

The research in [4] shows close similarities with the aim of
this research which proposes the combination of : i) cause, ii)
location, iii) attack vector and iv) impact as the essential label
of characterizations for secured process, maintenance and
assessment. The cause describes the reason for the existence of
the vulnerabilities; the location determines the attacker
community that defines the risk level and in turn determines
the mitigation strategies. Attack vector defines the attack
mechanism used by the attackers and impact describes the
degradation of the system performance after an exploit takes
place as in [4]. Therefore, this model of [4] is appropriated as
the reference model for vulnerability classification within
software developer perspective that aim of assisting security
process, maintenance and assessment. And based on this
model, we scoped the current study of other researchers as in
Table 3.

TABLE III. IDENTIFYING THE VULNERABILITY CLASSIFIERS FROM PAST

WORKS

Purpose User Perspective Label of

Characterization

To assist security

process,

maintenance and

assessment

Software developer Cause

Location

Attack vector

Impact

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

358 | P a g e

www.ijacsa.thesai.org

Based on Table 5, we represent the significance of the
purposes. Any decision to specify the label of characterization
is established based on the purpose of the classification and the
target users. The purpose responds to the issue of level of
abstraction and the user‟s perspective counteracts the issues of
point of view. However, the connections sequences between
the labels remain unclear and the purpose scope is extensive try
to cover process, maintenance and assessment – three
dimensions of works. Based on the issues addressed, a new
label of characterization is proposed to determine the
relationship between each class with more specific scope of
purpose.

The important aims within secured software are to confirm
the presence of security attributes in the software and to
increase the delivered reliability of the software to the user as
in [35], [36] and [37]. As the vulnerability population is vast, it
is impossible to examine each of them individually [37].
However, the secured software focuses on vulnerability exploit
that demands the understanding of different states occurred as
well as their relationship between each other when
compromised. These states describe the behavior of an event
that having certain attribute at any given condition. The
existing studies describe how they perceive the existence
(occurrence) of vulnerability in various ways such as domain,
origin, operational and software development life cycle phases.
Nevertheless, in software, the occurrence is about writing at
least an executable statement of code. Then, regardless of how
they are perceived, an occurrence of vulnerability consists of at
least four states: i) creation, ii) discovered, iii) exploited and iv)
resolved of an executable statement of code. Creation is when
the code is created with a specific reason or cause at a definite
place or location and still in an idle state. Discovered is when
an attacker realizes the particular code as a vulnerability point
in the location or application, potential to be compromised and
this is a visible state. Exploited is when the attacker uses an
attacking mechanism that is appropriate with the cause and
location to compromise the vulnerability point and this is the
utilize state. Resolved is when a targeted impact of the attack
affects the system and an action is required to solve the
problem, including appropriate test and this denotes the state of
fix. These four states determine the characterization needed
during the vulnerability classification model for a secured
software framework. In any exploitation of vulnerability, it is
essential for an attacker to identify the states of possible
exploitable code using an attack mechanism and produce the
targeted impact they have expected.

The states are the life cycle events of vulnerability and
were represented as a waterfall sequence. However, the
relationships between the events are currently not well
explained. For example, whether there exists any kind of
source and target events, or if there exists bidirectional
relationship between them. In order to identify the type of
relationship that exists, the study of the vulnerability class must
be able to map with the respective states.

These states are further perceived as label of
characterization introduced in the Table 4 by accepting the
labeling of cause as source root (to refer to the vulnerable code
statement), source location as application (to refer to the

application container of where the code statement reside),
target vector as target (to refer to the effect of attack
mechanism use on the vulnerable code), target impact as
impact (to refer to the expected result of the exploitation or
damage), and this research introduce the notion an additional
of attacker (to refer to the user who initiate the attack). As the
purpose is to determine the relationship between each label, the
component relationship is added as in Table 4.

TABLE IV. THE NEW LABEL OF CHARACTERIZATION AND RELATIONSHIP

FOR SECURED SOFTWARE FRAMEWORK

Objective User Perspective
Labels and relationship of

characteristics

To assist secured

software

framework

Software

developer

Label of characterization

• Source Root

• Source Location

• Target Vector

• Target Impact

Relationship between

label

Based on Table 4, the pattern for CVE is produced using
three steps: labeling, categorizing and producing schema
grammar from CVE incidents cases. The first process is
labeling the domain specific marker (DSMarker) for each
classifier. The markers are used as indicator to pick and group
the words into related classifier. The markers are used as input
to the second process. The second process is to categorize the
words into domain specific wordlist (DSWlist). The purpose of
this process is to extract the similarities (domain-based)
between the words and form the wordlist. The output of this
process is used as an input for the next process, producing the
domain specific schema (DSSchema) grammar. The study
from the data shows the incidents have obvious marker that
indicates which phrase shall belong to a classifier. Fig. 5 shows
the DSMarker.

The top level is the primary marker. The second level is the
secondary marker, which can be divided into two: the left side
of the primary marker and the right side of the primary marker.
The third level is the subsequent markers, those that
immediately serve the phrase after into the specific classifier
denotes as the lowest most level.

Fig. 5. Showing the generic hierarchical structure of the classifiers

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

359 | P a g e

www.ijacsa.thesai.org

The preliminary study also showed that there are four
classifiers: source root, source location, target vector and target
impact. Source root is the reason or the antecedent that imply
to the impact of vulnerability. The source root can be (but not
limited to) buffer overflow, configuration, connection,
credential, injection or settings. These conditions are originated
from the coding and implementation phases. They are a result
of lacking concern of early security imposed in the requirement
and design phases either lack of tools used or lack of
knowledge about them. Source location is the emplacement or
entity where the vulnerability antecedent exists. The place can
be (but not limited to) an argument, a string, path, registry,
password, host or script. These are places where certain
vulnerability may be originated and developed. Interestingly,
this analysis found that only few terms share two different
classes. The „mail‟ and „directory‟ could be in class source
location and target impact. Therefore, to differentiate them, the
keyword „in‟ before „mail‟ or „directory‟ is recognized as
subsequent marker to determine them as source location.

Target vector is the magnitude and directions causing
damage to occur on target. The magnitude and directions
represent any doing that can cause damage such as (but not
limited to) change, compromise, check, execute, modify, insert,
read or obtain. These actions are showed by the usage of verbs
in the pattern. The word magnitude is used as it carries certain
weight to cause the damage and the word direction is used to
show the aiming point of damage. Target impact is the entity
that been affected by the target vector. The effected entity can
be (but not limited to) data, database, file, directory, an
account, a program or a system. The effect is the outcome or
consequences that a target becoming upon a vector is carried
out. In order to ease the reference to the classifiers, in the rest
of this discussion, each of them are label as: SourceRoot,
SourceLocation, TargetVector and TargetImpact. The
examples of each classifiers class are as in Table 5.

TABLE V. EXAMPLE OF ITEMS FOR CLASSIFIERS

SourceRoot SourceLocation TargetVector TargetImpact

format mail compromise data

configuration authentication authenticate certificate

connection cache bypass client

credential function cause code

crossite host change command

Table 5 shows that there will be a tendency for word
redundancy or similar meanings, e.g code and command in
TargetImpact. This issue is taking care by constructing the
similarity list discussed in the next subsection.

C. Domain Specific Wordlist (DSWordlist)

Domain specific wordlist (DSWordlist) is the phase where
the words are groups not only based on the grammar usage of
singular or plural, or tenses, but also based of their semantic
domain understanding, for example, an email and a mail , both
should be considered as in one group of word. First, using one-
to-one matching, the definitions of the words are listed as
shown in the sample in Table 6.

TABLE VI. WORDS, DEFINITION AND CLASSIFIERS

Words Definition Classifier

setting
change qualities of how the

application works.
SourceRoot

configuration

is often where an application

is customized for user

or group

SourceRoot

function a function returns a value SourceLocation

parameter

are the strings/arguments used

to pass value to functions

or programs

SourceLocation

hijack to stop and steal TargetVector

spoof to imitate TargetVector

database
place where records stores in

it
TargetImpact

script
written code for run-time

environment
TargetImpact

Table 7 shows the words, their meanings and the classifiers
they belong to. However, if one search for the incident is using
function and another is using program, there is chance of
ambiguity to locate the patterns, as these two words may refer
to the same object.

Therefore, the second process took place. Second process,
the domain specific word list (DSWordlist) is defined as the list
of words that are referring to the domain semantic meanings in
their specific classifier. An example of (DSWordlist) is given
in Table 7.

TABLE VII. DOMAIN SPECIFIC WORD LIST WITH SEMANTIC

Wordlist Semantic Meanings Classifier

connection

request

session
activity between two machines SourceRoot

function

program

system

workable code to perform

instruction
SourceLocation

denial
block

terminate

crash

ability to deny TargetVector

account

system

password

user belonging identity TargetImpact

Table 7 shows the semantic meaning for the words. The
first column is the words from the data set. The second column
is the meaning and the third column is the classifier they
belong to. In this example, the function and program has been
defined as in similar group of object. The wordlist and their
classifiers are the input to the next phase: domain specific
schema grammar (DSSchema).

D. Domain Specific Schema Grammar (DSSchema)

Domain specific schema grammar is the general description
how the classifiers worked and used to execute the
classification. In this study, the schema is represents using
Backus- Naur Form (BNF) notation. The words in the sentence
are referred as field. The target of this classification is to define
the pattern. Each pattern is characterized by the four classifiers.
The classifiers are SourceRoot, SourceLocation, TargetVector
and TargetImpact. In this study, the process begins with
inquiry of the incidents existed in the file. Each incidents
consists of incidents name (the CVE number) and patterns (the
sentence),

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

360 | P a g e

www.ijacsa.thesai.org

 <incidents> = <incidentsname> + <patterns>
Upon this phase, the inquiry will focus on patterns as

target. At this point, the DSMarker (the primary marker) is use
to identify between the source and target.

<patterns> = <source> |< primarymarker> | <target>

<target> = <targetvector>|<subsequentmarker>|
 <targetimpact>

At this point, the inquiry will focus on the first classifier,
the sourceroot, to investigate the domain specific wordlist
(DSSWordlist) within this classifier. Follow by the next
classifiers and their DSSWordlist. The whole process is given
as,

<patterns> = <sourceroot>| <subsequentmarker>|

 < sourcelocation>|<primarymarker>|

 <targetvector>|<subsequentmarker>|

 < targetimpact>
This process produced the generative grammar and formed

a new notation refer as vulnerability flow diagram as in [38]
and later used in the new framework and refer as vulnerability
classification pattern or VulClaP.

E. Accepting Affirmation

Accepting affirmation phase is one of most important steps
during the entire process, whose task is to perform the
validation for the generic vulnerability classification
framework.

Vulnerability Classification Pattern Algorithm. The
purpose of the algorithm is to support the generic vulnerability
classification framework. It should be validated to check its
accuracy.

Vulnerability Classification Framework. This framework
served as the final product, therefore an affirmation to accept it
is important and execute in this phase.

Experimental Result. This result come from the
quantitative approach to show the accuracy by using the
precision and recall rate. Five random datasets were used and
each consist 500 records.

Validation Result. This result comes from the qualitative
approach to show the acceptance of the experts by using a
questionnaire. The experimental result also was supported with
feedback from the experts.

VI. DATA COLLECTION

This study intends to observe the vulnerability pattern from
a reported threat or attack incidents. These incidents are
collected and monitored by few organizations such as NVD,
CVSS, and CWE (Common Vulnerabilities and Exposures:
The Standard for Information Security Vulnerability Names).
Used as the case study, these reports were assessed and debated
by the experts in the field.

In order to study the pattern of the reported incident, a
sample is needed based on certain stratum. The target
population is aim within the first five years of the reports. In
this case, the random sampling is used. The size shall
determine the generality of the results and the ability to detect
true effects. The data collection must also adhere to the
conditions as in Table 8.

TABLE VIII. DATA CHARACTERISTICS

Characteristics Description

Reported incidents
The dataset must be reported of

original incidents

Endorsed by authorized

organization

The data must be reported and

verified by an authorized security

organization

Open to public
The data is open for public as

reference

Sample size must be more than

500 data

The quantity of sample in a data

must be able to represent all

possible patterns

Table 8 shows that the data to be used in this study must be
reported incidents, endorsed by authorized organization which
having their own of third party security auditor, and should be
open to public as it indicates a collective and ability to produce
a predictive trend [39]. In market, the vulnerability database
can be from local authorities or international authorities. The
local authorities are varies and comes from both profit-based
organisation and nonprofit-based organisation. However, the
samples available are limited. Thus, this study turns to
databases maintained by international authorities. There are
two major open vulnerability databases that have international
authorities:

 Open Source Vulnerability Database (OSVDB)

 National Vulnerability Database (NVD)

The OSVDB is an open to public, independent
vulnerability database which founded in 2002. However,
recently, in April 2016 this database had been closed as
announced in an article by Jon Gold at
www.networkworld.com. Hence, this research used the
reported vulnerability database of Common Vulnerability
Exposure or also known as CVE, as uses by numbers or
researchers including [40],[41],[3] and [42]. Even though, there
are some inconsistency issues in CVE as mentioned in their
website, it is treat as minor and has been overcome during the
implementation process [42]. In addition, the database is being
used in security research such as [43] and [44] due to its ability
to produce trends in threat or vulnerability. Nevertheless, the
database also comprised a number of security organizations
who found, reported and confirmed the cases such as, SANS
and they claimed that despite the issues, the CVE has been
used as a de facto standard in security industry [45].

A. Threat Model versus CVE

According to the current CVE website, the data introduce
13 categories of vulnerabilities. They are: Denial of Service
(DoS), Code Execution, Overflow, Memory Corruption, Sql
Injection, XSS, Directory Traversal, Http Response Splitting,
Bypass something,Gain Information, Gain Privileges, CSRF
and File Inclusion. An example of listing from year 1999 to
2008 is given in Fig. 6.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

361 | P a g e

www.ijacsa.thesai.org

Fig. 6. CVE Vulnerability Type - An Example from 1999-2008 (source:

CVE website)

Fig. 6 shows the vulnerability type from MITRE CVE
website. However, it was admitted in their FAQ page that this
preliminary classification and categorization of vulnerabilities
were too rough to be used to identify and categorize the
functionality offered. Therefore, a mapping to a threat model is
needed to fine grain the categories. As mentioned in section 2.5
at Table 2 and comparison in [27], threat model are varies, and
the STRIDE model is light but comprehensive and less likely
to be extended but convinced enough to be used in major
model threat cases - a reasonable fact to choose this model as
mentioned in [46] and [47]. The mapping from this category to
STRIDE model is given in Table 9.

TABLE IX. MAPPING CVE TYPE TO STRIDE MODEL

STRIDE CVE Threat Type

Spoofing
Http Response Splitting, Sql Injection,

XSS

Tampering Memory Corruption, File Inclusion

Repudiation Bypass something, CSRF

Information Disclosure Gain Information, Directory Traversal

Denial of Service DoS, Overflow

Elevation of privilege Gain privilege, Code Execution

Table 9 shows the threat type as defined in CVE website
which made it maps to the threat model of STRIDE. This
mapping is used as threat type total when random selection of
data was made to allow VulClaP execute on it. Meaning, for
any randomly selected CVE record, it will be checked on what
threat type that they roughly been categorized in before
compare with the execution result for that record.

VII. RESULT

This section explains the results discussion of experimental
result and validation result.

A. Experimental Output

The analysis was conducted on three datasets: DS1, DS2
and DS3. Each dataset contains 500 data. Data set DS1 consist
the data from year 1991-2004. Data set DS2 consist data from
year 2005-2008 and dataset DS3 contains data of 2009-2016.
All data were randomly selected based on a simple random
function. The CVE Threat Type for all of them were checked
by referring the CVE number. Next, they are put into the
STRIDE class. The details for each dataset are given in Table
10.

TABLE X. DATA SET FROM CVE – DS1, DS2 AND DS3

From CVE Threat Type to

STRIDE
DS1 DS2 DS3

Spoofing 10 10 8

Tampering 58 145 238

Repudiation 105 43 19

Information Disclosure 38 74 35

DDoS 96 118 98

EoP 123 89 85

Not classified 70 21 17

Total 500 500 500

Table 10 listed the numbers of patterns that been
successfully gained from CVE database after mapping their
category with STRIDE. Those that not detected, is categorized
as Not classified. For example, in CVE-2002-1932: Microsoft
Windows XP and Windows 2000, when configured to send
administrative alerts and the „Do not overwrite events (clear
log manually)‟option is set, does not notify the administrator
when the log reaches its maximum size, which allows local
users and remote attackers to avoid detection. This incident
was not able to be classified by the algorithm therefore
considered as Not classified. The algorithm had successfully
detected the words that associate with attackers, analyzed them
but however, could not mapped them to associate with
TargetImpact category.

The rest of this subsection presents the execution of the
vulnerability pattern algorithm into the CVE datasets. The
execution was conducted on two modes: a) the mix-based
datasets and b) the vendor-based datasets. The mix-based
datasets refer to the random selection of data with different
range of years. The vendor-based datasets refer to the
difference of problems reported by either hardware or software
vendors. For the purpose of this paper, we present the
discussion on the mix-data set as the space constraints. The
analysis was conducted on three datasets: DS1, DS2 and DS3.
Each dataset contains 500 data. Data set DS1 consist the data
from year 1991-2004. Data set DS2 consist data from year
2005-2008 and dataset DS3 contains data of 2009-2016.

The details for each dataset are given in Table 11. Table 11
listed the numbers of patterns that been successfully gained
from each dataset by using the vulnerability classification for
patterns (VulClaP) algorithm – patterns are classified into six
classes with another one class that is Not classified. Those that
not detected, is categorized as Not classified. For example, in
CVE-2002-1932: Microsoft Windows XP and Windows 2000,
when configured to send administrative alerts and the „Do not

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

362 | P a g e

www.ijacsa.thesai.org

overwrite events (clear log manually)‟option is set, does not
notify the administrator when the log reaches its maximum
size, which allows local users and remote attackers to avoid
detection. This incident was not able to be classified by the
algorithm therefore considered as Not classified. The algorithm
had successfully detected the words that associate with
attackers, analyzed them but however, could not mapped the
avoid and detection to associate with TargetImpact category.
The accuracy of the model is measured using two metrics:
precision and recall rate.

Precision is the degree of confidence that the returned
patterns are accurate when the VulClaP algorithm is applied on
the data set. Recall is the degree of the ability to return the
patterns when the VulClaP algorithm is applied on the data set.
As given in the definition, between the two rates, the precision
rate suggests a better understanding of accuracy in the model.
Therefore, in later discussion the accuracy rate is used
interchangeably with the precision rate. For the purpose of this
paper, the discussion will use the first data set only, DS1. The
data has been analyzed and the summary is given in Table 11.

Table 11 shows the precision and recall rate for DS1 data
set. This table informs about how good or bad the prediction
could be made from the 500 samples of incidents that range
from year 1999 to 2004. The left column is the number of
actual pattern classes from the data. The middle column is the
number of true selected pattern that gained when analyzes
using the VulClap. The aim of the analysis is to predict the
value of the pattern based on several input of classifiers, which,
in this research are the four classifiers SourceRoot,
SourceLocation, TargetVector and TargetImpact. And the right
most columns are the total counts of the predicted pattern and
their precision rate, or accuracy.

TABLE XI. THE PRECISION AND RECALL RATE FOR DS1 DATA SET

Actual

Pattern
True Selected Pattern

Tot

al

P

Rate

 S T R I D E NC

S 8 0 0 0 0 0 2 10 0.80

T 1 53 1 1 1 0 1 58 0.91

R 0 2 100 0 0 3 0 105 0.95

I 0 1 1 34 0 2 0 38 0.89

D 0 2 0 0 93 0 1 96 0.97

E 0 1 3 2 0 116 1 123 0.94

NC 1 1 0 0 0 1 67 70 0.96

Total 10 60 105 37 94 122 72
500

0.92

R Rate 0.80 0.88 0.95 0.92 0.99 0.95 0.93 0.92

The last rows are the total counts of the recalled patterns
and their recall rates. The last cell diagonally at bottom right
denotes the sample size from either the sum total from row of

precision or recall .The bold values are the average rate for the
precision and recall rates. In this data set, the average rate for
precision and recall are both 0.92. The shaded areas are the
count of true predicted pattern in proportion of the total recall
or precision. Or, reading top-down, the analysis also shows that
VulClaP algorithm had recalled 105 samples to be in class
Repudiation, denotes by the last total row. And from that total,
100 samples are truly recalled as the Repudiation class, and
another five samples have been falsely recalled as EOP (3
samples), Tampering (1 sample) and Information Disclosure (1
sample), make the recall rate as 0.92.

B. Expert Validation

The validation was also done through expert opinion to
verify the correctness of the classification categories. The
experts are the people who is working in academic or security
industry with more than five years of experience, and may have
additional related professional certificate on top of their
knowledge and job experience. Five experts were selected to
argue on the vulnerability categories and three experts validate
on the frameworks pragmatic. The results justified that issues
such as ambiguity of words, redundancy in category, the
influenced of certain conjunction such as „and‟ , „or‟, the
generality of certain terms regardless of the application
version, the used of newer words are still able to be classified
its respected class. In addition, the slight changes of CVE
sentence structure and the usage of uncommon word were also
highlighted in the expert questionnaire and resolved as less
significant.

VIII. CONCLUSION

After the proposed work on the formal syntax and semantic
by using the BNF and the relationship notation, two activities
under analysis process are enhanced. The enhanced framework
is given in Fig. 7.

The red activities show the enhanced part. The issue of high
potential in redundancy is resolved by using a formal BNF to
represent the syntax and semantic schema. And the relationship
of vulnerability classifier is representing using the vulnerability
flow diagram.

In particular, this study contributes to the software industry
by assisting to formulate a secured software process framework
with vulnerability classification algorithm and vulnerability
flow diagram - an area that has been underestimating by
researches due to the difficulty to generalize the outcomes. The
significant of this secured framework that makes it different
from others is the ability of the vulnerability flow diagram to
visualize the precedent and antecedent of an exploit using the
simplified vulnerability pattern.

The main challenging task in this study is to formulate the
domain specific wordlist and domain specific schema for the
classification which is proposed to be further look into in future
work.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

363 | P a g e

www.ijacsa.thesai.org

Fig. 7. The Enhanced Vulnerability Classification Framework (E-VulCaF)

ACKNOWLEDGMENT

This project is supported by grant of
PJP/2018/FTMK(4B)/S01631 from Center For Research and
Innovation Management (CRIM), UTeM.

REFERENCES

[1] O. Rebolloa, D. Melladob, E. Fernandez-Medinac, and H. Mouratidis,
“Empirical Evaluation Of A Cloud Computing Information Security
Governance”, Information and Software Technology, vol. 58(3): pp. 44–
57, 2015.

[2] R. Shaikh and M. Sasikumar, “Data classification for achieving security
in cloud computing”, Procedia Computer Science International

Conference on Advanced Computing Technologies and Applications
(ICACTA), vol.45, pp. 493 – 498, 2015.

[3] J. Ruohonen, S. Hyrynsalmi, S. Rauti, and V. Leppänen, “Mining Social
Networks Of Open Source Cve Coordination”, Proceedings of the 27th
International Workshop on Software Measurement and 12th
International Conference on Software Process and Product
Measurement, IWSM Mensura ‟17, ACM, New York, NY, USA, pp.
176–188, 2017.

[4] A. Tripathi and U. Singh, “Taxonomic Analysis Of Classification
Schemes In Vulnerability Databases”, Computer Sciences and
Convergence Information Technology (ICCIT), 6th International
Conference on, pp. 686–691, 2011.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

364 | P a g e

www.ijacsa.thesai.org

[5] E.W. Burger, M. D. Goodman, P. Kampanakis, and K.A. Zhu,
“Taxonomy Model For Cyber Threat Intelligence Information Exchange
Technologies”, Proceedings of the ACM Workshop on Information
Sharing, vol.38, pp. 51–60, 2014.

[6] R. Abbott, J. Chin, J. Donnelley, W. Konigsford, S. Takubo and D.
Webb, Security Analysis and Enhancement of Computer Operating
Systems, NBSIR pp.76-1041, 1976.

[7] R. Bisbey, and D. Hollingworth. “Protection Analysis: Final Report”,
Technical Report ISI/SR-78-13, Technical report, Information Sciences
Institute, University of Southern California, 1978.

[8] E. L.Carl, R.B. Alan, P.M. John, and S.C. William, “A Taxonomy of
Computer Program Security Flaws”, ACM Computer Survey vol.26, pp.
211–254, 1994.

[9] Aslam, T., Krsul, I. and Spafford, E., “Use of A Taxonomy of Security
Faults”, 19th National Information Systems Security Conference, 1996.

[10] J. C. Munson, A.P. Nikora, and J.S Sherif, “Software Faults: A
Quantifiable Definition”, Advances in Engineering Software vol.35,
pp.327–333, 2006.

[11] G. S. Walia, and J.C. Carver, “A Systematic Literature Review to
Identify and Classify Software Requirement Errors”, Information and
Software Technology vol.51 pp. 1087–1109, 2009.

[12] J. Luo, K. Lo, and H.Qu, “A software vulnerability rating approach
based on the vulnerability database”, pp 1–9, 2014.

[13] M. Bishop, “Classifying Vulnerabilities”, 1999.

[14] C. Weissman, “System Security Analysis Certification Methodology and
Results”, Technical Report SP-3728, Technical report, System
Development Corporation, 1973.

[15] D.L. Lough, Thesis: A Taxonomy of Computer Attacks with
Application to Wireless Network, Technical report, Virginia
Polythechnic Institute, 2001.

[16] R.C. Seacord, and A.D. Householder, “A Structured Approach to
Classifying Security Vulnerabilities”, CMU/SEI-2005-TN-003,
Technical report, Carnegie Mellon, Software Engineering Institute,
2005.

[17] S.Eagle, S.Whalen, D. Howard, and M. Bishop, “Tree approach to
vulnerability classification”, Technical Report CSE-2006-10, Technical
report, Department of Computer Science, UC Davis, 2006.

[18] B. Biggio, , G. Fumera, and F. Roli, “Security Evaluation Of Pattern
Classifiers Under Attack”, IEEE Trans. Knowl. Data Eng. vol.36, pp.
984–996, 2014.

[19] A. Bollin, “Crossing the borderline- from formal to semi formal
specifications”, IFIP of Software Engineering Techniques: Design For
Quality, Vol. 227, pp. 73–84, 2006.

[20] L. Lowis, and R. Accorsi, “Vulnerability Analysis In Soa Based
Business Processes”, IEEE Transaction on Services Computing, vol.4,
pp.230–242, 2011.

[21] D. Last, “Using Historical Software Vulnerability Data To Forecast
Future Vulnerabilities”, IEEExplore, 2015.

[22] C. Haley, R. Laney, J. Moffett, J. and B.Nuseibeh, “Security
Requirements Engineering:A Framework For Representation And
Analysis”, IEEE Transactions on Software Engineering, vol.34, pp.133–
153, 2008.

[23] Lamsweerde, A. v., Brohez, S., Landtsheer, R. D. and Janssens, D.,
2003. From System Goals to Intruder Anti-Goals: Attack Generation and
Resolution for Security Requirements Engineering, Requirements for
High Assurance Systems (RHAS‟03), pp. 49–56.

[24] R. Villarroel, E. Fernandez-Medina, and M. Piattini, “Secure
Information SystemsDevelopment - a Survey and Comparison”,
Computers & Security ,vol.24, pp.308–321, 2005.

[25] V.M. Igure and D.R. Williams, “Taxonomies of Attacks and
Vulnerabilities in Computer Systems”, IEEE Communication Surveys &
Tutorials, vol. 10, pp 14, 2008.

[26] J. Maatta, J. Harkonen, T.Jokinen, M. Mottonen, P. Belt, M. Muhos, and
H. Haapasalo, “Managing Testing Activities in Telecommunications: A
Case Study”, J. Eng. Technol.Manage. vol. 26: pp.24, 2009.

[27] N.H.Hassan, S.R. Selamat , S.Sahib and B.Hussin (2011) “Towards
Incorporation of Software Security Testing Framework in Software
Development”. In: Mohamad Zain J., Wan Mohd W.M.., El-Qawasmeh
E. (eds) Software Engineering and Computer Systems. ICSECS 2011.
Communications in Computer and Information Science, Springer,
Berlin, Heidelberg, vol 179, pp.16-30, 2011.

[28] A.Schipper, H.Fuhrmann, and R.V. Hanxleden, “Visual comparison of
graphical models”, vol.10, pp.335–340, 2009.

[29] F.A. Braz, E.B. Fernandez, E. B. and M.VanHilst, “Eliciting Security
Requirements through Misuse Activities”, 19th International Conference
on Database and Expert Systems Application, pp. 328–333, 2008.

[30] M. Gupta, J. Walp, and R. Sharman, R., “Threats, Countermeasures and
Advances in Applied Information Security”, IGI Global, 2012.

[31] R.R. Linde, “Operating System Penetration”, National Computer
Conference, System Development Corporation, pp.8, 1975.

[32] S. Hansman, and R. Hunt, “A Taxonomy Of Network And Computer
Attacks”, Computers and Security vol.24, pp. 31 – 43, 2005.

[33] T. Katrina, C. Brian, and M. Gary, “Seven pernicious kingdoms: a
taxonomy of software security errors”, IEEE Security and Privacy, vol.
3, pp.81–84, 2005.

[34] K. Jiwnani, and M. Zelkowitz, “Maintaining Software with a Security
Perspective”, Proceedings of International Conference on Software
Maintenance, pp. 194–203, 2002.

[35] B.Potter, and G. McGraw, “Software Security Testing”, Security &
Privacy, IEEE vol.2,pp. 81–85, 2004.

[36] L.Desmet, P. Verbaeten, W. Joosen, and F. Piessens, “Provable
Protection against Web Application Vulnerabilities Related to Session
Data Dependencies”, IEEE Transactions on Software Engineering,
vol.34, pp. 50–64, 2008.

[37] A.M. Memon, “ A comprehensive framework for testing graphical user
interfaces”,2001.

[38] N.H.Hassan, S.R. Selamat and S.Sahib, “Establishing the Relationship
in Vulnerability Classification for a Secure Software Testing”,
International Conference on Advances in Intelligent Systems in
Bioinformatics, Chem-Informatics, Business Intelligence, Social Media
and Cybernetics (IntelSys), 2014.

[39] K. Alzhrani, E.M. Ruddy, T.E. Boulty, and C.E. Chow, “Automated Big
Text Security Classification”, IEEE Intelligence and Security
Informatics, pp. 1–6, 2016.

[40] Z. Moghbel, and N. Modiri, “A Framework For Identifying Software
Vulnerabilities Within Sdlc Phases”, International Journal of Computer
Science and Information Security, vol.9, pp. 203, 2011.

[41] U.K. Singh, and C. Joshi, “Network security risk level estimation tool
for information security measure”, IEEE 7th Power India International
Conference (PIICON), pp. 1–6, 2016.

[42] D.Papp, Z. Ma, and L. Buttyan, “Embedded Systems Security: Threats,
Vulnerabilities, And Attack Taxonomy”, 13th Annual Conference on
Privacy, Security and Trust, Institute of Electrical and Electronics
Engineers Inc., pp. 145–152, 2015.

[43] S.Neuhaus and T.Zimmermann, “Security Trend Analysis With CVE
Topic Models”, IEEE 21st International Symposium on Software
Reliability Engineering (ISSRE), pp. 111–120, 2010.

[44] A.Barua, S.W. Thomas, and A.E. Hassan, “What are developers talking
about? An analysis of topics and trends in stack overflow”, Empirical
Software Engineering, vol.19, pp. 619–654, 2014.

[45] J.Connolly, M. Davidson, M. Richard, and C. Skorupka, “The Trusted
Automated Exchange Of Indicator Information”, MITRE Corporation,
pp. 1–20, 2012.

[46] R. Khan, K. McLaughlin, D. Laverty, D. and S. Sezer, “STRIDE-based
Threat Modeling for Cyber-Physical Systems”, IEEE, 2018.

[47] M. Ostkamp, C. Kray, and G. Bauer, “Towards A Privacy Threat Model
For Public Displays”, Proceedings of the 7th ACM SIGCHI Symposium
on Engineering Interactive Computing Systems, EICS ACM, pp. 286–
291, 2015.

