IMPORTANT NOTE: In view of the COVID-19 uncertainty, and in particular the rising number of infections worldwide, we anticipate a virtual event.

Keynote Speakers

Edo Liberty

Carlo Ratti

Massachusetts Institute of Technology (MIT)

An architect and engineer by training, Professor Carlo Ratti teaches at the Massachusetts Institute of Technology (MIT), where he directs the Senseable City Lab, and is a founding partner of the international design and innovation office Carlo Ratti Associati. He graduated from the Politecnico di Torino and the École Nationale des Ponts et Chaussées in Paris, and later earned his MPhil and PhD at the University of Cambridge, UK. A leading voice in the debate on new technologies’ impact on urban life and design, Carlo has co-authored over 500 publications, including “The City of Tomorrow” (Yale University Press, with Matthew Claudel), and holds several technical patents. His articles and interviews have appeared on international media including The New York Times, The Wall Street Journal, The Washington Post, Financial Times, Scientific American, BBC, Project Syndicate, Corriere della Sera, Il Sole 24 Ore, Domus. His work has been exhibited worldwide at venues such as the Venice Biennale, the Design Museum Barcelona, the Science Museum in London, MAXXI in Rome, and MoMA in New York City. Carlo has been featured in Esquire Magazine’s ‘Best & Brightest’ list and in Thames & Hudson’s selection of ‘60 innovators’ shaping our creative future. Blueprint Magazine included him as one of the ‘25 People Who Will Change the World of Design’, Forbes listed him as one of the ‘Names You Need To Know’ and Fast Company named him as one of the ’50 Most Influen-tial Designers in America’. He was also featured in Wired Magazine’s ‘Smart List: 50 people who will change the world’. Three of his projects – the Digital Water Pavilion, the Copenhagen Wheel and Scribit – have been included by TIME Magazine in the list of the ‘Best Inventions of the Year’. Carlo has been a presenter at TED (in 2011 and 2015), program director at the Strelka Institute for Media, Architecture and Design in Moscow, curator of the BMW Guggenheim Pavilion in Berlin, and was named Inaugural Innovator in Residence by the Queensland Government. He was the curator of the Future Food District pavilion for the 2015 World Expo in Milan and chief curator of the "Eyes of the City" section at the 2019 UABB Biennale of Architecture and Urbanism of Shenzhen. He is currently serving as co-chair of the World Economic Forum’s Global Future Council on Cities and Urbanization.

Keynote Title: SENSEABLE CITIES

Abstract: The way we live, work, and play is very different today than it was just a few decades ago, thanks in large part to a network of connectivity that now encompasses most people on the planet. In a similar way, today we are at the beginning of a new technological revolution: the Internet is entering the physical space – the traditional domain of architecture and design – becoming an “Internet of Things” or IoT. As such, it is opening the door to a variety of applications that – in a similar way to what happened with the first wave of the Internet - can encompass many domains: from energy to mobility, from production to citizen participation. The contribution from Prof. Carlo Ratti will address these issues from a critical point of view through projects by the Senseable City Laboratory, a research initiative at the Massachusetts Institute of Technology, and the design office Carlo Ratti Associati.



Edo Liberty

Eric MacDonald

The University of Texas at El Paso

Eric MacDonald, Ph.D. is a professor of mechanical at the University of Texas at El Paso and received his doctoral (2002) degree in Electrical and Computer Engineering from the University of Texas at Austin. He worked in industry for 12 years at IBM and Motorola and subsequently co-founded a start-up specializing in CAD software - the startup was acquired by a firm in Silicon Valley. Dr. MacDonald spent 2003 to 2016 at the University of Texas at El Paso as the associate director of the W. M. Keck Center for 3D Innovation and held faculty fellowships at NASA’s Jet Propulsion Laboratory, US Navy Research and was awarded a US State Department Fulbright Fellowship in South America. His research interests include 3D printed multi-functional applications and process monitoring in additive manufacturing with instrumentation and computer vision for improved quality and yield. Recent projects include 3D printing of structures such as nano satellites with structurally-embedded electronics (one of which was launched into Low Earth Orbit in 2013 and a replica of which was on display at the London Museum of Science). He has over 100 peer-reviewed publications, dozens of patents (one of which was licensed by Sony and Toshiba from IBM). He is a member of ASEE, senior member of IEEE and a registered Professional Engineer in the USA state of Texas.

Keynote Title: Disposable and Wireless Sensors in 3D Printed Smart Molds for Sand Casting

Abstract: Additive Manufacturing is enabling the casting of complex geometries including density-varying lattices directly from digital design data. Moreover, end-of-life products can be 3D-scanned and reversed-engineered for low volume replacement parts. By inkjetting binder into a bed of sand layer-by-layer, dimensionally-accurate sand molds and cores can be printed to serve as soft tooling for sand casting. However, the related increase in geometry complexity can lead to challenges in ensuring casting quality and yield. One recently-explored remedy is to introduce disposable and wireless sensors (the Internet of Things) to enable the collection of a diversity of data at difficult-to-access locations in molds. The presentation will describe work in wirelessly measuring of temperature, humidity, magnetic field, metal velocity, and barometric pressure. New ventilation designs and strategies - enabled with complex, 3D printed fluidic channels - can now be explored. Additionally, other advancements in 3D printed sand will be discussed including augmented reality for mold harvesting and complexity analysis for evaluating the suitability of 3D printed sand versus traditional casting.