
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

385 | P a g e

www.ijacsa.thesai.org

Development of a Novel Approach to Search

Resources in IoT

Nisar Hussain
1
, Dr. Tayyaba Anees

2

School of System and Technologies

University of Management and Technology

Lahore, Pakistan

AzeemUllah
3

The University of Lahore

Pakpattan Campus

Pakistan

Abstract—Internet of Things (IoT) referred to interconnected

the world of things like physical devices, cars, sensors, home

appliances, actuators and machines embedded with software at

any time, any location. The increasing number of IoT devices

facing challenges which are registration, integration, describing

sensor, interoperability, semantics, security, discovery and

searching. The current systems are suitable for limited number

of devices. Our ecosystem change day by day which means we

have billions and trillions of devices connecting to the Internet in

future. One major challenge in current system is searching of

suitable Smart Things from a millions or even billions number of

devices in IoT. For the purpose of searching and indexing, some

discovery methods and techniques are discussed and compared.

Those techniques and methods are studied and find out the

limitations and issued of the current system. Another challenge to

searching the Smart Things is a variety of description models for

describing the Smart Things. In this piece of work, a novel search

engine is proposed to search the Smart Things with variety of

description models. A web interface is implemented in this

research with HTML, JSON and XML formats. The description

models of Smart Things SensorML, SensorThings API and W3C

JSON-LD are implemented in the current proposed system.

Keywords—IoT; IoT resources; search engine for IoT;

SensorM

I. INTRODUCTION

The physical objects have the ability to connect with
Internet and share data in respect of Internet of Things. In
2020 the connected devices that are able to communicate with
Internet are more than 50.2 billion according to CISCO
prediction [1]. These physical objects are called Smart Things.
IoT provide a range of connectivity protocols, applications
and mechanisms to interoperability with existing
infrastructure.

In this regard, it„s essential to propose a search engine to
search the devices with the context of the user requests. There
are some standardized sensors description technologies which
are currently used in many systems. These technologies are
SensorML [2], SensorThings API[3] and W3C JSON-LD [4].
These technologies used different languages and formats. In
this research, we use all these technologies and parse into a
common format for supporting our system. Indexer helps us to
store and retrieve the data quickly than rational database
systems. Indexer also have the abilities to store structure and
non-structure data like simple text, relation Database data,

PDF format, JSON format, XML format and other structured
data.

Due to increasing significantly number of devices is a
problem of find out a proper device which is fulfills the
requirements of the user as well as machine transferable code.
Only searching is not enough but also supports reliability and
robustness with top ranking resources. It is also difficult as
compare to searching traditional web documents because of
traditional search on search limited attributes of web
documents. Another problem is that there is not a signal
standard of describing the devices meta-data. This problem
creates another challenge which is lack of describing standard
for describing functionality of the devices and resource.

A. Problem Statements

IoT platform is a scalable network that have huge amount
of resources which is needed to be fast search and store.
Traditional technique to store the resource description and
meta-data using database system has some limitations like
storing documents, non-structured data and rank up the search
resources. These limitations can be solved by the indexer
which can store resource description and provide facility to
ranking the using scoring technique. In this research we use
different sensor description formats to index descriptions of
resources and also ranking up the search results for high
performance and reliability. As compare to database systems
indexer is more flexible to storing and searching of large data.
Only indexer is not enough to search the resources another
requirement is user interface which can help user to search
resources.

B. Objectives

In this research different sensor description models are
studied and find common descriptions. Different models have
different properties and different technologies so we need to
parse each model into a shared schema. The parsed description
will used further process for a common model to store into
indexer. Indexer store description of thing and supply
interface to query and sorted its description. After storing the
description we need an interface to query the stored
information and apply different algorithms to rank the sensors.

 This research compares different sensor description
models.

 Find similar fields between different models and
descriptions of Smart Things.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

386 | P a g e

www.ijacsa.thesai.org

 On similarity base set fields for storing in indexer
under single core.

C. Contribution

This research work has developed a search engine for IoT
with following functionalities:

 Parsing Smart Things descriptions: Every description
model uses different languages for describing the
Smart Things so there is need to parse the description
from a related parser.

 Indexing of variety of description models: OGC
SensorML, SensorThings API and W3C JSON-LD
description models are tested in this research.

 Collecting required meta-data from descriptions:
Common fields are fetched from description models
and bind into a common format without losing the data.

 Searching of Smart Things: This research can help to
search the Smart Things using keywords, types of
Smart Things, name of location and Geo-Spatial
searching within defined range.

 Open API: RESTful API service is provided for
indexing and searching the Smart Things.

II. STATE OF THE ART

A. Internet of Things

The term Internet of Things (IoT) was not officially named
until 1999. The pioneer in this term is a British Kevin Ashton
that describes a device in the physical world that can
communicate with Internet using sensors [5]. After some time
Ashton shows the connectivity of Radio-Frequency identity
[6] tags which are used in industry to calculate and track items
without human interference. Today, the IoT has emerge as a
modern term for representing sensors Things connected to
Internet with description of computing capability cover
objects, devices, sensors, and other daily used items.

A variety of groups studies the wide range of forecasts
approximately the potential impact of Internet of Things on
the Internet and the economic system throughout the following
five to ten years. Cisco, predicted that the number of IoT
objects connected to the Internet is greater than 50.2 billion by
means of 2020 [7]; Morgan Stanley, however, predicted 75
billion networked objects in 2020. Huawei predictions 100
billion IoT connected devices in 2025 [8]. McKinsey Global
Institute indicates that the economic impact of IoT on the
international economic system may be as tons as 3.9to 11.1
trillion with the aid of 2025 [9]. The large number of IoT
object is grouped and define a term Smart which leads to
smart home, smart transportation, smart grid station, smart
vehicle etc.

A simple approach is discussed in [10] to discover IoT
resources. Discovery is a technique to acquire the data and
resources without the knowledge of the source of the data
using some discovery applications.

The main characteristic of IoT is "heterogeneity" which

means the devices, sensors, and actuators are diverse in nature.
The IoT devices used different protocols, different hardware,
different data rates etc. The seconds challenge is storage
capabilities, energy capabilities and lastly, the format of data
("audio", "video", "streams", "numeric", "textual") producing
are also diverse in nature and the standards also. This diversity
poses the challenge to discover things. IoT is an important
source of producing data that is termed as big-data. The
diversity in IoT data creates a challenge to discover the
required data for the specific organizations also has the
challenge of store heterogeneous data. We need a common
framework which covers machine readable representation of
data from different formats and stores. There is also need an
interoperable mechanism to interoperate devices. These all
challenge are needed to be solved for discovery.

The current technique to discover resources is directly
connected with the resources using some applications that are
restricted only to publisher resources not to discover publicly
available resources. The application only discovers the
publisher resources which is limited area because of publisher
implement only own resources technologies to discovery but
in the real world, the discovery mechanism covers all devices
and resources which are available publicly and also support to
the diversity of the protocols, formats, standards etc. To solve
the issue of discovery there is need to describe the resources
and devices in a standard format and need to subscribe itself
with the discovery engine. The description models solve the
diversity problem and discovery engine can easily parse the
description of the sensors and resources. So the Discovery
Engine provides the interfaces to machines and also for
humans to discover the resources. Discovery phase has
multiple paths to discover the real world objects using some
structured models and apply some kind of knowledge driven
queries for context understanding which is possible using
discovery mechanism.

B. Resource Discovery Techniques

In [11] comparison analysis for different resource
discovery mechanism that are currently available as well as
for future aspects is discussed. Author also proposed a search
engine based solution for discover resources. Following are
the techniques that author compare.

1) P2P and distributed resource discovery: A layered

architecture approach is applied in [12] using hash table data

structure for distributed resource discovery with aim of 3

features: range query, p2p routing, and multiple attributes

indexing. According to the author, most present techniques do

not have the capability of multi-attribute and range queries. A

distributed resource discovery mechanisms is discussed.

This solution support large number of heterogeneous
devices. This technique is applied for discovery and
registration of resources. Author also implements the
technique and verified with sampling data and then evaluate
on time and response base. An automated service and resource
discovery mechanisms are discussed in [13]. This solution is
fully automatic and not need to human intervention for
configuration.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

387 | P a g e

www.ijacsa.thesai.org

2) Centralized architecture for resource discovery: Jara et

al provided a technique for the global resources discovery of

devices and sensors across numerous conditions. The

technique is called discovery advanced which allows sensors

to be registered into a centralized registry. Another service

oriented framework is suggested based on RESTful [14] API

and JSON. The proposed framework integrated with

centralized registry that is responsible for every activity. The

resources categorized base on domains and the indexing of the

resources also based on the domains. This framework also has

a problem because resources are only register on base of

domain.

3) CoAP-based resource discovery: A service discovery

technique is used in [15] by using a RESTfull web server

"./wellknown/core" that is responsible for any client request

for service discovery [16]. When a client request to the server

the server reply with a list of available resources with the

attribute that specifies the type of the meta- data of the

resource. This may use in numerous areas of a network but

have also some limitations such as first-time registration.

CoAP cannot implement the first time registration or

announced itself the resource [14].

4) Semantic-based resource discovery: In [17] proposed a

framework for discover resources with the help of Service

advertisement. This research provides a semantic enhanced

service proxy framework for Internet of Things to service

control, service creation, and service discovery and service

invocation mechanism in IoT domain. For this purpose author

proposed a framework using SOA [18][19] design an ontology

for semantics in the resources and a query based service

reroute mechanism, micro-formats for describe the resources

and a service advertisement mechanism for easy registration

and discovery.

In [20] a technique is purposed to discover resources by
using micro formats and micro data for WoT named
DiscoWoT. Author user the XML, JSON schema and RDF
technology to describe the resources and discover the
resources using HTTP protocol for query the resources using
GET and POST method and the response of query return by
Json.

In [21] proposed a computational method for semantic
similarity based on ontology and concepts, which is used to
discover the resource according to user requirements. This
method calculated the semantic distance between two
concepts and length between two concepts.

C. Overview of Search Engines in IoT

The traditional search engine uses the crawlers to
discovery and searches the documents on the Internet. The
major problem with IoT search engine is the sensors,
actuators, and other resources are mostly battery powered
which is not available all the time. So the crawlers [22] have
not collected the information for the search engine. Another
problem with this search engine security, most of the sensors
are deployed by the owner of a house, shop, industry etc. so

they are not allowed to access the most resources like camera,
door lock etc.

Following are the some proposed search engine for IoT
from the literature.

1) Keyword-based search engine: A keyword base for

physical object search engine [23] "Snoogle" is proposed. As

the physical object has the ability to communicate that„s mean

they make IoT. The physical object is like sensors that have

some description. The author claimed that this is the first such

kind of Information Retrieval system for the physical objects.

Secondly, the author compares his results with existing

techniques for reduced data transmission overhead. The

response system with bloom filter combine with the search

engine is the new concept that is included in this research.

Thirdly introduce an algorithm which is used for reducing the

cost of the query and response time of the client. Fourthly

privacy and security is resolved with cryptography is used.

Fifth, develop a simulator to simulate the prototype and

validate the proposed solution.

2) Location-based search engine: A SenseWeb

infrastructure is introduced in [24] in which the private

sensors shared their data on a public web. Owners of the

sensor upload the data of the Sensor using a GUI on a web.

The uploading data only for the private account is not enough

if we shared our data with other to use by other applications

and human for gain information. With sharing the data help to

take actions before an incident as author use example of

thunderstorm hit a cab and can automatically share data with

other department or other cabs to prepare in advance. Another

example of soil sensor for research for students about soil

problems and features using the shared data set. SenseWeb is

providing a mechanism to shared data among different

applications. SenseWeb provides the facility for different

applications for shared data but in a uniform way. This

architecture is based on Coordinates and Data Transformers.

3) Real-time search engine: In [26] search engine Dyser is

proposed that have the ability of scalability of Things and also

support rapidly change contents or in another word real-time

search engine using two approaches, A) Proactive which

called Push approach in which sensor update the index itself

and query response by the search engine. B) In Pull approach

when a query is initiated then request sends to the sensor for

required data. We know that in future there are more sensors

than the queries. So the Pull approach is better solution other

the PUSH approach in which a huge amount of data produced

at real-time. The main assumption of this research is there are

many sensors that produced data periodically. So the sensors

and entities are assigned a URL to access. In this research, the

language for the query is not specifically used a predefined

language like SPARQL [25] or SQL. Implementation of this

research is using Java and PHP technologies. Sensor

Gateways are implanted using SOAP [26] and Java

technologies for fetching the information. Gateways also

generate automatically pages for testing purposes using REST

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

388 | P a g e

www.ijacsa.thesai.org

interface. This feature minimizes the cost of the reading and

indexing of the pages instead of gateways generates its self-

page and required only current states of the sensors. After that

prediction model is mapped based on states.

4) Hybrid search engine: A hybrid search framework [27]

proposed for searching the IoT elements in three different

ways. Here this research will offer to solve this problem by

combining the three different techniques in a search engine.

The user can search the resources using key-word: user can

search the resources using keywords, location base: user can

search the resources using specific location and state-base:

help the user to search resources using state or value based.

This system also called real-time searching because of

sampling of data from resources continuously updates [28].

5) Things description models: This section describes the

details about the different description models for describing of

Smart Things. The models which are discussed in this section

are SensorML, SensorThings API and W3C JSON-LD.

a) SensorML: SensorML is OCG standard designed for

the Sensors and actuators. The main features of this standard

are interoperability between devices and also with web nodes.

Sensor Web Enablement which is controlled by the OGC. In

SWE provided the encoding and interface for Sensor Web

which is used by applications and services for accessing

sensors. SWE defines the following prototypes language

which provides SensorML, O&M, SOS, SPS, and SWE-CDS

[29]. The current version of SensorML is 2.0 which is defined

by the XML language. This provided structure for the process

and processing which is related to measurements and post-

measurements of the observation. SensorML supports two

types of the Physical objects, Physical System and the

Physical Component. A SensorML provides the following

descriptions for defining the Meta data and details description

of the sensor or system.

Fig. 1. Sensorml Namespaces and Schema Tag.

 definition

 type Of

 configuration,

 features Of Interest

 inputs

 outputs

 parameters

 modes

XML heading or starting tag of SensorML with the
following namespaces: SensorML (Sensor Model Language)
"xmlns:sml" used to define the physical objects with a model
called SensorML [30]. SensorML provides two types of
models for defining the complete physical system and single
component.

In figure 1 the GML (Geography Markup language)
"xmlns:gml" name space is used in SensorML to provides the
XML based grammar for defining the location of the Physical
Components. SWE (Sensor Web Enablement) "xmlns:swe"
provide facilities to developers for defining the physical
components e.g. sensors, actuators, transducers.

b) OGC Sensor Things API: The OGC SensorThings

API offers the open, geospatial-enabled and unique system to

interconnect the Internet of Things (IoT) [31]. SensorThings

has the capability of manage sensor data, devices, and

applications associated with IoT. SensorThings API

implements two main elements and each element is managed

by a component. a) Sensing part provides the metadata and the

observation of sensors with the capability of heterogeneous

devices [32]. The second Tasking part is not implemented yet

and this part is used for sensors and actuators parameterizing.

SensorThing API used REST web services, JSON language

for manipulation and MQTT protocol for communication [33].

Sensing part of this standard also provides the GET, PUT,
DELETE and POST methods to create, delete and update the
applications and sensors [34]. This is part is developed based
on Observation and Measurement model. This part also
provides the location of the Sensor or Thing which helps the
application to identify the position of the sensor deploy. The
following figure 2 displays the Entities of the OGC
SensorThing API which is discussed in details.

Fig. 2. OGC SensorThing API Thing Entity.

Each entity manage two types of concepts a) attributes and
b) relationship with other the common attributes that are
defined the id and self-link of the entity which is used for
processing and locate the actual data from the implemented
server. Here are the entities which are offered from
SensorThing API.

Thing entity: This Entity represents the Thing.

Observed property entity this defines the observation that
is covered under a Thing, This entity main feature provides
the definition of the observation of the sensor or Thing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

389 | P a g e

www.ijacsa.thesai.org

Observation entity describes the details of the observation,
DataStream, phenomenon time and feature of interest in for
understanding the context of the Thing as shown in figure 2.

Feature of interest defines the context which is required by
the user for observation. This entity helps the user to
understand the context or observations in a particular place or
location.

c) W3C JSON-LD: W3C proposed a language format

for interoperability with machines using JSON extends to

JSON-LD. Linked Data provides serialization of links to

different documents and sites using JSON for interoperability.

JSON-LD used JSON based storage because of JSON-LD

follows the same format of the JSON.

Before you begin to format your paper, first write and save
the content as a separate text file. Keep your text and graphic
files separate until after the text has been formatted and styled.
Do not use hard tabs, and limit use of hard returns to only one
return at the end of a paragraph. Do not add any kind of
pagination anywhere in the paper. Do not number text heads-
the template will do that for you?

Finally, complete content and organizational editing before
formatting. Please take note of the following items when
proofreading spelling and grammar:

III. RESEARCH METHODOLOGY

A. Solr Indexing Tool

For the purpose of the storing sensors description in this
system, we use the Solr [29] that is working on the top of
Lucene. Solr not only provides the indexing also support for
analyzing and searching using RESTfull web service. The
documents which are supported by the Solr are PDF, Word
documents, Text Files, Rich Text Formats, XML, and JSON.
Solr also support multiple databases connectivity and index
data from the database.

B. Parser

SensorML uses XML technology and W3C JSON-LD uses
JSON with Linked Data technology which is needed to be
parsed for obtaining required data.

1) Orchestra XML Parser: Orchestra XML parser [30]

version 3.0 is used which is an open source parser specially

developed using PHP for web service. This Parser used for

parsing the SensorML document which is complex as

compared to the simple XML file.

SensorML used not only nested tags but also attribute so
there is need a proper parser for avoiding the loss of the data
which is complex to handle by the simple document reader.

2) JSON-LD Parser: Lanthaler [31] developed JSON-LD

parser which is an open source parser that is officially used by

the JSON-LD. This parser provides Expand, Compact, Frame,

Flattern, RDF and String formats. By using this parser we use

the Expand method to collect sensor description form the

JSON-LD format. The version of Lanthaler JSON-LD 1.2 is

used in this system.

C. APIs

In this system, we use two API„s which are Google Maps
and Solarium which is providing connectivity between Solr
server and Web service.

1) Google Maps: Google Maps [32] is a web service

which provides maps of the world, street view, 360degree

view of the globe and many other services. In this system, we

used the Google Maps to fetch the locations using coordinates

which are offered by the sensor. Location name provides also

an easy search for searching sensors for a particular location.

2) Solarium: Solarium [33] is a client library for

providing services to PHP frameworks by connected with

Solr. Solarium provides setting parameters, Modifying query

or expanded a query, create indexing documents, Provide

CURD operation, building strings, hiding all this with an easy

to use API, which is actually your business logic.

D. Web Framework

Laravel Framework [34] is an open source MVC
framework which provides integration of API„s and also a
RESTful Web service. The version of Laravel 5.4 is used in
this system. Laravel not just providing web framework also
provide such as authentication, routing, sessions, and caching.

IV. IMPLEMENTATION

A conceptual model of the proposed architecture is
provided. The proposed architecture is implemented using
several different software/hardware technologies. This chapter
describes a prototype implementation of the proposed layered
architecture using APACHE, JAVA, XML, JSON, PHP and
MVC framework.

A. Proposed Architecture

In order to complete the proposed solution the layered
approach is used to Index and Search the Smart Things in the
IoT using a search engine technique.

Figure 3 shows the proposed architecture which support
indexing and searching large number of Smart Things, this
system provides the following functions.

 Indexing Smart Things: The description of the Smart
Things can be indexed using the WEB and RESTful
API interface.

 Parsing Description Model: This system automatically
detect sensor model language and select parser to
collect information.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

390 | P a g e

www.ijacsa.thesai.org

Fig. 3. Purposed Architecture.

 Analyzing Data: This system also analyze the data
from the parser and convert it to the proper format
under a common schema.

 Collect Structured Information: When the model is
parsed this system collected selected fields which are
required by the system for searching and indexing.

 Convert coordinates to location: Smart Things are
deployed on different locations which are support to
Geo-Spatial search. The location of sensors are in GPS
coordinates latitude and longitude. The coordinates are
needed to further process to fetch name of location.

 Creating Indexes: After collecting and processing the
required data this system creates indexes and store
them to the indexer.

 Searching Smart Things: The proposed solution
provides WEB interface and RESTful API for
searching Smart Things with HTML, JSON and XML
format.

The proposed architecture consists on four layers
Abstraction layer, Management layer, Access layer and
Application layer.

1) Abstraction layer: This layer covers the sensors

description that supports different models of sensors and

Things. Different sensors descriptions models has different

capabilities to describe the sensors. The different description

technologies which are used in this research are OGC

sensorML, OGC sensorThings API, and W3C JSON-LD.

2) Management layer: In this layer, the description of the

sensors parses and index to indexer. First we check "Sensor

Description" against the schema of the description models. If

Description passes the Schema Model then the required and

common attributes of the sensor mapped to our required

schema attributes. Using this technique the Sensors

Description is now in a common format that is matched our

model next step is to store the Sensor Description to the

indexer. Because of different description models converted

into a common format so there is no need to indexing the

Sensor Description separately instead of single indexer.

3) Access layer: This layer supports the connectivity of

the Application Layer and the Parsing and Storage Layer.

Query Parser, Optimizer and Things.

4) Application layer: This layer provides the interface to

the user for registering their Things and also querying to

search engine. This layer support multiple interfaces for web,

sensor, machine, and mobile also support open API for query

and register things using REST API Service with different

methods.

B. Abstract Languages and Model

Description languages of the Smart Things which are used
as a standard, have the variety of sections, fields, and
attributes. Description models provide identification as well as
observation of Smart Things but our system not required all
the details from the model but only a few important fields and
attributes that are common in all the description models.
Follow table describes the fields and attributes with datatype
which are required from all implemented Description
language models.

1) OGC SensorML: SensorML describe the Smart Things

using XML language.

ID: Tag <sml:PhysicalComponent gml:id=
MY_SENSOR‖> provides the attribute of "gml:id" for ID of
the sensor.

Name: Tag <gml:identifier> describe the id of the sensor.

TABLE I. COMMON REQUIRED FIELDS FOR SEARCH ENGINE

Fields Type Example

1 id string Davis7817

2 name string urn:davisweather:7817

3 description string a simplet thermistor sensor

4 Coordinate doubl

 s e 47.8 , 88.56

5 http://www.opengis.net/def/crs/EPSG/0/4

 uri url 326

6 type string weather station

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

391 | P a g e

www.ijacsa.thesai.org

Description: SensorML use <gml:description> to provide
the short description of sensor. Coordinates: Tag
<gml:coordinates>47.8 88.56</gml:coordinates> in

<sml:position> provides the latitude and longitude for the
sensor.

Uri: Document itself.

Type: Tag <swe:elementType name=temprature> in
<swe:DataStream> provide the type of the sensor.

2) OGC sensorthings API
{

"Thing":{
"@iot.id": 252560,

"@iot.selfLink": "http://sensors.example.com/v1.0/Things(252560),

"name": "Humidity Monitoring In a Mall",
"description": "Collected the Humidity values of different

shops in a mall"

}
"Location": {

"location": {

"type": "Point",
"coordinates": [30.133, 49.08]}}

ID: in Thing, object "@iot.id" provides the id of the thing.

Name: The name attribute also provided by the Thing
object with name attribute. Description: Thing attribute also
contains the description attribute for the short description of
the sensor.

Coordinates: Location object describes the location object
with the array of latitude and longitude under the coordinates
array.

Uri: Under the Thing object the attribute @iot.selflink
provides the URI of the thing. Type: The type of the Thing is
described under the object of DataStream with name attribute.
We tokenized the name to get the original type of the sensor.

3) W3C JSON-L
{ "iot": "https://iotdb.org/pub/iot#",
"iot-attribute": "https://iotdb.org/pub/iot-attribute#",
"iot-unit": "https://iotdb.org/pub/iot-unit#",
"vocab": "http://www.example.org/vocab#",
"sensorID": "iot:uuid",
"sensorName": "iot:name",
"sensorDescription": "iot:description",
"sensorValue": {

"@id": "iot-attribute:sensor.chemical",
"sensorUnit": "iot:unit",
"timestamp": "iot:datetime",
"sensorType": "iot:type",
"sensorUrl": "iot:uri",
"sensorGeo": "http://schema.org/geo",
"latitude": {

"@id": "http://schema.org/latitude",

ID: sensorID describe the ID of the sensor as

"https://iotdb.org/pub/iot#uuid": 5484 Name: "sensorName"

describe the name of the sensor as
"https://iotdb.org/pub/iot#name":

"Flam Sensor with Servo Motor" Type: sensorType
describe the Type of the sensor as
"https://iotdb.org/pub/iot#type":

"Flam"

URI: sensorUrl describe the URI of the sensor as
"https://iotdb.org/pub/iot#uri": http://www.sensors.

Coordinates: http://schema.org/geo": latitude and
longitude attributes defines.

C. Management Layer

In this Layer there is discussion about how an Description
Model is dispatched with the Schema and pass the Schema for
successful parsing.

1) Things modeling languages validator: A schema is a

language for describing the information about the tags and

attributes which are used in the XML or other languages.

There are different schema languages for XML like DTD and

XSD for defining the schema of the XML. The XML its self

not enable to provide meanings so we need to use the schema

for defining the meanings to the tags and attributes, associate

the attributes or tags to data types, control the appearance of

the tags or positions of the tags and attributes, provide

documentation for machine readable and for human readable

and proving the formal definition to one or more documents.

As like XML schema validator we have JSON schema
validator also which validate the JSON against JSON Schema.
Before processing further to parse or obtain data from the file
or from the server we need to verify the attributes against the
schema. JSON-LD also has the capability of multiple and
complex data types which are described under the @context
object to validate each attribute with data types.

Schema validator also helps us to verify the uniqueness of
the data from different resources. This mechanism helps to
produce a compatible system with all other IoT resources
which are wishing to connect with our system. If the validator
passes the data then process further otherwise discard the
processing and throw an exception of error a code for response
to the requester.

2) Smart things description language parser: This module

parses the Things modeling; Languages after validating the

schema of the related Model. When the schema validates the

document of Things then the next procedure is started which is

parsing. The main purpose of this module is parsing. In simple

this module collected the related information from the

document which is required. This module collects all the

attributes step by step procedure which is defined by internal

logic. We need three different model parser because of we

implanted three different Molding Languages.

 SensorML used XML language to describe the sensor
meta-data and description. Our proposed work works
on WEB, so that we use a PHP language to parse the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

392 | P a g e

www.ijacsa.thesai.org

model. XMLReader is used to read the document.
Because of XML has the capability of nesting tags. So
we have a lot of processing to collect required
attributes. As mention early in Background Study
chapter under the section of SensorML, The XML
document has multiple namespaces so we need to
examine all the namespaces for collected related data,
not unrelated data.

 SensorThings API used JSON for describing the
Sensors and Things. This Modeling Language has also
other related objects like observations, locations, data
streams etc. We need only required attributes which are
in the entities of Things, Sensors and Location. So we
need recursive processing to retrieve the all required
attributes because of the entities have different URL„s.

 W3C JSON-LD is based on JSON language for
describing the Smart Things. All required attributes are
defined in same file. After collecting the required
attributes from these description models the next step is
to convert into same schema called Thing Schema for
removing and refining the attributes and for further
processing.

3) Smart things indexer: In this module, the collected

attributes are mapped to the internal schema and refined. The

refinement of the collected attributes is necessary because of

the use of the different Modeling languages. In this module,

the collected attributes are formatted in common data-types

because of the internal indexing system. If the format system

is not used then we have another problem which is the

heterogeneity of the Modeling Languages. To solve the

heterogeneity problem there is need of different indexer and

when we query the data we need to combine the indexer on

the query. So one problem creates another problem to solve

this problem the best way is to convert the data types into

same data types without losing the data. One attribute which is

URI is used for getting original data from the sensor.

Another requirement for location-based query needs
because of human search with an area. But in the Modeling
Language cannot provide the location names but only
coordinates latitude and longitude. We have another scenario
which is query base on location. To solve this issue we have
Google Map API which is helping us to convert coordinates to
location. Google API returns the Country, State, City, Postal
code and street address. This information is enough for
searching sensors based on specific locations. The attributes
which are required from modeling language are mentioned in
4.1 tables. Required processing done thing information sends
to indexer to store.

4) Indexing descriptions of smart things: This module is

the major part of the search engine which holds meta-data of

the Things. For index meta-data, we use lucene Solr which

provides RESTfull API for selecting, updating and inserting

structure data. Solr provide the customized schema to store

structure documents. For meeting the system requirements, we

customize the schema.

Solr work as a cloud service and use JAVA language. So
we need an API to interact with Solr because of this research
deployed on HTTP server. A plug-in named Solarium PHP is
used for connectivity with the Solr and with our server.

Solarium PHP provides connectivity and also the
mechanism to query and updating the index, customized
schema and other facilities. Following are the steps to index
the sensor.

 After parsing the sensor to the schema, the converted
schema transforms as Solr document (Thing) for
storing.

 Initialized a client and open connection with Solr using
Solarium PHP API and send the data to the Sorl.

 Solr check income data with the ID. If the ID already
exists then update the data and if ID does not exist then
new document tokenized and store in Solr Indexer.

 After updating the Things Solr response back to the
client with Code and Query Time.

 If the Thing is not updating within a given time period
a service delete the document from the indexer.

Solr has the capability of handle multiple clients and
queries at a time by distributed mechanism.

D. Access layer

This layer provides query, optimization, results, ranking,
importing and pulling things from servers and our system.
This layer also helps us to connect with the user interface
using HTTP requests.

1) Importing things: In this module importing mechanism

is implemented in which user can import things and sensors

using Modeling Languages which are used in our system.

Using RESTful Web Service ./import/ we can import Things

and Sensors.

 SensorML ./import/sensorML/ used to import
sensorML document which is written in XML
language.

 SensorThings ./import/sensorThings/ used to import
sensorThing document which is written in JSON
language.

 W3C JSON-LD ./import/W3CJson/ used to import
W3C statandard JSON-LD document which is written
in JSON-LD language. These documents are sent to
validator Module in Parsing and Storage Layer. After
completing the Parsing process the document store in
indexer and response back to the user using back chain
process. After successfully storing the document to
indexer the document its self "file" is deleted from the
server.

2) Pulling smart things from sandboxes: In this module,

we can pull Sensors or Things from Sandboxes. SensorThings

API implemented by other service providers so we have the

capability of pulling data from that service provider which

publicly available. E.g sensorup.com implements the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

393 | P a g e

www.ijacsa.thesai.org

sensorThing server and also provides the open access to the

server for working with the sensorThing server. We need only

the URL of Things our system provides the facility to pull all

data from the server in the recursive fashion.

Here is the implemented service http://toronto-bike-
snapshot.sensorup.com/v1. 0/Things by using this URL in our
system all Things that are available for public fetched and
other attributes like "Location" are also fetched by using
internal logic.

3) Query processing engine: Query parser accepts the

query from the application layer and sends it to Optimizer for

optimization for query for better results. Query parser

following the step to complete the process these are following:

 The Application Layer has multiple techniques
implemented so there is need to identify the query first
then send to query parser.

 All application use HTTP protocol so we can easily
understand the query because of defining a RESTful
service.

 All search requests are created using GET method and
send to /search/.

 Our system supports two types of queries keyword and
Geo-Spatial.

 When query receives it evaluate the types of the query
and dispatch the query to the optimizer to optimize the
query for better results.

Here are the implanted query types in this system. This
search engine support two types of query a) Keyword Based
Query and b) Geo-Spatial Based Query.

4) Keyword query: Keyword Query support full text based

query for search Things. The user can query with the keyword

and this system fully supports all the attributes for the specific

keyword. RESTful URL "./search/keyword" accepted the

request of the keyword query. "Keyword" is the text which is

requested to search. The user initiated the query using HTTP

protocol. If the keyword based on more than one word then

the words tokenized based on space and make the search for

each token.

5) Location/geo-spatial query: The second approach is

Geo-Spatial Query which is a complex query. The user can

search for thing using a specific location and also within a

range of the specific location. Geospatial Query needs three

attributes latitude, longitude, and distance.

 "Latitude" which define the angular distance of the
earth from north or South Pole.

 "Longitude" defines the distance of the earth from the
east and west.

 "Distance Attribute" defines the distance from latitude
and longitude in KMs.

 "Format" attribute defines the results format current
supported "JSON and XML". So the user replaces
format with JSON or XML.

Using all these three attributes query for Geo-Spatial
Query use the RESTful URL as

/search/lat/?/long/?/dist/?/format. lat defines the latitude
and first "?" is latitude value, long defines longitude and
second "?" is the value of the longitude and finally, dist.
defines distance in km third "?" is the value of the distance. If
the user wants distance in miles then use dist.*0.621371.

6) Query and results optimizer: This module helps to

optimize the query and search results and control data between

Indexer in Processing and Storage Layer and with Core Layer.

7) Query optimizer: The raw query may use the more

resources that not suitable for the huge amount of data. so

there must be a mechanism to sort out this problem. We need

an optimizer minimized the cost of the resources because of in

future the data is generated more and more that cause the

system speed down. The query optimizer also supports for

multiple indexers. Optimizer select different query planner for

the same query by the internal logic and select best query to

minimize the overhead and resources.

8) Results optimizer: While the results against the query

are retrieved from the Indexer there is need to optimize the

results. All the results may not require by the user there is

need a ranked results base on frequent results or most search

Things. So the optimizer sorts out the results and rank based

on the score of the Things. After ranking and sorting the

results send to Search Results module.

9) Search results: Optimizer sends the results to this

module. This module first converts the index documents

which is return against the query to the required format. As

mentioned earlier in the Query Parser format tells the system

to in which language output is generated. The following

attributes are defined in each of the formats. Id: defines the

unique id for identifying the sensor. Name: defines the name

of the according to Modeling Languages. Description:

provides the short description of the sensor. lat-long: provide

the latitude and longitude in "31.56, 65.66" format separated

by ",". Type: defines the sensor type e.g "temperature,

motion, vibration" etc.

E. Application Layer

Currently, Application Layer support only HTTP protocol
for displaying results and query interfaces using HTML and
CSS technologies to interact with the system. The Layer also
provides features to another system to directly interact with
the system by using open REST API with an authentication
token. WEB interface used to directly interact with the system
by the human. Other network devices also interact with the
system using RESTful Web Services. This layer also provides
the service to other systems to creating, updating, querying
and resulting with the system. This layer also supports
multiple languages responses back to the requester. This
system helps the user to search and store their sensors and
things using multiple Modeling Language in the web browser.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

394 | P a g e

www.ijacsa.thesai.org

Commonly IoT devices connected to the centralized hub
for accessing and storing data. In this system, there is no need
of centralized hub system we use the web browser to handle
the things. The web browser connects to the cloud using
REST APIs so there is no need of getting access to the server
or hub.

New Thing and Sensor also added to the system using API
which is provided in this system for achieving the desired
operation can be solved under the following modules.

1) URL resolver: This module translates the URL and

solves the protocols issues. Currently, support HTTP protocol

only so the protocol parameter set defaults to HTTP. This

module also understands the request and map over the correct

model for processing further.

2) User interfaces: This module provides the UI for

interaction with the system using HTML, CSS, and Javascript

language. This module works under two different conditions

one for guest and one for the system user.

a) Guest: This UI for available for the public for

searching the sensors, get the description in different formats.

The formats that are used fo display HTML and CSS used, the

user also has the ability to get the description in XML and

JSON format.

b) System User: This user need the login to the system if

he uses the WEB, otherwise the user can also send the request

to the system using authentication token. Authentication token

provides to the user after registration with the system. System

user has also the ability to register and update Thing directly

from any application or language using POST and PUT

method.

3) Inserting thing: System user has the ability to insert the

Things using the authentication token. For inserting new

Things with the system user can use POST method to the

REST URL /thing/insert. Parameters that are required to

create the new Thing are defined in Table 4.1. An extra

parameter that is required for authenticating the request for

security purpose is "Token". "Token" is string type and

replaces the value of authentication token which provides the

system on registration. When request successfully accepted a

response will get in JSON format with the id of the Thing.

This id uses next time to update the Thing.

4) Updating thing: System user has also the ability to

update the Things after creating the Thing by using the

authentication token. For updating the Things with the system

user can use PUT method to the REST URL

http://www.example.com/thing/update/id. Parameters that are

required to update the Thing are defined in Table 4.1 table. An

extra parameter that is required for authenticating the request

for security purpose is "Token". "Token" is string type and

replaces the value of authentication token which provides the

system on registration.

5) Query interface: The UI also helps to query the system

with Query Interface. Two types of queries are supported

currently keyword and Geo-Spatial. The user can switch from

keyword to Geospatial based query by selecting radio button

on the page of Search Things.

6) Result interface: After the query to search engine

results are returned from the system which is displayed on the

results page on the system.

V. RESULTS AND DISCUSSION

Few experiments were conducted to validate the Indexing
and Searching of the prototype. Indexing technique
implemented using Solr by providing the WEB interface and
also searching using the same interface. A REST API is also
tested and validated by Indexing and Searching of Smart
Things for machines. The proposed solution also support for
indexing Smart Things from different sandboxes.

A. Results

This research helps the sensors description model to parse,
index and searched. Following are the results which are
performed in this system.

1) Indexing: Figure 4 provide the GUI to index the

description of the Smart Things. This interface has the ability

to select the variety of description models that are selected

more than one at a time.

The selected models are parsed using different parsers and
then converting into the shared schema that is shown in the
figure 5 the common fields that are same in models are
fetched and converting the fields into same data types.

Fig. 4. Indexing Smart Things by Uploading Descriptions.

Fig. 5. Smart Things Description Parsed into Shared Schema.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

395 | P a g e

www.ijacsa.thesai.org

Fig. 6. Smart Things Descriptions Indexed in Solr.

Fig. 7. Smart Things Description Index Response from Solr.

After parsing the models into shared schema the collection
of schema convert the model into the Solr document. Solarium
provided the connectivity between Solr and web framework.

Using Solarium the documents transferred to Solr from the
web figure 6.

When the documents are indexing into the Solr the
response of the indexed files with the status of indexing and
time is the return which is shown in the figure 7.

The figure 8 compared the response time of indexing the
description of the Smart Things. The figure shows that the
indexing of description from 5 to 500 with time in seconds.
All the description models have the same time to indexing
with a little difference.

Fig. 8. Response time for Indexing of Descriptions.

2) Searching: After indexing the description of Smart

Things the next step is to search. Our system provides two

types of the query for searching Smart Things first Keyword-

based searching and second one is Geo-Spatial using

coordinates of location with range. In figure 8 keyword-based

searching interface is shown in which user type the keywords

like vibration, temperature, flam, fire etc.

Another keyword technique is implemented using types of
the sensor. As shown in figure 9 all sensors which are register
with this system dynamically load all the types of the Smart
Things with a number of register Things.

Under the keyword-based search, the second functionality
which is implemented is the location as a keyword. As shown
in figure 10 users can also type the name of the location and
search Smart Things which are deployed on given location.

The second approach for searching Smart Things is Geo-
Spatial which used coordinated along with latitude and
longitude and distance which is depicted in figure 11. The user
can search the Smart Things for a specific location with
distance kilometers.

Fig. 9. Keyword based Search WEB Interface.

Fig. 10. Searching Smart Things with Name of Location.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

396 | P a g e

www.ijacsa.thesai.org

Fig. 11. Geo-Spatial Search of Smart Things with Coordinates.

3) Search results: The results of the search responses by

the interface which contain the following fields id, description,

name, lat-long, location, URI and type of the sensor as shown

in the figure 12.

Fig. 12. Search Results for Keyword.

Fig. 13. Search Results for Name of Location.

Fig. 14. Search Results for Geo-Spatial Query.

Fig. 15. Search Results for Machine with JSON Format.

The figure 13 depicts the results of the location-based
search as a keyword. It acts like a keyword search on indexed
Smart Things.

The figure 14 showed the results of the Geo-Spatial search
approach with a range of distance. Using this technique user
can collected data for the specific area.

This system cannot provide only the GUI for the user but
also interpretable between machines. The machine can also
query and index for the Smart Things over HTTP and using
JSON and XML formats. In figure 15 shown the results of the
search by machine in JSON format. The machine specifies the
format of results at the time of the query.

VI. CONCLUSION

The searching of physical objects is difficult as compare to
traditional searching of documents for web. The traditional
systems used database to store and used crawlers to retrieve
the meta-data form the websites. On the other hand description
of physical objects has lack of standardization to describe
itself. Traditional document search engines provides only
keyword-based search which is not enough for searching of
the physical objects. Databases seem not feasible to handle the
exponential growth of documents. The crawlers are facing a
challenge for retrieving the physical objects in IoT. These
Smart Things increasing significantly and have a variety of
descriptions models. These models are using different
languages that pose a challenge of fetching useful meta-data
required for searching. The area of searching and indexing of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

397 | P a g e

www.ijacsa.thesai.org

Smart Things in IoT is not fully explored. The variety of the
description models is a barrier to searching and indexing of
Smart Things. The technique proposed in this research can
helps to index and search Smart Things with a variety of
description models. The major functionalities provided by the
proposed system are retrieving Smart Things descriptions
parsing of descriptions, analyzing meta-data, collecting
structured data, converting coordinates to locations and
develop index of Smart Things. Two interfaces first web
interface and second for machine with XML and JSON
formats. The developed solution currently supports SensorML,
SensorThings API and W3C JSON-LD standards which are
used to describing Smart Things. These standards are
automatically analyzed by this system with internal logic and
indexed them into Indexer.

The current system provides interfaces for the machine and
for the human to search Smart Things using two types of
queries. First keyword based and second one Geospatial.
Keyword-based query not only provides the searching
description of the Smart Things but also supports the location
as a keyword either city, district, province or country. The
second search is Geo-Spatial which helps the user to search
Smart Things using coordinates with latitude, longitude, and
distance. Our findings showed significant search results that
can lead to an innovative search engine for Internet of Things.

VII. FUTURE WORK

For future looking for Optimizing search results on most
frequent searches, Optimizing indexing process, Develop
more rich queries such as values based and real time,
Handling mobility of Smart Thins, Extending search results to
a variety formats and Solution can be moved to cloud base.

REFERENCES

[1] Tapscott D, Williams AD. Don Tapscott, Anthony D. Williams n.d.

[2] Botts M, Percivall G, Reed C, Davidson J. OGC (R) Sensor Web
Enablement: Overview and High Level Architecture. Lect Notes
Comput Sci 2007;4540:175–190. doi:10.1007/978-3-540-79996-2.

[3] Mitton N, Petrolo R, Loscr V, Mitton N. Towards a smart city based on
cloud of things , a survey on the smart city vision and paradigms the
smart city vision and paradigms 2015. doi:10.1002/ett.

[4] Rose K, Eldridge S, Chapin L. THE INTERNET OF THINGS: AN
OVERVIEW. Understanding the Issues and Challenges of a More
Connected World. Internet Soc 2015:80. doi:10.5480/1536-5026-
34.1.63.

[5] Gope P, Amin R, Hafizul Islam SK, Kumar N, Bhalla VK. Lightweight
and privacy-preserving RFID authentication scheme for distributed IoT
infrastructure with secure localization services for smart city
environment. Futur Gener Comput Syst 2018;83:629–37.
doi:10.1016/j.future.2017.06.023.

[6] Kilper DC, Bergman K, Chan VWS, Monga I, Porter G, Rauschenbach
K. Optical Networks come of Age. Opt Photonics News 2014:51–7.
doi:10.1364/OPN.25.9.000050.

[7] Riggins FJ, Wamba SF. Research Directions on the Adoption, Usage,
and Impact of the Internet of Things through the Use of Big Data
Analytics. Syst Sci (HICSS), 2015 48th Hawaii Int Conf 2015:1531–40.

[8] Friess P, Vermesan O. Building the Hyperconnected Society. 2015.
doi:978-87-93237-99-5.

[9] Guinard D, Trifa V, Karnouskos S, Spiess P, Savio D. Interacting with
the SOA-based internet of things: Discovery, query, selection, and on-
demand provisioning of web services. IEEE Trans Serv Comput
2010;3:223–35. doi:10.1109/TSC.2010.3.

[10] Arnold AS, Wilson JS, Boshier MG. Arnold , A S and Wilson , J S and
Boshier , M G (1998) A simple extended- cavity diode laser . Review
of Scientific Instruments , 69 (3). pp . 1236- This version is available at
https://strathprints.strath.ac.uk/33635/ A simple extended-cavity diode l
1998;69:1236–9.

[11] Paganelli F, Parlanti D. A DHT-Based Discovery Service for the
Internet of Things. J Comput Networks Commun 2012;2012:1–11.
doi:10.1155/2012/107041.

[12] Tuna G, Kogias DG, Gungor VC, Gezer C, Taşkın E, Ayday E. A
survey on information security threats and solutions for Machine to
Machine (M2M) communications. J Parallel Distrib Comput
2017;109:142–54. doi:10.1016/j.jpdc.2017.05.021.

[13] Alghamdi TA, Lasebae A, Aiash M. Security Analysis of the
Constrained Application Protocol in the Internet of Things Security
Analysis of the Constrained Application Protocol in the Internet of
Things. Futur Gener Commun Technol (FGCT), 2013 Second Int Conf
2013:163–8. doi:10.1109/FGCT.2013.6767217.

[14] Li S, Xu L Da, Zhao S. 5G Internet of Things: A survey. J Ind Inf Integr
2018;10:1–9. doi:10.1016/j.jii.2018.01.005.

[15] Jara AJ, Lopez P, Fernandez D, Castillo JF, Zamora MA, Skarmeta AF.
Mobile Digcovery: A Global Service Discovery for the Internet of
Things. 2013 27th Int. Conf. Adv. Inf. Netw. Appl. Work., IEEE; 2013,
p. 1325–30. doi:10.1109/WAINA.2013.261.

[16] Fielding RT, Taylor RN, Erenkrantz JR, Gorlick MM, Whitehead J,
Khare R, et al. Reflections on the REST architectural style and
“principled design of the modern web architecture” (impact paper
award). Proc 2017 11th Jt Meet Found Softw Eng - ESEC/FSE 2017
2017:4–14. doi:10.1145/3106237.3121282.

[17] Wollschlaeger M, Sauter T, Jasperneite J. The future of industrial
communication. IEEE Ind Electron Mag 2017;11:17–27.
doi:10.1021/ie50124a022.

[18] Soylu A, Giese M, Jimenez-Ruiz E, Vega-Gorgojo G, Horrocks I.
Experiencing OptiqueVQS: a multi-paradigm and ontology-based visual
query system for end users. Univers Access Inf Soc 2016;15:129–52.
doi:10.1007/s10209-015-0404-5.

[19] Ejaz W, Naeem M, Shahid A, Anpalagan A, Jo M. Efficient Energy
Management for Internet of Things in Smart Cities. IEEE Commun Mag
2017:84–91. doi:10.1109/MCOM.2017.1600218CM.

[20] Zhou M, Ma Y. A web service discovery computational method for IOT
system. 2012 IEEE 2nd Int. Conf. Cloud Comput. Intell. Syst., IEEE;
2012, p. 1009–12. doi:10.1109/CCIS.2012.6664533.

[21] Durumeric Z, Adrian D, Mirian A, Bailey M, Halderman JA. A Search
Engine Backed by Internet-Wide Scanning. Proc 22nd ACM SIGSAC
Conf Comput Commun Secur - CCS ‟15 2015:542–53.
doi:10.1145/2810103.2813703.

[22] Yi S, Li C, Li Q. A Survey of Fog Computing: Concepts, Applications
and Issues. Proc 2015 Work Mob Big Data - Mobidata ‟15 2015:37–42.
doi:10.1145/2757384.2757397.

[23] Guo B, Wang Z, Yu Z, Wang Y, Yen NY, Huang R, et al. Mobile
Crowd Sensing and Computing: The Review of an Emerging Human-
Powered Sensing Paradigm. ACM Comput Surv 2015;48:1–31.
doi:10.1145/2794400.

[24] Nitti M, Pilloni V, Colistra G, Atzori L. The Virtual Object as a Major
Element of the Internet of Things: A Survey. IEEE Commun Surv
Tutorials 2016;18:1228–40. doi:10.1109/COMST.2015.2498304.

[25] Khan MW, Abbasi E. Differentiating Parameters for Selecting Simple
Object Access Protocol (SOAP) vs . Representational State Transfer (
REST) Based Architecture. J Adv Comput Networks 2015;3.
doi:10.7763/JACN.2015.V3.143.

[26] Datta SK, Da Costa RPF, Bonnet C. Resource discovery in Internet of
Things: Current trends and future standardization aspects. IEEE World
Forum Internet Things, WF-IoT 2015 - Proc 2015:542–7.
doi:10.1109/WF-IoT.2015.7389112.

[27] Pydipaty R, Saha A. On Using Non-Volatile Memory in Apache Lucene
n.d.

[28] Chang B-R, Tsai H-F, Hsu H-T. Secondary index to Big Data NoSQL
Database – Incorporating solr to HBase approach. J Inf Hiding
Multimed Signal Process 2016;7:80–9.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 9, 2018

398 | P a g e

www.ijacsa.thesai.org

[29] Yu HR. Design and implementation of web based on Laravel
framework. Atl Press 2015:301–4. doi:10.2991/iccset-14.2015.66.

[30] Sporny M, Bazaar D, Kellogg G, Associates K, Lanthaler M, Sporny M,
et al. A JSON-based Serialization for Linked Data 2018.

[31] Kingston R. Public Participation in Geocomputation to Support Spatial
Decision-Making. Geocomputation A Pract Prim 2015:301–19.

[32] Smiley D, Pugh E. Apache Solr 3 Enterprise Search Server. Search
2009:7–10.

[33] Laravel: Up and Running - O‟Reilly Media n.d.
http://shop.oreilly.com/product/0636920044116.do (accessed June 14,
2018).

[34] Medina - Santiago A, Cisneros - Gómez A, Melgar - Paniagua EM,
Gutierrez T, B Nango - Sólis MG, Moreno - López EA, et al. Web
Application Development by Applying the MVC and Table Data
Gateway in the Annual Program Budget Management System. IJACSA)
Int J Adv Comput Sci Appl 2017;8:250–5.
doi:10.14569/IJACSA.2017.080233.

