
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

Duplicates Detection Within Incomplete Data Sets
Using Blocking and Dynamic Sorting Key Methods

Abdulrazzak Ali1
Faculty of Information and Communication Technology

Universiti Teknikal Malaysia Melaka
Hang Tuah Jaya, 76300, Ayer Keroh, Melaka, Malaysia

Nurul A. Emran2
Computational Intelligence Technologies (CIT) Research Group

Universiti Teknikal Malaysia Melaka
Hang Tuah Jaya, 76300, Ayer Keroh, Melaka, Malaysia

Siti A. Asmai3
Optimization, Modeling, Analysis,

Simulation and Scheduling (OptiMASS) Research Group
Universiti Teknikal Malaysia Melaka

Hang Tuah Jaya, 76300, Ayer Keroh, Melaka, Malaysia

Awsan Thabet4
Faculty of Information and Communication Technology

Universiti Teknikal Malaysia Melaka
Hang Tuah Jaya, 76300, Ayer Keroh, Melaka, Malaysia

Abstract—In database records duplicate detection, blocking
method is commonly used to reduce the number of comparisons
between the candidate record pairs. The main procedure in this
method requires selecting attributes that will be used as sorting
keys. Selection accuracy is essential in clustering candidates
records that are likely matched in the same block. Nevertheless,
the presence of missing values affects the creation of sorting keys
and this is particularly undesirable if it involves the attributes
that are used as the sorting keys. This is because, consequently,
records that are supposed to be included in the duplicate detection
procedure will be excluded from being examined. Thus, in this
paper, we propose a method that can deal with the impact of
missing values by using a dynamic sorting key. Dynamic sorting
is an extension of blocking method that essentially works on two
functions namely uniqueness calculation function (UF) (to choose
unique attributes) and completeness function (CF) (to search for
missing values). We experimented a particular blocking method
called as sorted neighborhood with a dynamic sorting key on a
restaurant data set (that consists of duplicate records) obtained
from earlier research in order to evaluate the method’s accuracy
and speed. Hypothetical missing values were applied to testing
data set used in the experiment, where we compare the results
of duplicate detection with (and without) dynamic sorting key.
The result shows that, even though missing values are present,
there is a promising improvement in the partitioning of duplicate
records in the same block.

Keywords—Duplicate detection; Incomplete Data Set; Blocking
Methods; Sorting key; Attribute Selection

I. INTRODUCTION

Duplication detection is a crucial process in many data
cleaning operations. Nevertheless, this process relies on time-
consuming attributes comparison between the records pairs
that have been reported as a common bottleneck in duplication
detection [1]. To address this problem, the records are normally
partitioned into small subsets so that searching for the dupli-
cates is only performed within the small subsets. Common
blocking methods that are used to partition the records into
blocks (or also called as windows) are standard blocking and
sorted neighborhood. These methods work well in big data
sets that depend on candidate keys to sort the data set [2].
Blocking methods aims at producing a set of blocks that offers
a good balance between the number of detected duplicates and

the number of required comparisons. Selection of a suitable
blocking method for duplication detection usually depends on
domain knowledge [3]. In the context of homogeneous infor-
mation spaces, these methods typically consider the frequency
distribution of the values of attribute names as well as their
quality (i.e., the presence of noise or missing values) to derive
the most suitable blocking key(s) [4]. In order to obtain an
unambiguous sorting order, it is desirable that the sorting keys
are unique. In fact, within a data set, candidate key attribute
(such as name) can also be used as sorting key rather than using
attributes that are commonly defined to partition the data set
(such as zip code) [1]. As data uniqueness is a crucial aspect in
duplication detection, attributes that contain errors or missing
values will hinder the creation of sorting key [5]. In addition,
attributes that consists of high repetition ratio such as gender
(with only two value states) are less useful as sorting key.
Nevertheless, attribute such as surname can be a useful sorting
key but it may frequently be reported or keyed incorrectly [4].
The sorting key with uniqueness criteria less repetition ratio
will contribute in reducing the unnecessary comparisons of
pairs of candidate records in duplicate detection process.

Duplicate detection is usually evaluated in terms of its
accuracy. Thus, it relies on how well the blocking method deals
with errors. Two kinds of error are of concerned in blocking
methods which are:

1) False positive or false acceptance: This error occurs when
the actual ’unmatched’ records in the candidate pair space
are included for comparison. This will cause unnecessary
time spent for comparison.

2) (False negative or false rejection: This error occurs when
the actual ’matched’ records in the candidate pair space
are excluded for comparison. This will cause duplicate
records to remain in the data set and causes worse
consequence than the false positive case.

As described by Christen (2007), the process of dividing
the data set into blocks requires the following steps [6]:

1) The data set is sorted based on the blocking key value
(BKV) which is created from one or more attributes.

www.ijacsa.thesai.org 629 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

Sorted records rely on the following underlying hypoth-
esis [3]:
The n sorted records, ri ≤ . . . ≤ ri+n, may satisfy:
dist(ri, ri+1) ≤ dist(ri, ri+2) ≤ . . . ≤ dist(ri, ri+n),
where, dist(ri, rj), is the distance between records ri and
rj . Most of the blocking methods use the inverted index
key where all records that have the same blocking key
are placed in the same indexing list.

2) The record identifiers are retrieved from the index data
structure for the block and record pairs are created for
comparison. Each record is associated with the rest of
records in the same block to form the candidate pairs.
After the comparison step is complete, a numerical value
is assigned.

In the next section, we will present related works in
duplicate detection where blocking methods were proposed to
improve the efficiency of duplicates detection.

II. RELATED WORK

There are at least two competing blocking methods used
in duplicate detection as stated by Draisbach and Naumann
(2010)[1]:

• Standard blocking method that partitions records into
separate subsets, for example using "zip code" as the
partitioning key.

• Sorted neighborhood method that sorts the data set ac-
cording to certain key(s), such as "last name", and then
slide a window of fixed size across the sorted data and
compare pairs only within the window.

A. Standard Blocking Method

In this method, records are sorted using the block key value
and the sorted records are grouped into separate blocks where
every record has the same BKV. The key is composed of
a set of data set attributes. The comparison is made for all
the records within the same block. If the duplicate records
detection is required in the data set which has R number of
records and B number of blocks, the number of record pairs
is O(R2

B) for comparison. This method increases the speed
of comparison operations because of the limited comparison
between records within the same block.

Basically, this method is based on the expectation-
maximization (EM) algorithm as proposed by [4] to calculate
the probability of matching a pair of records. The probability
of matched records pair is defined as class M , P (xi = 1|M),
and the probability of unmatched records pair is defined as
class U , P (xi = 1|U) that are calculated from a number of
random records. Fig. 1 illustrates a standard blocking technique
which was adapted from the original source [1].

Nevertheless, as the records are distributed into equal
blocks size and compared within their own block, there is a
high possibility for record mismatching (false negative error)
that leads to less accurate duplicate detection. Therefore, it is
necessary to choose appropriate keys for sorting in order to
reduce the error ratio.

Fig. 1. Standard Blocking Technique(BKV) [1]

B. Sorted Neighborhood Method

Sorted Neighborhood (SN) (which is also called as win-
dowing) was proposed by Hernandez and Stolfo’s (1998) to
reduce the time taken for comparison process [7]. As compared
to the standard blocking, this method improves more on the
records matching ratio. SN requires creating a string of sub-
strings from the selected attributes of the record to form the
candidate key. For example, the first three letters of the name
field, the first three digits of the identification number and the
first three letters of the electronic mail concatenated together
are used to create candidate key as shown in Table I.

TABLE I. EXAMPLE OF CREATING CANDIDATES KEYS

ID Name E-Mail Candidate keys

12331232 Mohammed Ahmed Moha12@yahoo.com Moh123Moh

34241212 Saleh Noor Salnor@yahoo.com Sal342Sal

12123234 Noor Bint Salem Norsal1@hotmail.com Noo121Nor

The records are then sorted based on the candidate keys.
Then the comparison of records is performed within the
window. After the comparison is finished, the first record is
sliding out from the window and the next record is added to
the window. If the size of the fixed window is w, then any new
record enter to the window is compared with the previous one
|w|−1 records to find the matching. The process is illustrated
by Fig. 2 shows a sorted neighborhood technique adapted from
the original source [8].

R

R

R

R

R

R

R

Fig. 2. Sorted Neighborhood (SN) Technique [8]

The accuracy of the SN method depends on the quality
of the key and also the window size. With small window
size and a high number of duplicates, the problem that can
occur is overriding a number of duplicates (false negative

www.ijacsa.thesai.org 630 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

error). However, if the size of the window is too large,
unnecessary comparisons will occur. Therefore, the quality of
the key in addition to the size of the window is a challenge
in SN technique. This problem was resolved by independent
execution several times and the records are sorted with a
different key in each time with a small window size. The result
is derived from the integration of results where this method is
called a multi-pass SN as proposed by Hernández and Stolfo
(1995) [9].

C. Duplicate Detection Within Incomplete Data Set

Many methods of duplication detection encountered a prob-
lem in compiling and comparing partially complete records.
In fact, there are several types of data completeness problem
can be found in data sets [10], [11] that can cause partially
complete records. The presence of missing values (nulls)
is one type data completeness problem that affect duplicate
detection. There are several methods proposed to deal with
missing values in data sets, such as to ignore records with
missing entries, manual data imputation by human and the
use an expectation-maximization (EM) imputation algorithm.
The first two methods are impractical, while the estimation
of missing values in a large number of attributes through EM
becomes computationally intractable [12][13][14].

Tamilselvi and Saravanan (2009) presented a framework to
detect and eliminate duplicates due to errors and missing data
[15]. The proposed framework consists of six steps which are:
1) select the best attributes for duplicate identification (using
attribute selection algorithm), 2) form token, 3)cluster the data
(using clustering algorithm), 4) compute similarity score, 5)
eliminate duplicates and 6) merge. The method of selecting
attributes with complete values that do not contain duplicate
values to perform tokens matching.

In [14], the authors proposed a method that extends the
soft TF-IDF method to address two common cases in the
detection of duplicates namely sparsity due to the number of
missing entries, and the presence of more than one record
duplicate. The proposed method consists of three steps: 1)
create similarity scores between the records, 2) clustering the
records together in independent groups, and 3)compare the
different ways to create similarity scores between records (in
addition to a different set of string matching, frequency-inverse
methods, and n-gram techniques). The authors pointed out that
the method of dealing with missing values can be replaced in
the TF-IDF and Jaro-Winkler by performing data imputation
with a likely candidate.

III. PROBLEM DEFINITION

Several important issues need to be considered when record
attributes are selected to be used as blocking keys. The first
issue is that the quality of the values in these attributes will
influence the quality of the generated candidate record pairs.

Ideally, attributes containing the fewest errors, variations,
or missing values should be chosen. Any error in an attribute
value used to generate a BKV will potentially result in records
being inserted into the wrong block, thus leading to missing
true matches [12][16].

In SN method, the selected attributes will be used as the
blocking key. If the window size is small, then the number

of comparisons will be reduced but the false negative value
will be increased. If the window size is large then the number
of comparisons will be increased with reducing the number
of false negatives. For this kind of problem, the calculation
of distinct and missing values is very important in the se-
lection of blocking key. A numeric blocking key will not be
effective in blocking the record for comparison. Therefore, the
identification of measurement type and the type of attributes
are important in the selection of blocking key [5]. To avoid
miss-sorting due to errors in the attributes that are used to
generate the key, again, multi-pass variants of SN produce
multiple keys and perform the sorting and windowing multiple
times. Like the standard blocking method, the transitive closure
is finally calculated. Research has produced many variants of
SN method including the one that avoids the choice of keys
[15] and a variant for nested XML data [8].

Bigram indexing method is less sensitive to typo errors
or some missing information as compared to the previous
blocking methods. The features of this method are, first, this
method allows each record to be in multiple blocks if needed,
and it uses an inverted index [8]. There are three criteria which
are very important in attribute selection for data cleaning which
are identifying key attributes, classifying attributes (with high
distinct value and low missing value) and measurement types
of the attributes [17]).

In this section, the impact of the missing values on the
blocking key will be elaborated through the following example.
Suppose that we have a complete data set that contains
employee personal information such as (name, address, city,
phone, and sex) as shown in Table II. In this example data
set, duplicate records are present in pairs, which are records
(1,2), (3,4) and (8,9). In discussing the creation of the sorting
key and the effect of missing values on duplicate detection,
we consider the following cases:

TABLE II. PERSONAL INFORMATION

no name address city phone sex

1 Ahmad 435 s. la cienegablv. losangeles 310/246-1501 M

2 Ahmed 435 s. la cienegablvd. losangeles 310-246-1501 M

3 Bel 701 stone canyon rd. bel air 310/472-1211 M

4 Bell 701 stone canyon rd. bel air 310-472-1211 M

5 Brit 12224 venturablvd. studio city 818/762-1221 M

6 Brown 23725 w. malibu rd. malibu 310-456-0488 F

7 Jim 9560 dayton way losangeles 310/276-0615 M

8 Johne 14016 venturablvd. sherman oaks 818/788-3536 M

9 Johne 14016 venturablvd. sherman oaks 818-788-3536 M

10 Navy 2709 main st. losangeles 310-352-8035 F

11 Nicol 624 s. la breaave. losangeles 213-938-1447 F

12 Nicolas 2600 main st. santamonica 310/392-9025 M

A) Single sorting key: In this case, the creation of sorting
key depends on one of the record attributes as shown
in Table III where the sorting key is the attribute name.
The problem, in this case, is sorting key will not appear
when the attribute "name" value is missing in a record.

www.ijacsa.thesai.org 631 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

Missing sorting key causes the record to be placed out
of the appropriate records block. For example, as "name"
value for record 9 is missing, the record becomes the last
record after the sorting and it will be excluded from the
block.

TABLE III. SINGLE SORTING KEY

no name address city phone sex

(sortkey)

1 Ahmad 435 s. la cienegablv. losangeles 310/246-1501 M

2 Ahmed 435 s. la cienegablvd. losangeles 310-246-1501 M

3 Bel 701 stone canyon rd. bel air 310/472-1211 M

4 Bell 701 stone canyon rd. bel air 310-472-1211 M

5 Brit 12224 venturablvd. studio city 818/762-1221 M

6 Brown 23725 w. malibu rd. malibu 310-456-0488 F

7 Jim 9560 dayton way losangeles 310/276-0615 M

8 Johne 14016 venturablvd. sherman oaks 818/788-3536 M

10 Navy 2709 main st. losangeles 310-352-8035 F

11 Nicol 624 s. la breaave. losangeles 213-938-1447 F

12 Nicolas 2600 main st. santamonica 310/392-9025 M

9 14016 venturablvd. sherman oaks 818-788-3536 M

B) Multiple sorting key: In this case, the sorting key
consists of the strings of partial attribute values as shown
in Table IV. In this table, the sorting key value consists
of the first three characters of the attribute "name" and
the first three characters of the "city". The sorting key is
totally missing when all attribute values used as sorting
key are missing; partially missing if at least one attributes
value is missing. In both cases, the records with a missing
sorting key will be outside of the records block.

TABLE IV. MULTIPLE SORTING KEY

no sortkey name address city phone sex

1 Ahmlos Ahmad 435 s. la
cienegablv. losangeles 310/

246-1501 M

4 Belbel Bell 701 stone
canyon rd. bel air 310-

472-1211 M

5 Bristu Brit 12224
venturablvd. studio city 818/

762-1221 M

6 Bromal Brown 23725 w.
malibu rd. malibu 310-

456-0488 F

7 Jimlos Jim 9560 dayton
way losangeles 310/

276-0615 M

9 Johshe Johne 14016
venturablvd. sherman oaks 818-

788-3536 M

2 los 435 s. la
cienegablvd. losangeles 310-

246-1501 M

10 Navlos Navy 2709 main st. losangeles 310-
352-8035 F

11 Niclos Nicol 624 s. la
breaave. losangeles 213-

938-1447 F

12 Nicsan Nicolas 2600 main st. santamonica 310/
392-9025 M

8 she 14016
venturablvd. sherman oaks 818/

788-3536 M

3 701 stone
canyon rd.

310/
472-1211 M

The purpose of sorting key creation is to partition the data
set into smaller subsets so that the number of comparisons

can be reduced. To compare the records in the data set, in the
traditional way of duplicates detection each record in the data
set will be compared with the rest of the records in the data set.
If N is the number of records in the data set, the number of
comparisons is a matrix N ×N . Thus, as there are 12 records
in the example, there are 12 × 12 = 144 comparisons will
be required. To solve this problem, the data set is partitioned
by a sorting key into small blocks with a certain length. For
example, suppose that n is the length of the block (which
also represents the number of records in the block), thus the
numbers of comparisons for each block is n(n−1)

2 . Suppose
that n is 4, with 12 records, the data set will be divided into
three blocks. The number of comparisons in each block is
equal to 4(4−1)

2 = 6. Thus, the total number of comparisons
for all blocks is 6 × 3 = 18, which is less than the number of
comparisons in case if we deal the data set as a single block
(where the number of comparisons equals to 12(12−1)

2 = 66).

Missing values can affect the distribution of records on
blocks. In our previous example, if the data set is partitioned
into blocks of length 4, then in the data set shown in Table III
record 9 with a missing value will be is excluded from the
comparison process. Similarly, for data set in Table IV, records
2, 3 and 8, will be excluded from the block under measure.

Typically, multiple passes method is used in order to
overcome the false negative error as shown in the example.
In this way, the records that are not blocked together in one
pass will have the potential to be blocked and compared in
another pass to avoid from being misclassified. Since two
records cannot be matched due to missing values, the variables
chosen for the blocking phase should be relatively complete,
with only a few missing values. Such blocking strategy will
reduce the set of potential matches to a more manageable
number. Christen and Goiser (2007) recommend researchers to
report the specific steps of their blocking strategy in order to
ensure blocking success where in their work, blocking method
is used to deal with record linkage problem [18]. To deal with
the missing values and their effect in the creation of the sorting
key, in the next section, we describe our proposal of blocking
with a dynamic sorting key.

IV. THE PROPOSED METHOD

In this section, we will describe the extension of the
traditional method we propose in determining the attributes
that are selected in the composition of the sorting key through
a dynamic sorting key. In particular, we focus on the problem
caused by the presence of missing values in the sorting key
attributes. The proposed dynamic sorting key aims to avoid
false negative errors by reducing the number of records that
are excluded from the blocks due to the missing values. An
experiment was conducted in order to evaluate the proposed
method.

A. Attribute Selection

Attributes selection is a pre-requisite process for the dy-
namic key generation. Attributes selection stage is one impor-
tant stage upon which duplicates detection relies. In this stage,
"appropriate" attributes are selected to create sorting keys in
the classification stage. To choose the appropriate attribute
there are three criteria to meet: (a) identifying key attributes,

www.ijacsa.thesai.org 632 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

(b) attributes with high distinct value and low missing value
and (c) attribute measurement types. In the end, attributes with
the highest priority are selected for the further process [19],
[15]. Attributes selection process relies on the rate of missing
values and repetition values in each attribute and also the
threshold value for the acceptance rate.

The attributes selection process passes through three main
sequential stages as shown in Algorithm 1. The aim of the
attributes selection algorithm is to reduce the time and increase
speed in later stages. The algorithm begins by setting the
threshold value T , where (0<T<1). The higher the value
of T means the higher the acceptability on the amount of
repetition and missing values in the attribute. A good selection
of threshold value is very important since the choice of a very
low threshold value affects the creation of the sorting key,
which in turn affects the detection of duplicates in the data
set.

Algorithm 1 Attributes selection algorithm
Input: N Attributes, n number of rows, T
Output: S Subset of attributes
Var: A Attribute set, i, j
begin

1) threshold← T
2) Unique (U) value of the attribute Ai if row in1 = Ai+ 1
3) Missing (C) value of the attribute Ai if row in1 = Null
4) Calculate AV G=avg(U ∧ C)
5) Compare (T,AV G)
6) Rank (N,AV G)

end

Compute:
1) Uj = n− Count(Distinct Aj)

2) Cj =

∑N

i=0
completenessi,j

n

• Uniqueness: the uniqueness coefficient is calculated to
measure the repetition ratio in the attributes values. As it
is not possible to rely on attributes that contain duplicate
values such as a gender attribute (that contains values
only namely male and female) this function is crucial in
attribute selection. To calculate the uniqueness coefficient,
the uniqueness function (UF) is applied to each attribute
in the data set. Figure 3 shows the flow of UF.

• Completeness: Figure 4 shows the flow of the algorithm
that is called as completeness function (CF) to calculate
the number of missing values for the attributes that have
a high proportion of uniqueness (based on the threshold
value) in the previous stage. To describe CF, suppose that:
A is a data set.
M is an array where each element in M is the number
of missing values in the attribute in A.
Aattr is the attribute identifier in A.
MKey is the attribute identifier in array M . The steps
taken for CF to measure the missing values are as follow:

1) Create one dimension array M with a number of
elements equal to the number of attributes in A. Each
element in M consist of key and values, where the
key represent the attribute name of A and the value
represents the ratio of missing values in the attribute

Int UF(String

ArrayList<String>test2=new ArrayList<String>()

Collections.addAll(te

st2,x)

Hashset<String>hs=new Hashset<string>()

Int totalDuplicates=test2.size()-

hs.size()

X)

totalDuplicates

Hs.addAll(test2)

Fig. 3. Uniqueness Calculation Function

Aattr and MKey = Aattr.

Start

Create array

Reading data set attributes

Open data set

End

Yes

No

No

Yes

Yes

No

Fig. 4. Completeness Function

2) Check if the attribute which is represented in Aj,i

contains missing values by comparing the value of Aj,i

with the missing value representations such as null,
blank space or "?" character. Thus, if the value of Aj,i

equal any representation of missing values, the value
of Mj increases by one.

www.ijacsa.thesai.org 633 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

• Aggregation and ranking: In the final step, we calculate
the average of the uniqueness and the completeness scores
for each selected attribute. The result (AV G) is compared
with the threshold value (T) that was set at the beginning.
Attributes with a high average of duplicates values and
missing values are excluded from the candidate list. This
means the result fails to fulfill T . Attributes that are in
the candidate list are ranked according to their average
scores.

B. Dynamic Sorting Key

Dynamic sorting key creation depends on the attribute
selection stage, that determines the high-rank attributes. In
this method, three high-ranking attributes are selected to form
a sorting key. In addition, the sub-string size is determined
from the first three characters of each selected attribute where
the sub-strings are grouped together to form a single string
representing the sorting key after removing the blanks in the
values of the attributes (if any). Figure 5 shows the steps to
create the dynamic sorting key. A new attribute (called as

Start

Create array

Sorting values ASC

End

Yes

No

No

Yes

Yes

No

Fig. 5. Dynamic Sorting Key

ksort) is added to the data set to store the values of sorting
keys that were created by dynamic sorting key function. After
the dynamic sorting key is generated, the data set is sorted
based on its values. The sorting key is used to partition the
data set into small blocks to reduce the comparisons between
the records pairs. In our method, we use DuDe toolkit (as
proposed by Draisbach and Naumann (2010) [20]) to test the

performance of duplicates records detection within incomplete
data set with dynamic sorting key. In Section V, we will
present the results of duplicate detection with the proposed
method.

C. Data Set

To test our method, we used the restaurant data set that
provided by Hasso-Plattner-Institute (HPI)1 which has been
frequently used in duplicate detection research. The restaurant
data were extracted from the RIDDLE repository. This data set
consists of real 864 restaurant records, which was taken from
the Fodor’s and Zagat’s restaurant guides that contains 112
duplicates. The data set comprises the names and addresses
of restaurants. We have used restaurant data set that are
configured by Duplicate detection toolkit (DuDe). Restaurant
data set underwent a series of changes as reported in [20].
These changes are:

• changed file format from "arff" to "csv".
• removed header information.
• inserted row with column names.
• added a unique identifier for each record.
• deduplicated information in data sets.

Several additional changes have been made to the restau-
rant data set to prepare it for the experiment. The changes in
the so-called data preparation step are:

• Partitioned the comma-separated value (CSV) file into
attribute headings. The data set was originally separated
by a semicolon.

• Eliminated blank spaces between the values for all at-
tributes.

• Applied conceptual of arbitrary pattern to add missing
values to the data set by deleting values from the data set
attributes randomly (following the method in [21]).

D. Experiment Configuration

To show the effect the missing values on the blocking
method, we apply our method by using DuDe toolkit that
has been used to detect duplicate records. DuDe is an open
source tool that is opened for modifications and additions on
the functions code for research purposes. We add attributes
selection functions to select the proper attributes before the
dynamic sorting key can be created. Figure 6 shows the
experiment flow. In the experiment, a java class was created to
read restaurants data sets that were stored in CSV format. Data
preparation step as described earlier was performed before the
attribute selection algorithm can be applied. To generate the
dynamic sorting key, the UF was applied on the restaurant data
set to get the uniqueness factor for each attribute. The CF was
applied against the attributes with the highest uniqueness score
(low repeated values) before the dynamic sorting key can be
created. Figure 7 shows the values of dynamic keys (Ksort)
created from the first three characters of the attributes values
"Phone", "Address" and "Class" (that exhibit low repeated
values and low missing values).

In the proposed method, we modified the configuration of
SN algorithm that is used in DuDe toolkit. The modification

1https://hpi.de/naumann/projects/data-quality-and-cleansing/dude-duplicate-
detection.html#c114678

www.ijacsa.thesai.org 634 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

Attributes selection

DuDe Tools kit

Restaurant csv

file

UF

CF

LD

SN

Sorting Key generator

Json output

Classified

duplicates

Fig. 6. Experiment Flowchart

Fig. 7. Sorting Key

allows SN algorithm to pair and to sort the records based on
dynamic sorting key where window size was set to 10. Listing
1 shows the configuration of the SN algorithm.

Listing 1. Configuration of the SN algorithm
/ / A t t r i b u t e s S e l e c t i o n
/ / Mis s ing v a l u e s compensa te
/ / Dynamic s o r t i n g key (K s o r t) g e n e r a t o r
new SN a l g o r i t h m wi th window s i z e 10 and
in−memory p r o c e s s i n g e n a b l e d
a l g o r i t h m =new S o r t e d N e i g h b o r h o o d
Method (Ksor t , 1 0) ;

a l g o r i t h m . e n a b l e I n M e m o r y P r o c e s s i n g () ;
a l g o r i t h m . a d d D a t a E x t r a c t o r (e x t r a c t o r) ;

The SN algorithm returns the pairs to be classified by
the comparator that uses Levenshtein Distance (LD) for the
comparison string ksort that was created in the previous step
with similarity measure equals to 0.9. Listing 2 shows the
configuration of the comparator.

Listing 2. Configuration of the comparator
levComp = new L e v e n s h t e i n D i s t a n c e
Compara tor (" k s o r t ") ;

As DuDe is used to classifying duplicate pairs, the post
processor is configured to compute the transitive closure and
to write the final output of the pairs that are classified as a
duplicate in Json file.

V. RESULTS, ANALYSIS AND DISCUSSIONS

As described in the previous section, the experiment pro-
duces two sets of result namely DuDe with dynamic sorting
key’s (denoted as Dude’) and the original Dude’s (denoted
as Dude). The results show that using Dude’, the number of
comparison pairs for the restaurant data set was 7,740 pairs and
the number of duplicate records detected was 104. With Dude,
lower number of pairs of comparisons and duplicate records
was yielded, with 7,731 and 92 respectively. Figure 8 shows
the results of the experiments in Dude’s toolkit interface.

Fig. 8. Experiment Results

According to the results of the experiments, out of 112
actual duplicates, Dude’ managed to detect 92% of it, with
the ratio of false negative equals to 7.14%. This error rate is
low and it suggests that that Dude’ offers more accuracy than
Dude with 82% of duplicates detected and 17.86% of false

www.ijacsa.thesai.org 635 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 9, 2018

negatives. In terms of detection speed, Dude’ has demonstrated
a lower run time of 351 ms as compared to DuDe with 583
ms. Figure 9 illustrates the results.

Fig. 9. Comparison of Accuracy between DuDe’ and DuDe

VI. CONCLUSION

As a conclusion, detecting duplicates within a data set is
a challenge especially when missing values are present. In
this paper, we focus to answer the question of how duplicate
records can be accurately detected within incomplete data
sets. In search of the answer, we proposed an extension to
SN blocking method that adds dynamic sorting key algorithm
within the attribute selection step. To evaluate the proposed
method, we conducted an experiment where a real restaurant
data set and DuDe toolkit were used. The results show that
not only the number of false negatives duplicates can be
reduced, the proposed method is also faster than the duplicate
detection that was performed without the proposed extension.
Nevertheless, whether the proposed method behaves well or
not in duplicate detection using other blocking methods such
as bigram indexing and canopy clustering with TFIDF (Term
Frequency/Inverse Document Frequency) is an open problem
for future work.

ACKNOWLEDGMENT

We would like to thank Hasso-Plattner-Institute (HPI) for
the data set and duplicate detection tool (DuDe) used this
research. We also acknowledge financial assistance received
from the Universiti Teknikal Malaysia Melaka (UTeM) in
publishing this work.

REFERENCES

[1] U. Draisbach and F. Naumann, “A generalization of blocking and
windowing algorithms for duplicate detection,” Data and Knowledge
Engineering (ICDKE), 2011 International Conference on. IEEE, pp.
18–24, 2011.

[2] B. Carlo and M. Scannapieca, Data Quality. ACM Computing
Classification, 2006.

[3] S. Yan, D. Lee, M.-Y. Kan, and L. C. Giles, “Adaptive Sorted
Neighborhood Methods for Efficient Record Linkage,” Proceedings
of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries,
pp. 185–194, 2007. [Online]. Available: http://doi.acm.org/10.1145/
1255175.1255213

[4] M. A. Jaro, “Advances in record-linkage methodology as applied to
matching the 1985 census of Tampa, Florida,” Journal of the American
Statistical Association, vol. 84, no. 406, pp. 414–420, 1989.

[5] J. T. J and V. Saravanan, “Token-based method of blocking records for
large data warehouse,” Advances in Information Mining, vol. 2, no. 2,
pp. 5–10, 2010.

[6] P. Christen, “Improving data linkage and deduplication quality through
nearest-neighbour based blocking,” Discovery, 2007.

[7] M. A. Hernández and S. J. Stolfo, “Real-world Data is Dirty: Data
Cleansing and The Merge/Purge Problem,” Data Mining and Knowledge
Discovery, vol. 2, no. 1, pp. 9–37, 1998.

[8] J. Shin, “Comparative Study on Blocking Methods in Record Linkage,”
Ph.D. dissertation, Oklahoma State University, 2009.

[9] M. A. Hernández and S. J. Stolfo, “The Merge / Purge Problem for
Large Databases,” ACM SIGMOD Record, pp. 127–138, 1995.

[10] N. Emran, S. Embury, and P. Missier, “Model-driven component gen-
eration for families of completeness,” in 6th International Workshop on
Quality in Databases and Management of Uncertain Data, Very Large
Databases (VLDB), 2008.

[11] N. A. Emran, “Data completeness measures,” in Advances in Intelligent
Systems and Computing, vol. 355, 2015, pp. 117–130.

[12] T. D. Pigott, “A Review of Methods for Missing Data,” Educational
Research and Evaluation, vol. 7, no. 4, pp. 353–383, 2001.

[13] N. J. Horton and K. P. Kleinman, “Much Ado About Nothing: A
Comparison of Missing Data Methods and Software to Fit Incomplete
Data Regression Models,” The American Statistician, 2007.

[14] Y. Van Gennip, B. Hunter, A. Ma, D. Moyer, R. de Vera, and A. L.
Bertozzi, “Unsupervised record matching with noisy and incomplete
data,” 2018.

[15] J. Tamilselvi and V. Saravanan, “Detection and elimination of duplicate
data using token-based method for a data warehouse: A clustering based
approach,” International Journal of Dynamics of Fluids, vol. 5, no. 2,
pp. 145–164, 2009.

[16] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederé, and W. Nejdl,
“A blocking framework for entity resolution in highly heterogeneous
information spaces,” IEEE Transactions On Knowledge and Data
Engineering, 2013.

[17] J. Jebamalar Tamilselvi and C. Brilly Gifta, “Handling Duplicate Data in
Data Warehouse for Data Mining,” International Journal of Computer
Applications, vol. 15, no. 4, pp. 7–15, 2011.

[18] P. Christen and K. Goiser, “Quality and Complexity Measures for Data
Linkage and Deduplication,” Springer, pp. 127–151, 2007.

[19] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Technique
(The Morgan Kaufmann Series in Data Management Systems). Else-
vier, 2011.

[20] U. Draisbach and F. Naumann, “DuDe: The Duplicate Detection
Toolkit,” Proceedings of the International Workshop on Quality in
Databases (QDB), 2010.

[21] C. K. Enders, Applied Missing Data Analysis. The Guildford Press,
2010.

www.ijacsa.thesai.org 636 | P a g e

