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Abstract—Organizations are struggling to deliver the 

expected software functionality and quality in scheduled time 

and prescribed budget. Despite availability of numerous 

advanced effort estimation techniques overestimation and 

underestimation occur on a vast scale and results in project 

failures and significant loss to the organization. The paper 

proposes machine learning based approach to calculate the 

optimized effort and level of confidence. Genetically trained 

neural network evaluates the optimum effort for given 

COCOMO II variables. The level of confidence is evaluated by 

fuzzy logic and indicates the percentage that the predicted effort 

will not exceed the limits. 
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I. INTRODUCTION  

Human dependency on software is increasing continuously. 
Today most of the goods and services are realized with 
software systems. Software has become major driving force for 
progress even in domains that were traditionally reserved as 
completely mechanical or hardware systems, for instance 
major advances in automobile industry are being realized with 
software development. Companies spend 4-5 percentage of the 
revenue on software development [1]. The figure is as high as 
10 percent in highly IT dependent sectors, for instance 
telecommunications and finance [1].Thus, functionality and 
complexity of software systems is increasing manifold. 
Simultaneously time to market and cost should be reduced to 
stay competitive. In United States 250 billion dollars are spent 
each year on IT development [2]. Project management and 
Effort estimation are key factors for success of a software 
project. Despite much research and technological advancement 
in effort estimation techniques, proportion of failed software 
projects is huge[2,3].According to the Chaos report submitted 
by Standish Group[2] only 16.2 percent of the projects are 
successful ,57.2 percent projects are over-budget and provides 
lesser functionalities than specified and 31.1 percent of the 
projects are cancelled during their development cycle. The 
percentage of the successful, challenged (over-budget with less 
functionality) and impaired (cancelled) projects is shown in Fig 
1. 

Project failure can be defined as combination of cost 
overruns, late deliveries, poor quality, and/or developing a 
product that does not get used. The two crucial reasons for 
failure of most software projects are Overestimation and 

Underestimation of the software effort [4]. Most projects either 
cost more than they return or fail to deliver required projects in 
the expected time. Both the scenarios lead to huge loss or may 
also result in termination of the whole project. R. Charette [3] 
suggested unrealistic project goals and inaccurate estimates of 
needed resources as principal factors that lead to project 
failure. A. Trendowicz and etal [2] pointed that most of the 
effort estimation techniques provides point estimates with 
hardly any support for risk management if project overruns the 
expected cost. Moses and etal[4] in their research concluded 
that in addition to estimates the effort estimation should also 
specify a Level Of Confidence associated with the calculated 
effort in order to compensate the uncertainty associated with 
effort estimation.  

II. RELATED WORK 

A. What research has been Conducted so far? 

For software effort estimation, numerous methods have 
been examined specifically data driven soft computing 
methods such as artificial neural networks, regression trees, 
evolutionary computing, rule-based induction, fuzzy logics etc. 
These methods exhibit many advantages like regression over 
other standard methodologies. Literature of software effort 
estimation endorse that important product feature 
characteristically reflects the software size which exactly 
impact efforts. Basically it is used to build cost models. 

Initially, almost all models are based on the size of metrics 
which contemplates numerous coding lines coded for a 
software project i.e. lines of code (LOC) or thousands of 
source line code (KLOC), as shown in COCOMO [5], or 
function points (FP) which is there in models like Albrecht‟s 
FP i.e. Function Point Analysis [6]. 

Many researchers analyze the feasibility of evolving 
software effort estimation methods exhausting various 
methodology, parameters, datasets, etc. In the comparative 
analysis study given by [7], amalgamation of estimation 
methods may generate more reliable, accurate cost estimation 
for software development as it is displayed that no method is 
good or bad in all the situations. Review papers given by [8] 
[9] grasp a complete description of such studies. In review 
paper [10], the effort estimation was assessed by back 
propagation Artificial Neural Networks on datasets such as 
Desharnais and ASMA, generally through system size to 
determine the correlation of size with effort. 
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Fig. 1. Percentage of successful, challenged and impaired projects in large, medium and small organizations

The method produced reassuring estimates represent that 
the model need an additional methodical advance method to 
develop the architecture and parametric settings in order to 
achieve improved outcomes. In paper [11], the effort 
estimation evaluation of the relationship between effort and 
size analyzed using Genetic Programming technique in which 
advanced tree composition displaying number of power, linear, 
quadratic type common equations. The methodology 
lengthened to appropriate desirable stages of prediction 
correctness through hardly the size attribute but also approved 
to achieve additional enhancements. 

 Kumar et al. proposed a model exhausting Particle Swarm 
Optimization (PSO) for tuning the elements of primary 
COCOMO model to compute the effort accurately considering 
hardly KLOC factor [12]. 

Finnie et al. [13] conferred a comparison of statistical 
regression based model with other artificial Intelligence based 
estimation models for evaluation of software development 
effort. The researcher establish that statistical regression model 
underperformed for difficult and complex software projects as 
the Artificial Intelligence based models gives satisfying 
evaluation results. They studied dataset amidst Projects from 
17 organization and Desharnais. As an estimation criterion 
MMRE was used. In 2002 another researcher Heiat [14] 
examined Feed Forward Neural Networks with function point 
and Radial Basis Neural Network with Source Lines of Codes 
for various datasets including projects of different generation 
languages. The results embodied that artificial neural network 
method is prudent with regression though a third generation 
language data set is used. P.Rijwani et-al [15] used hit & try 
method to determine best network architecture, in an 
experiment for the training network using back propagation. 
For software effort estimation a FLANN was proposed by 
Trimula Rao [16] which generates effort and hence processes 
the final layer output. It has a drawback that the relation 
between input and output is not equitable.  

Investigation on back propagation Artificial Neural 
Network of 2-2-1 design based on dataset of NASA that 
includes eighteen projects. The inputs were development 
methodology and KDLOC and output was effort. 

Attarzadeh [17] in which 17 cost drivers and 5 Scale factors 
were used as inputs. Sigmoid activation function is utilized 
while creating the network to achieve post architecture of 
COCOMOII model. The COCOMO algorithm is compared 
using Pred (0.25) and the results are shown in terms of MMRE. 
An innovative software development for effort estimation was 
proposed by Attarzadeh [24], exhausting neural networks, in 
which weights of the network were adjusted in such that it 
resulted in COCOMO II model. The neural network method 
suggested gives better result when related to COCOMO model 
after proper training. Even though back-propagation for neural 
networks is focused, complexity arises for adjusting weight and 
bias net parameters during training like slow convergence, 
sensitive to arbitrary initial weights, entering local minima, 
difficulty in selecting explicit optimum network configuration. 
The preeminent efficiency of genetically trained neural 
networks is mentioned in various researches. For instance After 
a series of experiments and simulations Shukla[22]  concluded 
that the genetically trained neural networks outperforms back 
propagation trained and quick propagation trained neural 
networks in software effort estimation. The recommended 
model evaluates software development effort in the function of 
seventeen cost drivers and five scale factors. Thus it is evident 
that over the years improving the accuracy of software effort 
estimation has remained main concern of research with little 
attention being paid to quantifying the uncertainty involved in 
effort estimation techniques.  

B. Loopholes in Existing Research 

Many systematic surveys have been conducted on software 
effort estimation. Moløkken and Jorgensen [30] provide an 
exhaustive review of surveys in software effort estimation. 
They concluded that most of the projects (60-80 percent) suffer 
from effort and/or schedule overruns. However the percentage 
overrun (30-40%) is significantly lower than suggested by 
Chaos report by Standish Group (80%). Jorgensen and 
Sheppard [29] identified and reviewed 304 research papers 
published in 76 journals. They found that majority of the 
research in software effort estimation has remained 
concentrated on effort estimation methods and less research is 
done on uncertainty assessments, data set properties and 
measures of estimation performance. The authors also 
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proposed that most of the research relies on historical dataset 
for evaluation and validation of effort estimation models, only 
a few provide real life evaluations. The different estimation 
methods used in industries are shown in Fig 2.Presently Expert 
judgment is the prominent estimation method used by 
organizations [26, 40].The reason is it cannot be ascertained if 
formal methods are better or weaker than expert judgment [27]. 
Identification the human factors affecting effort estimation [28] 
and development of practical guidelines are crucial to get 
benefitted from expert judgment. Applications of software 
effort estimation is summarized in Fig 3. 

Fig 4 shows the number of papers published from the year 
1996 to 2016 related to software effort estimation J.Moses[4] 
suggested that Effort estimation using algorithmic models, 
statistical prediction systems or machine learning approaches, 
e.g. Case Based Reasoning (CBR), Artificial Neural Networks 
(ANN) or Rule Induction (RL), under perform when compared 
to subjective estimation given by human estimators. The author 
also added that the prediction methods does not provides any 
support for decision making in case if the actual effort is 
greater than or less than the predicted effort. The author 
developed an approach by using Bayesian Inference to improve 
effort estimation consistency. B. Clark and etal[20] developed 
a multiple regression based effort calibration strategy. D.Yang 
and etal [21] proffered that software industry suffers from 
frequent cost overruns, and the software cost estimation 
remains a challenging issue. The authors developed a model 
for accounting the uncertainty based on Bayesian belief 
networks. 

 
Fig. 2. Effort Estimation techniques used in industries 

 
Fig. 3.  [25]Papers published over past years about different estimation 

techniques. 

 

Fig. 4. Papers published over past years about different estimation 

techniques 

III. IMPLEMENTATION DETAILS 

The block diagram of the adopted methodology is shown in 
Fig4. Genetic Algorithm is used for improving the output of 
neural network. Fuzzy inference and genetically trained neural 
networks are employed independently to evaluate level of 
confidence and optimized effort. The main form or GUI 
constructed in MATLAB is shown in Fig 5. . The GUI prompts 
user to input COCOMO II variables. The user can click on the 
optimized effort button on the calculate panel for the GANN 
[3] predicted effort in person months. Similarly level of 
confidence button is pressed to obtain the probability that the 
effort will not exceed the specified limits. 

A. Dataset Generation 

For the present work COCOMO 81 dataset available on 
PROMISE repository [18] was converted to COCOMO II 
dataset using the tool Rosetta stone [33].The tool is developed 
at IBM research in order to make COCOMO estimates 
functional with COCOMO II model. The output is 
development effort measured in man-months. The above 
mentioned COCOMO 81 dataset was established from 
exploration of sixty three developed software projects. 

B. Network Topology 

The model is created with one hidden layer  in  MLF() 
neural network .One hidden layer with arbitrary units is 
sufficient for “Universal Approximation Property”[23].There is 
no rule of thumb for determining number of hidden units to be 
used, as it depends upon critical factors such as  number of 
training cases and complexity of classification and learning. A 
convenient way is to try many different networks, calculate the 
generalization error for each network and select the network 
with minimum generalization error [23].Following the above 
rule, we performed a number of hit and trial experiments from 
2 to 20 nodes. 

The optimum topology was found to be 23-10-1 i.e. 23 
input nodes, 10 nodes in hidden layer and 1 node layer (Fig 5). 
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The 23 neurons in input layer correspond to the 23 input 
variables of COCOMO II model (kloc, 5 Scale Factors, 17 
Effort Multipliers). The node in output layer represents the 
optimized effort. The input to neural network as scale factors 
and effort multipliers is be represented by binary vectors  (  
[    ]). The COCOMO II variables are converted into binary 

vectors by range normalization such that such that   (   

[   ]) The vector O represents output obtained in person-

months.   And     are weight parameters or synaptic strength 

connecting hidden layer to output layer and input layer 
respectively. 

O (∑   
  
   )= f(∑   

  
     )                                       (1) 

    (∑      
  
   )                                                 (2) 

C.  Training The Network 

Genetic algorithm is employed for training the neural 
network. Fig 6 represents the algorithm of training neural 
network by genetic algorithm. The preeminent efficiency of 
genetically trained neural networks is mentioned in various 
researches. For instance After a series of experiments and 
simulations Shukla [22] concluded that the genetically trained 
neural networks outperforms back propagation trained and 
quick propagation trained neural networks in software effort 
estimation The suitable values for control parameters of 
genetic algorithm have been found by running various 
simulations and have been listed in Table 1. We have used 
binary string chromosomes. Six features  (very low- vl, low-l, 
nominal-n, high-h,very high-vh, extra high-xh) are considered 
for each cost driver and subsequent weights are encoded with 3 
bits(0-n,1-vl,2-l,3-n,4-h,5- vh,6-xh,7-n).0 and 7 are assumed 
default values. Fitness function is reciprocal of MMRE as 
genetic algorithm maximizes the fitness function and a low 
Roulette Wheel selection: 

Following are the steps for Roulette Wheel selection:  

1) Evaluate the sum of the fitness value of all individuals 

in given population...  

2) Calculate probability of selection of a particular 

individual by dividing its chromosome’s fitness by the total 

fitness values of the population.  

3) Divide the roulette wheel into sectors based on 

probabilities calculated in the second step.  

4) Spin the wheel ‘n’ number of times. The individual 

corresponding to the sector pointed by the pointer is selected. 

The probability that an individual is selected from a 
population of n individuals is given by equation, where is 
fitness value of element. 

     
 

 
∑
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Fig. 5. Genetically trained neural network. 

 

Fig. 6. Network Topology 
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Fig. 7. Membership functions for STOR 

 

Fig. 8. Fuzzy rules Fuzzy Inference

Fuzzy logic is close to human interpretation of truth. This 
property can be utilized in effort estimation practices to 
balance the inherent imprecision with uncertainty to determine 
the level of confidence. The level of confidence indicates the 
uncertainty or the probability of overestimation or 
underestimation. The uncertainty can not only be used to 
improve the estimation consistency but can also be used in 
making statements to client indicating the chances of 
overestimation or underestimation. 

Literature reveals that there are numerous approaches for 
incorporating fuzzy logic in effort estimation models. However 
available research on organization specific effort dependencies 
is scarce. For instance a company „A‟ is facing frequent 
underestimation on its past projects. It is possible that the value 
of COCOMO variables used by them make it inclined to 
Underestimation. Suppose the assigned value of Programmer 
capability is high but due to some discrepancies the actual 
programmer capability is lower than expected. Such conditions 
can occur frequently while calculating software effort by 
formal methods because of following reasons:  

1) A huge amount of information is required in the 

starting phase. 

2) Error due to human factor. 

The developed fuzzy inference system calculates 
probability of overestimation. This acts as a warning system 
for effort estimators and prompts them to review the process 
and/or set appropriate risk factors (Table2). 

Dataset preparation: The historic dataset is converted into 
probability distribution functions of 23 input variables. In the 
proposed model conditional probability is used as basis for 
forming fuzzy rules. By probability theory conditional 
probability is defined as probability of occurrence of an event 
(A) by assertion that another event (B) has already occurred. 
The event A is hypothesis and the event B is observed 
evidence. It is expressed mathematically by equation 

 (   )  
 (   )

 ( )
     ( )                                       (5) 

Here A denotes occurrences of overestimation and B 
denotes instances of values of input variables. For instance P 
(O/STOR=1) denotes the probability of overestimation 
provided that the selected value of STOR is nominal. The 
model is based on chances of overestimation as 
underestimation and overestimation are mutually exclusive 
events. Thus, if probability of one is known the probability of 
other can be calculated easily. 

 (   )                                             (  )                           
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The conditional probability for every value of each input 

variable is calculated and subsequently mapped into linguistic 
fuzzy rules. The developed fuzzy model uses 76 fuzzy rules to 
calculate output. 

Input and Output Variables:  In this next step the range of 
23 input variables as effort multipliers scale factors and lines of 
code is defined. The output variable is probability of 
overestimation and it lies between 0 and 1. 

Membership Functions:   The membership functions are 
defined for each input as well as output variables. In our 
analysis we have considered Gaussian membership functions 
as it demonstrated by Kushwaha and Suryakane [31] that 
Gaussian membership function smoother transition in its 
intervals, and the achieved results were closer to the actual 
effort. The Gaussian membership function is governed by 
following equation. The Gaussian membership function for 
KLOC is given in Table3 [32] and STOR is shown in Fig7. 

        (     )      ( 
(   ) 

   
)                                    (7) 

       
    Fuzzy Rules: Fig 8shows the subsequent fuzzy rules. 

IV. RESULTS AND DISCUSSIONS 

In our project historical dataset of 63 projects is considered. 
The estimated effort and Mean Relative Error using COCOMO 
model, neural network model with back propagation and the   
genetically trained neural network model is shown in Table4 
and Table5. Fig 10 demonstrates the error histogram obtained 
after training process. The histogram is centered on zero error 
Thus our selected topology is appropriate. Fig 12 shows the 
comparison between the two models. Mean square error found 
is 0.0124682 after 50 generations using 10000 populations. Fig 
9 substantiates that the genetically trained neural network 
model outperforms the COCOMO model as well as BPNN by 
significant   difference. The data of BPNN is taken from the 
authors‟ past research [19]. 

TABLE I. GENETIC ALGORITHM PARAMETERS 

SNO Control parameter Value 

1 Population Size 10000 

2 Elite Count 4 

3 Crossover 0.8 

4 Generations 50 

5 Initial Population 10000*251 double 

6 Selection Roulette Wheel 

7 Crossover Heuristic 

8 Number of variables 251 

9 Mutation 0.01 

TABLE II. RISK FACTOR 

Probability 

(Fuzzy 
Output) 

Overestimation Risk 

0-0.3 Very low  low 

0.3-0.5 low Moderate 

0.5-0.7 High High 

0.7-1 Very High Very High 

 

Fig. 9. Fuzzy Output. 

 

Fig. 10. Error Histogram. 

TABLE III. MRE COMPARISON 

KLOC  Value 

0-50 small 
50.1-128 Moderate 

128.1-512 High 

512.1-up Very high 

TABLE IV. MRE COMPARISON 

SNO 
Control 

parameter 
Value 

1 Population Size 10000 
2 Elite Count 4 

3 Crossover 0.8 

4 Generations 50 

5 Initial Population 
10000*251 

double 

6 Selection 
Roulette 
Wheel 

7 Crossover Heuristic 

8 Number of variables 251 
9 Mutation 0.01 
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TABLE V. EFFORT COMPARISON 

 

 
SNO 

 

 
Actual Effort 

 
Effort using  

COCOMO 

model 

 
Effort using 

Hybrid model 

(GANN) 

1 117.6 180.8134786 127.4616 
2 117.6 168.9821569 124.3451 
3 31.2 43.65971251 34.8585 
4 36 37.9393787 37.9985 
5 25.2 49.47453739 32.8746 
6 8.4 10.38903049 9.4435 
7 10.8 19.08279263 14.8734 
8 352.8 449.5306924 399.7262 
9 72 45.9777269 68.6443 
10 72 287.291445 112.9243 
11 24 14.08522464 20.6532 
12 360 287.291445 381.3423 
13 36 50.44249685 41.9123 
14 215 686.648327 300.3533 
15 48 51.69199249 50.5451 
16 360 615.4091318 401.2176 
17 324 670.4677889 400.2432 
18 60 162.0906366 80.6453 
19 48 51.69199249 50.4434 
20 60 207.7411868 112.5542 

TABLE VI. MRE COMPARISON 

 

 
SNO 

 

 
Actual Effort 

 
MRE using  

COCOMO 

model 

 
MRE using 

Hybrid model 

(GANN) 

1 117.6 0.53723 0.08385714 
2 117.6 0.436923 0.04735629 
3 31.2 0.39935 0.11726962 
4 36 0.053872 0.05551389 
5 25.2 0.963275 0.30454762 
6 8.4 0.326789 0.12422619 
7 10.8 0.766925 0.37716667 
8 352.8 0.27418 0.13301077 
9 72 0.361976 0.04646806 
10 72 2.990159 0.56839306 
11 24 0.413107 0.13945 
12 360 0.201968 0.05928417 
13 36 0.40118 0.16423056 
14 215 2.193713 0.396999209 
15 48 0.076917 0.05302292 
16 360 0.70947 0.11449333 
17 324 1.069345 0.23531852 
18 60 1.701511 0.34408833 
19 48 0.076917 0.05090417 
20 60 2.462343 0.87590333 

 

Fig. 11. Actual Deviation v/s Predicted deviation. 
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Fig. 12. MRE comparison

Fig 11 demonstrates the actual and predicted deviations 
from the actual effort. Where actual deviation denotes the 
actual percentage of overestimation/underestimation and 
predicted deviation denotes the predicted 
overestimation/underestimation. The Figure confirms that the 
developed model is accurate and provides optimistic view of 
uncertainty by effectively covering all range of deviation. 
Table 5 presents the computed effort values using COCOMO 
and proposed model. Subsequently, Table 6 presents the 
comparison of MRE values when effort is computed using 
COCOMO and with the hybrid model. 

V. CONCLUSION AND FUTURE SCOPE  

The learning exposes that the suggested fuzzy logic based 
COCOMO II model incapacitates the uncertainty and 
vagueness in the inputs that is present in the conventional 
COCOMO and hence increases the accurateness of software 
effort estimation. By determining additional appropriate fuzzy 
rule sets and by arraying technologies like type-2 fuzzy 
improbability can be handled further closely and hence more 
precise software effort estimation is thinkable. 
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